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Leibniz A-algebras

David A. Towers

Abstract. A finite-dimensional Lie algebra is called an A-algebra if all
of its nilpotent subalgebras are abelian. These arise in the study of con-
stant Yang-Mills potentials and have also been particularly important in
relation to the problem of describing residually finite varieties. They have
been studied by several authors, including Bakhturin, Dallmer, Drensky,
Sheina, Premet, Semenov, Towers and Varea. In this paper we establish
generalisations of many of these results to Leibniz algebras.

1 Introduction
An algebra L over a field F is called a Leibniz algebra if, for every x, y, z ∈ L, we
have

[x, [y, z]] = [[x, y], z]− [[x, z], y] .

In other words the right multiplication operator Rx : L→ L : y 7→ [y, x] is a deriva-
tion of L. As a result such algebras are sometimes called right Leibniz algebras,
and there is a corresponding notion of left Leibniz algebra. Every Lie algebra is a
Leibniz algebra and every Leibniz algebra satisfying [x, x] = 0 for every element is a
Lie algebra. They were introduced in 1965 by Bloh [3] who called them D-algebras,
though they attracted more widespread interest, and acquired their current name,
through work by Loday and Pirashvili [7], [8].

The Leibniz kernel is the set Leib(L) = span{x2 : x ∈ L}. Then Leib(L) is the
smallest ideal of L such that L/Leib(L) is a Lie algebra. Also [L,Leib(L)] = 0.

We define the following series:

L1 = L, Lk+1 = [Lk, L] (k ≥ 1)

and

L(0) = L, L(k+1) = [L(k), L(k)] (k ≥ 0).
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Then L is nilpotent of class n (resp. solvable of derived length n) if Ln+1 = 0 but
Ln 6= 0 (resp. L(n) = 0 but L(n−1) 6= 0) for some n ∈ N. It is straightforward to
check that L is nilpotent of class n precisely when every product of n+ 1 elements
of L is zero, but some product of n elements is non-zero. The nilradical, N(L),
(resp. radical, R(L)) is the largest nilpotent (resp. solvable) ideal of L.

A Lie algebra L is called an A-algebra if all of its nilpotent subalgebras are
abelian. This is analogous to the concept of an A-group: a finite group with the
property that all of its Sylow subgroups are abelian. They have been studied and
used by a number of authors, including Bakhturin and Semenov [1], Dallmer [4],
Drensky [5], Sheina [16], [17] and [18], Premet and Semenov [11], Semenov [15]
and Towers and Varea [21], [22]. They arise in the study of constant Yang-Mills
potentials and have also been particularly important in relation to the problem of
describing residually finite varieties (see [1], [11], [15], [16], [17] and [18]).

It would seem to be worthwhile examining this same concept for Leibniz alge-
bras, both because there has been much interest in seeing which properties of Lie
algebras generalise to Leibniz algebras, but also because Leibniz algebras can be
used to define consistent generalisations of Yang-Mills functionals. Consequently,
we will say that a Leibniz algebra L is an A-algebra if all of its nilpotent subalgebras
are abelian.

Throughout L will denote a finite-dimensional algebra over a field F . Algebra
direct sums will be denoted by ⊕, whereas vector space direct sums will be denoted
by u. The centre of L is

Z(L) = {z ∈ L : [z, x] = [x, z] = 0 for all x ∈ L} .

If U is a subalgebra of L, the centraliser of U in L is

ZL(U) = {x ∈ L : [x, U ] = [U, x] = 0} .

We say that L is monolithic with monolith W if W is the unique minimal ideal of
L. The Frattini ideal of L, φ(L), is the largest ideal of L contained in all maximal
subalgebras of L; we call L φ-free if φ(L) = 0.

In Section 2 we consider the case of Leibniz A-algebras which are not necessarily
solvable. Here we collect together the preliminary results that we need, including
the fact that for Leibniz A-algebras the derived series coincides with the lower
nilpotent series. The main result is an analogue of the structure theorem of Premet
and Semenov [11].

Section 3 contains the basic structure theorems for solvable Leibniz A-algebras.
First they split over each term in their derived series. This leads to a decomposition
of L as

L = An uAn−1 u · · ·uA0

where Ai is an abelian subalgebra of L and

L(i) = An uAn−1 u · · ·uAi

for each 0 ≤ i ≤ n. It is shown that the ideals of L relate nicely to this decompo-
sition: if K is an ideal of L then

K = (K ∩An)u (K ∩An−1)u · · ·u (K ∩A0) ;
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moreover, if N is the nilradical of L,

Z(L(i)) = N ∩Ai .

We also see that the result in Theorem 2 (i) holds when L is solvable without any
restrictions on the underlying field.

Section 4 looks at Leibniz A-algebras in which L2 is nilpotent. These are
metabelian and so the results of section three simplify. In addition we can locate
the position of the maximal nilpotent subalgebras: if U is a maximal nilpotent
subalgebra of L then

U = (U ∩ L2)⊕ (U ∩ C)

where C is a Cartan subalgebra of L.
Section 5 is devoted to Leibniz A-algebras having a unique minimal ideal W .

Again some of the results of sections three and four simplify. In particular,
N = ZL(W ), and if L is strongly solvable the maximal nilpotent subalgebras of
L are L2 and the Cartan subalgebras of L (that is, the subalgebras that are com-
plementary to L2). We also give necessary and sufficient conditions for a Leibniz
algebra with a unique minimal ideal to be a completely solvable A-algebra.

In Section 6 we illustrate some of the previous results by examining the subclass
of cyclic Leibniz A-algebras.

The final section is devoted to generalising a result of Drensky [5]. This shows
that a solvable Leibniz A-algebra over an algebraically closed field has derived
length at most three.

2 The non-solvable case
First we note that the class of Leibniz A-algebras is closed with respect to subalge-
bras, factor algebras and direct sums. Also that there is always a unique maximal
abelian ideal, and it is the nilradical.

Lemma 1. Let L be a Leibniz A-algebra and let N be its nilradical. Then

(i) N is the unique maximal abelian ideal of L;

(ii) if B and C are abelian ideals of L, we have [B,C] = 0.

Proof. (i) Clearly N is abelian and contains every abelian ideal of L.
(ii) Simply note that B,C ⊆ N . �

Let Q(L) = {x ∈ L : R2
x = 0}. The we have the following result.

Theorem 1. Let L be a Leibniz A-algebra over a perfect field F of characteristic
different from 2, 3. Then Q(L) = N , the maximal abelian ideal of L.

Proof. Let K/L = Q(L/Leib(L)). Then K is an ideal of L and K2 ⊆ Leib(L), by
[11, Proposition 1]; moreover, Q(L) ⊆ K. Let x, y ∈ Q(L). Then

R2
[x,y](L) =

[
[L, [x, y]], [x, y]

]
⊆ [L,Leib(L)] = 0 ,
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so [x, y] ∈ Q(L), and x3 = R2
x(x) = 0, whence Q(L) is a nil subalgebra of L. Also,

0 = [x, [x, y]] = [x2, y]− [[x, y], x]

and

0 = (x+ y)3 = [[x, y], x] + [y2, x] + [x2, y] + [[y, x], y] = 2
(
[y2, x] + [x2, y]

)
,

giving [y2, x] + [x2, y] = 0. Replacing y by x+ y gives

0 = [(x+ y)2, x] + [x2, x+ y] = [[x, y], x] + [y2, x] + [x2, y] = [[x, y], x] .

Hence [x2, y] = 0. But also

[x, [x, y]], [y, x2] ∈ [L,Leib(L)] = 0

and [[y, x], x] = R2
x(y) = 0, so Q(L) is an alternative nilalgebra. It follows from

[14, Theorem 3.2] that Q(L) is nilpotent, and hence abelian.
It is clear that Q(L) contains all abelian ideals of L. It remains to show that

Q(L) is an ideal of L. Now

Q(L) ⊆ K ∩ ZL(Leib(L)) .

Moreover, if x, y, z ∈ K ∩ ZL(Leib(L)), then

[[x, y], z] ∈ [Leib(L), L] = 0 ,

so K ∩ ZL(Leib(L)) is nilpotent and thus abelian. As it is an ideal this completes
the proof. �

Lemma 2. If L is a Leibniz A-algebra over any field and B is an ideal of L, then
L/B is a Leibniz A-algebra.

Proof. Let U be a subalgebra of L such that U/B is nilpotent. If B ⊆ φ(U) then
U is nilpotent, by [2, Theorem 5.5], and hence abelian.

So suppose that B 6⊆ φ(U). Then there is a maximal subalgebra M of U such
that U = B+M . Choose C to be a subalgebra of L which is minimal with respect
to U = B +C. Then B ∩C ⊆ φ(C) and U/B ∼= C/B ∩C. It follows, by [2] again,
that C is nilpotent and hence abelian.

So, in either case, U/B is abelian and L/B is an A-algebra. �

Lemma 3. Let B, C be ideals of the Leibniz algebra L.

(i) If L/B, L/C are A-algebras, then L/B ∩ C is an A-algebra.

(ii) If L = B ⊕ C, where B,C are A-algebras, then L is an A-algebra.

Proof. (i) Let U/B ∩ C be a nilpotent subalgebra of L/B ∩ C. Then (U + B)/B
is a nilpotent subalgebra of L/B, which is an A-algebra. It follows that U2 ⊆ B.
Similarly, U2 ⊆ C, whence the result.

(ii) This follows from (i). �
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Lemma 3 (i) implies that every Leibniz algebra L has a unique ideal K which
is minimal with respect to L/K being an A-algebra.

We define the nilpotent residual, γ∞(L), of L to be the smallest ideal of L such
that L/γ∞(L) is nilpotent. Clearly this is the intersection of the terms of the lower
central series for L. Then the lower nilpotent series for L is the sequence of ideals
Ni(L) of L defined by N0(L) = L, Ni+1(L) = γ∞(Ni(L)) for i ≥ 0.

For Leibniz A-algebras we have the following result.

Lemma 4. Let L be a Leibniz A-algebra. Then the lower nilpotent series coincides
with the derived series.

Proof. Since L/L(1) is nilpotent we have N1(L) ⊆ L(1). Also L/N1(L) is nilpotent
and hence abelian, by Lemma 2, so L(1) ⊆ N1(L). Repetition of this argument
gives Ni(L) = L(i) for each i ≥ 0. �

If F has characteristic zero, then every solvable Leibniz A-algebra over F is
metabelian, since L2 is nilpotent. This is not the case, however, when F is any
field of characteristic p > 0 (see [20, Example 2.1]).

A main problem encountered when trying to generalise results about Lie alge-
bras to the case of Leibniz algebras is the lack of anti-symmetry, so that one-sided
ideals exist in a Leibniz algebra. The following lemma is used several times in this
paper to overcome this difficulty.

Lemma 5. Let A be an abelian ideal of a Leibniz algebra L and suppose that
x2 ∈ A. Then Ln

x(A) ⊆ Rn−1
x (A) for all n ≥ 1.

Proof. Clearly [x,A] ⊆ A so the result holds for n = 1. Suppose that it holds for
n ≤ k where k ≥ 1. Then

Lk+1
x (A) =

[
x, [x, Lk−1

x (A)]
]
⊆
[
x2, Lk−1

x (A)
]

+
[
[x, Lk−1

x (A)], x
]

= [Lk
x(A), x] ⊆ Rk

x(A) .

The result follows by induction. �

Finally in this section we generalise a structure theorem of Premet and Semenov
(see [11]) to Leibniz algebras. We will need the following easy lemma.

Lemma 6. Let L be a Leibniz algebra over a field of characteristic different from 2
such that L/Z(L) is a simple three-dimensional Lie algebra. Then L = L2uZ(L).

Proof. By [6, page 13], L/Z(L) has a basis e1 + Z(L), e2 + Z(L), e3 + Z(L) with
products

[e2, e3] + Z(L) = e1 + Z(L) ,

[e3, e1] + Z(L) = αe2 + Z(L) ,

[e1, e2] + Z(L) = βe3 + Z(L)

for some α, β ∈ F \ 0. Then it is easy to see that the subspace S spanned by
[e1, e2], [e3, e1], [e3, e2] is a three dimensional simple subalgebra of L. It follows
that Z(L) ∩ S = 0 and S = L2. Hence L = L2 u Z(L). �
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If K is an extension field of F , denote K ⊗F L by LK .

Theorem 2. Let L be a Leibniz A-algebra over a field F . If F has characteristic
6= 2, 3 and cohomological dimension ≤ 1 (this means that the Brauer group of any
algebraic extension of the underlying field is trivial), then

(i) L2 ∩ Z(L) = 0; and

(ii) L has a Levi decomposition and every Levi subalgebra is representable as a
direct sum of simple ideals, each one of which splits over some finite extension
of the ground field into a direct sum of ideals isomorphic to sl(2).

Proof. (i) Let L be a minimal counter-example, so there is a non-zero element
x ∈ Z(L) ∩ L2. Clearly Leib(L) 6= 0 by [11, Proposition 2]. Let A be a subspace
complementary to Fx in Z(L), so Z(L) = FxuA. Then

x+A ∈ Z(L)

A
∩ L

2 +A

A
⊆ Z

(
L

A

)
∩
(
L

A

)2

,

so we have that A = 0 and dimZ(L) = 1. If B is a non-trivial ideal of L we have
Z(L) ⊆ B, since otherwise L/B would be a counter-example of smaller dimension.
It follows that L is monolithic with monolith Z(L). Let M be a maximal ideal
of L. Then M2∩Z(M) = 0 and so Z(L) 6⊆M2, whence M2 = 0. But now either L
is nilpotent or there is a unique maximal ideal which is abelian and is the radical.
If L is nilpotent, it is abelian, which yields a contradiction.

So suppose that L has a unique maximal ideal M which is abelian and is the
radical. Then L/M = L is simple. It follows from [11, Corollary 1 and Lemma
2] that L is a Lie p-algebra Moreover, our assumption on the field F implies that
L has a non-zero nilpotent element (see [9] and [10]). Hence there exists an el-
ement u ∈ L \M such that Rpm

u (L) ⊆ M . Let u be the image of u under the
canonical homomorphism from L to L. The element up

m

lies in the centre of the
universal enveloping algebra U(L), and so in any indecomposable L-module W
the set λ1(W ), . . . , λr(W ) of eigenvalues of up

m

consists of elements of F that are
conjugate under the Galois group Gal(F/F ). The right module M is indecom-
posable and contains Z(L), and so λk(M) = 0 for some 1 ≤ k ≤ r. It follows
that u acts nilpotently on the right in L. But now u2 ∈ Leib(L) ⊆ M , so, using
Lemma 5, Fu + M is a nilpotent subalgebra of L and thus abelian. This yields
that u ∈ ZL(M), and so ZL(M) = L and M = Z(L).

Now there is a finite extension K of F over which (L/Z(L))K splits as a direct
sum of ideals

S1/Z(L)⊕ · · · ⊕ Sn/Z(L)

isomorphic to sl(2), by [11, Proposition 2 (ii)] again. Let θ : L → L/Z(L) be the
canonical homomorphism with ker(θ) = Z(L) and let θK : LK → (L/Z(L))K be the
natural extension of θ to the corresponding algebras over the extension field. Then
θK is a surjective homomorphism with ker(θK) = (ker(θ))K (see, for example, [6]),
so

(L/Z(L))K ∼= LK/Z(L)K .
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Using Lemma 6 we thus see that LK = (LK)2 u Z(L)K . But now L = L2 u Z(L),
a contradiction from which the result follows.

(ii) We have that

L/Leib(L) = S/Leib(L)uR/Leib(L)

where R is the radical of L and there is a finite extension K of F over which
S/Leib(L) splits as a direct sum of ideals

S1/Leib(L)⊕ · · · ⊕ Sn/Leib(L)

isomorphic to sl(2), by [11, Proposition 2 (ii)]. Arguing as in the final two para-
graphs of (i) we have that LK = S2

K u RK , from which L = S2 u R giving the
claimed result. �

3 Decomposition results for Solvable Leibniz A-algebras
Here we have the basic structure theorems for solvable Leibniz A-algebras. First
we see that such an algebra splits over the terms in its derived series.

Lemma 7. Let L be any solvable Leibniz algebra with nilradical N . Then

ZL(N) ⊆ N .

Proof. Suppose that ZL(N) 6⊆ N . Then there is a non-trivial abelian ideal
A/(N ∩ ZL(N)) of L/(N ∩ ZL(N)) inside ZL(N)/(N ∩ ZL(N)). But now
A3 ⊆ [N,A] = 0, so A is a nilpotent ideal of L. It follows that A ⊆ N ∩ ZL(N),
a contradiction. �

Theorem 3. Let L be a solvable Leibniz A-algebra. Then L splits over each term
in its derived series. Moreover, the Cartan subalgebras of L(i)/L(i+2) are precisely
the subalgebras that are complementary to L(i+1)/L(i+2) for i ≥ 0.

Proof. Suppose that L(n+1) = 0 but L(n) 6= 0. First we show that L splits over L(n).
Clearly we can assume that n ≥ 1. Let C be a Cartan subalgebra of L(n−1) (this
exists in any solvable Leibniz algebra: the proof is the same as that for Lie algebras
in [23, Corollary 4.4.1.2]) and let L = L0 u L1 be the Fitting decomposition of L
relative to RC . Then

L1 =

∞⋂
k=1

Rk
C(L) ⊆ L(n) ,

and so L1 is an abelian right ideal of L. Also

L(n−1) = L1 u L0 ∩ L(n−1)

and
L0 ∩ L(n−1) = (L(n−1))0 = C ,

which is abelian.
Now

[C, [L,C]] ⊆ [[C,L], C] + [C2, L] ⊆ [L,C]
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Suppose that [C,Rk
C(L)] ⊆ Rk

C(L) for k ≥ 1. Then

[C,Rk+1
C (L)] =

[
C, [Rk

C(L), C]
]
⊆
[
[C,Rk

C(L)], C
]

+ [C2, Rk
C(L)] ⊆ Rk+1

C (L).

It follows that [C,L1] ⊆ L1 and thus that L1 is an ideal of L(n−1). But L(n−1)/L1

is abelian, whence L(n) ⊆ L1 and L = L0 u L(n).
So we have that L = L(n) u B where B = L0 is a subalgebra of L. Clearly

B(n) = 0, so, by the above argument, B splits over B(n−1), say B = B(n−1) uD.
But then

L = L(n) u (B(n−1) uD) = L(n−1) uD .

Continuing in this way gives the desired result. �

This gives us the following fundamental decomposition result.

Corollary 1. Let L be a solvable Lie A-algebra of derived length n+ 1. Then

(i) L = An u An−1 u · · · u A0 where Ai is an abelian subalgebra of L for each
0 ≤ i ≤ n; and

(ii) L(i) = An uAn−1 u · · ·uAi for each 0 ≤ i ≤ n

Proof. (i) By Theorem 3 there is a subalgebra Bn of L such that L = L(n) u Bn.
Put An = L(n). Similarly Bn = An−1uBn−1 where An−1 = (Bn)(n−1). Continuing
in this way we get the claimed result. Note, in particular, that it is apparent from
the construction that

Ak ∩ (Ak−1 + · · ·+A0) = 0

for each 1 ≤ k ≤ n, and that it is easy to see from this that the sum is a vector
space direct sum.

(ii) We have that L(n) = An. Suppose that

L(k) = An u · · ·uAk

for some 1 ≤ k ≤ n. Then L = L(k) u Bk and Ak−1 = B
(k−1)
k by the construction

in (i). But now

L(k−1) ⊆ L(k) +B
(k−1)
k ⊆ L(k−1) ,

whence
L(k−1) = An u · · ·uAk−1

and the result follows by induction. �

Now we show that the result in Theorem 2 (i) holds when L is solvable without
any restrictions on the underlying field.

Theorem 4. Let L be a solvable Leibniz A-algebra. Then Z(L) ∩ L2 = 0.
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Proof. Let L be a minimal counter-example and let z ∈ Z(L) ∩ L2. Put Z(L) =
U u Fz. Then U is an ideal of L and

U 6= z + U ∈ (Z(L) ∩ L2 + U)/U ⊆ Z(L/U) ∩ (L/U)2 .

The minimality of L implies that U = 0, so Z(L) = Fz. But now if K is an ideal
of L which does not contain Z(L), then

K 6= z +K ∈ Z(L/K) ∩ (L/K)2

similarly, contradicting the minimality of L. It follows that L is monolithic with
monolith Z(L).

Now let M be a maximal ideal of L. Then Z(M) ∩M2 = 0 by the minimality
of L, so Z(L) 6⊆M2, whence M2 = 0. It follows that L = M u Fx for some x ∈ L
and M is abelian. Let L = L0 u L1 be the Fitting decomposition of L relative to
Rx. Then

L1 =

∞⋂
i=1

Ri
x(L) ⊆M ,

and [L1, L0] ⊆ L1, so L1 is a right ideal of L.
Now

[x, [L, x]] ⊆ [[x, L], x] + [x2, L] ⊆ [L, x] + [x2,M + Fx] ⊆ [L, x] ,

since x2 ∈ Leib(L) ⊆M , so [x2,M ] = 0. Suppose that [x,Rk
x(L)] ⊆ Rk

x(L). Then

[x,Rk+1
x (L)] =

[
x, [Rk

x(L), x]
]
⊆
[
[x,Rk

x(L)], x
]

+ [x2, Rk
x(L)] ⊆ Rk+1

x (L) ,

since
Rk

x(L) ⊆ [L, x] = [M + Fx, x] ⊆M ,

whence [x2, Rk
x(L)] = 0. It follows that

[L,L1] = [x, L1] ⊆ L1

and L1 is an ideal of L.
If L1 6= 0 then Z(L) ⊆ L1 ∩ L0 = 0, a contradiction. Hence L1 = 0 and Rx is

nilpotent. But then L = M + Fx is nilpotent and hence abelian, and the result
follows. �

Next we aim to show the relationship between ideals of L and the decomposition
given in Corollary 1. First we need the following lemma.

Lemma 8. Let L be a solvable Leibniz A-algebra of derived length ≤ n + 1, and
suppose that L = B u C where B = L(n) and C is a subalgebra of L. If D is an
ideal of L then D = (B ∩D)u (C ∩D).

Proof. Let L be a counter-example for which dimL+ dimD is minimal. Suppose
first that D2 6= 0. Then D2 = (B ∩ D2) u (C ∩ D2) by the minimality of L.
Moreover, since

L/D2 = (B +D2)/D2 u (C +D2)/D2
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we have
D/D2 = (B ∩D +D2)/D2 u (C ∩D +D2)/D2

whence
D = B ∩D + C ∩D +D2 = B ∩D u C ∩D .

We therefore have that D2 = 0. Similarly, by considering L/B ∩D, we have that
B ∩D = 0.

Put E = C(n−1). Then (D + B)/B and (E + B)/B are abelian ideals of the
Leibniz A-algebra L/B, and so[

D +B

B
,
E +B

B

]
+

[
E +B

B
,
D +B

B

]
=
B

B
,

by Lemma 1 (ii), whence

[D,E] + [E,D] ⊆ [D +B,E +B] + [E +B,D +B] ⊆ B

and
[D,E] + [E,D] ⊆ B ∩D = 0 ;

that is, D ⊆ ZL(E). But

ZL(E) = ZB(E) + ZC(E) .

For, suppose that
x = b+ c ∈ ZL(E) ,

where b ∈ B, c ∈ C. Then

0 = [x,E] = [b, E] + [c, E] ,

so
[b, E] = −[c, E] ∈ B ∩ C = 0 .

Similarly, [E, b] = −[E, c] = 0, so that

ZL(E) ⊆ ZB(E) + ZC(E) .

But the reverse inclusion is clear, so equality follows.
Now L(n−1) ⊆ B + E ⊆ L(n−1), so

B = L(n) = (B + E)2 = [B,E] + [E,B] .

But

[E,B] ⊆
[
[E,L(n−1)], L(n−1)] =

[
[E,B + E], B + E

]
⊆ [B,B + E] = [B,E] ,

so B = [B,E]. Let L(n−1) = L0 u L1 be the Fitting decomposition of L(n−1)

relative to RE . Then B ⊆ L1 so that ZB(E) ⊆ L0 ∩ L1 = 0, whence

D ⊆ ZL(E) = ZC(E) ⊆ C

and the result follows. �
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Theorem 5. Let L be a solvable Leibniz A-algebra of derived length n + 1 with
nilradical N , and let K be an ideal of L and A a minimal ideal of L. Then, with
the same notation as Corollary 1,

(i) K = (K ∩An)u (K ∩An−1)u · · ·u (K ∩A0);

(ii) N = An ⊕ (N ∩An−1)⊕ · · · ⊕ (N ∩A0);

(iii) Z(L(i)) = N ∩Ai for each 0 ≤ i ≤ n; and

(iv) A ⊆ N ∩Ai for some 0 ≤ i ≤ n.

Proof. (i) We have that L = AnuBn where An = L(n) from the proof of Corollary
1. It follows from Lemma 8 that

K = (K ∩An) + (K ∩Bn) .

But now K ∩ Bn is an ideal of Bn and Bn = An−1 u Bn−1. Applying Lemma 8
again gives

K ∩Bn = (K ∩An−1)u (K ∩Bn−1) .

Continuing in this way gives the required result.
(ii) This is clear from (i), since An = L(n) = N ∩An.
(iii) We have that L(i) = L(i+1) uAi from Corollary 1, and also that

Z(L(i)) ∩ L(i+1) = 0

from Theorem 4. Thus, using Lemma 8,

Z(L(i)) = (Z(L(i)) ∩ L(i+1)) + (Z(L(i)) ∩Ai) = Z(L(i)) ∩Ai ⊆ N ∩Ai.

It remains to show that N ∩Ai ⊆ Z(L(i)); that is,

[N ∩Ai, L
(i)] + [L(i), N ∩Ai] = 0 .

We use induction on the derived length of L. If L has derived length one the result
is clear. So suppose it holds for Leibniz algebras of derived length ≤ k, and let L
have derived length k + 1. Then

B = Ak−1 + · · ·+A0

is a solvable Leibniz A-algebra of derived length k, and, if N is the nilradical of L,
then N ∩Ai is inside the nilradical of B for each 0 ≤ i ≤ k − 1, so

[N ∩Ai, B
(i)] + [B(i), N ∩Ai] = 0

for 0 ≤ i ≤ k − 1, by the inductive hypothesis. But

[N ∩Ai, Ak] = [N ∩Ai, L
(k)] ⊆ [N,N ] = 0 ,

for 0 ≤ i ≤ k, whence

[N ∩Ai, L
(i)] = [N ∩Ai, Ak +B(i)] = 0
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for 0 ≤ i ≤ k. Similarly, [L(i), N ∩Ai] = 0.
(iv) We have A ⊆ L(i), A 6⊆ L(i+1) for some 0 ≤ i ≤ n. Now

[L(i), A] ⊆ [L(i), L(i)] = L(i+1) ,

so [L(i), A] 6= A. It follows that [L(i), A] = 0. Similarly, [A,L(i)] = 0, whence
A ⊆ Z(L(i)) = N ∩Ai, by (ii). �

The final result in this section shows when two ideals of a Leibniz A-algebra
centralise each other.

Proposition 1. Let L be a Leibniz A-algebra and let B,D be ideals of L. Then
B ⊆ ZL(D) if and only if B ∩D ⊆ Z(B) ∩ Z(D).

Proof. Suppose first that B ⊆ ZL(D). Then

[B ∩D,D] + [D,B ∩D] = 0 = [B ∩D,B] + [B,B ∩D] ,

whence B ∩D ⊆ Z(B) ∩ Z(D).
Conversely, suppose that B ∩D ⊆ Z(B) ∩ Z(D). Then

[B,D] + [D,B] ⊆ B ∩D ⊆ Z(B +D)

which yields that

[B,D] + [D,B] ⊆ (B +D)2 ∩ Z(B +D) = 0 ,

by Theorem 4. Hence B ⊆ ZL(D). �

4 Completely solvable Leibniz A-algebras
A Leibniz algebra L is called completely solvable if L2 is nilpotent. Over a field
of characteristic zero every solvable Leibniz algebra is completely solvable. Clearly
completely solvable Leibniz A-algebras are metabelian so we would expect stronger
results to hold for this class of algebras. First the decomposition theorem takes on
a simpler form.

Theorem 6. Let L be a completely solvable Leibniz A-algebra with nilradical N .
Then L = L2 u B, where L2 is abelian and B is an abelian subalgebra of L, and
N = L2 ⊕ Z(L).

Proof. We have that L = L2 u B, where B is an abelian subalgebra of L, by
Theorem 3. Also, L2 is nilpotent and so abelian. Moreover, N = L2 +N ∩B and
N ∩B = Z(L), by Theorem 5. �

Next we see that the minimal ideals are easy to locate.

Theorem 7. Let L = L2 u B be a completely solvable Leibniz A-algebra and let
A be a minimal ideal of L. Then

(i) A ⊆ L2 or A ⊆ B;
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(ii) A ⊆ B if and only if A ⊆ Z(L) (in which case dimA = 1); and

(iii) A ⊆ L2 if and only if [A,L] = A.

Proof. (i) and (ii) follow from Theorem 5 (iii) and (iv).
(iii) Suppose that A ⊆ L2. Then [A,L] + [L,A] 6= 0 from (ii), so

[A,L] + [L,A] = A .

But [L,A] = 0 or [x, a] = −[a, x] for all x ∈ L, a ∈ A, by [2, Lemma 1.9]. Hence
[A,L] = A.

The converse is clear. �

The abelian socle of L, Asoc(L), is the union of all abelian minimal ideals of L
and is the direct sum of some of them.

Corollary 2. Let L be a completely solvable Leibniz A-algebra. Then L is φ-free if
and only if L2 ⊆ AsocL.

Proof. Suppose first that L is φ-free. Then L2 ⊆ N = AsocL, by [12, Theorem 2.4].
So suppose now that L2 ⊆ AsocL. Then L splits over AsocL by Theorem 3.

But now L is φ-free by [12, Proposition 3.1]. �

Finally we can identify the maximal nilpotent subalgebras of L. First we need
the following lemma.

Lemma 9. Let L be a metabelian Leibniz algebra, and let U be a maximal nilpotent
subalgebra of L. Then U ∩ L2 is an abelian ideal of L and L2 = (U ∩ L2) ⊕ K
where K is an ideal of L and [K,U ] = K.

Proof. Let L = L0 u L1 be the Fitting decomposition of L relative to RU . Then
L1 =

⋂∞
i=1 L(adU)i ⊆ L2, and so L2 = (L0 ∩ L2)u L1. Now

[L,L0 ∩ L2] = [L0 + L1, L0 ∩ L2] ⊆ (L0 ∩ L2) + L(2) = L0 ∩ L2.

Similarly, [L0 ∩ L2, L] ⊆ L0 ∩ L2 so L0 ∩ L2 is an ideal of L. Also, U2 ⊆ L0 ∩ L2

and an induction argument similar to that in Lemma 5 shows that

Lk
U (L0 ∩ L2) ⊆ Rk−1

U (L0 ∩ L2)

for k ≥ 1. It follows that U + (L0 ∩ L2) is a nilpotent subalgebra of L, and so
L0 ∩ L2 ⊆ U ∩ L2. The reverse inclusion is clear.

Next, [L2, L1] ⊆ L(2) = 0, so [L2, U ] = [L1, U ] = L1. But now,

[L0, L1] ⊆
[
L0, [L

2, U ]
]
⊆
[
[L0, L

2], U
]

+
[
[L0, U ], L2

]
⊆ [L2, U ] = L1 ,

so L1 is an ideal of L. Hence we can put K = L2. �

Theorem 8. Let L be a completely solvable Leibniz A-algebra, and let U be a max-
imal nilpotent subalgebra of L. Then U = (U ∩L2)⊕ (U ∩C) where C is a Cartan
subalgebra of L.
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Proof. Put U = (U ∩L2)⊕D, so D is an abelian subalgebra of L. Let L = L0uL1

be the Fitting decomposition of L relative to RD. As in Lemma 9, L1 is an abelian
right ideal of L.

Now put L2 = (U ∩ L2)⊕K as given by Lemma 9. Then

K = [K,U ] = [K,D] so K ⊆ L1 and U ∩ L2 ⊆ L0 ∩ L2 .

Hence
L2
0 ⊆ L0 ∩ L2 = (U ∩ L2) + (L0 ∩K) = U ∩ L2,

since L0 ∩K ⊆ L0 ∩ L1 = 0.
Next put L0 = L2

0 u E where E is an abelian subalgebra of L0. Then

U = L0 ∩ U = L2
0 ⊕ (E ∩ U) = (U ∩ L2)⊕ (E ∩ U). (1)

Finally put E = (E ∩ L2)⊕ C where E ∩ U ⊆ C. Then

L = L1 + L0 = L2 + L0 = L2 + E = L2 u C

so C is a Cartan subalgebra of L, by Theorem 3. Moreover, E ∩U ⊆ C ∩U , so (1)
implies that

C ∩ U = (E ∩ U)⊕ (C ∩ U ∩ L2) = E ∩ U,

since C ∩ L2 = 0. But now (1) becomes U = (U ∩ L2) ⊕ (U ∩ C) where C is a
Cartan subalgebra of L, as claimed. �

5 Monolithic solvable Leibniz A-algebras
Monolithic Lie algebras play a part in the application of Lie A-algebras to the
study of residually finite varieties, so it seems worthwhile to investigate whether
the extra properties they have are inherited by their Leibniz counterparts.

Theorem 9. Let L be a monolithic solvable Leibniz A-algebra of derived length
n+ 1 with monolith W . Then, with the same notation as Corollary 1,

(i) W is abelian;

(ii) Z(L) = 0 and either [L,W ] = W or [W,L] = W ;

(iii) N = An = L(n);

(iv) N = ZL(W ); and

(v) L is φ-free if and only if W = N .

Proof. (i) Clearly W ⊆ L(n), which is abelian.
(ii) If Z(L) 6= 0 then W ⊆ Z(L) ∩ L2 = 0, by Theorem 4, a contradiction.

Hence Z(L) = 0. It follows from this that [L,W ] + [W,L] 6= 0. But [L,W ] is an
ideal of L, so either [L,W ] = W or [L,W ] = 0, in which case [W,L] = W .

(iii) We have
N = An ⊕N ∩An−1 ⊕ · · · ⊕N ∩A0
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by Theorem 5(i). Moreover, N ∩ Ai is an ideal of L for each 0 ≤ i ≤ n − 1, by
Theorem 5(iii). But if N ∩ Ai 6= 0 then W ⊆ An ∩ N ∩ Ai = 0 if i 6= n. This
contradiction yields the result.

(iv) We have that L = N u B for some subalgebra B of L, by Theorem 3
and (iii). Put C = ZL(W ) and note that N ⊆ C. Suppose that N 6= C. Then
C = N uB ∩C. Choose A/N to be a minimal ideal of L/N , so that A2 ⊆ N . Pick
x ∈ A \N and let L = L0 u L1 be the Fitting decomposition of L relative to Rx.
Then

L1 =

∞⋂
i=1

Ri
x(L) ⊆ [[L,A], A] ⊆ [A,A] ⊆ N,

which is abelian. Hence N = L1 uN ∩ L0. Now N ∩ L0 is an ideal of L, since

[L1, N ∩ L0] + [N ∩ L0, L1] ⊆ N2 = 0

and it is clearly invariant under L0. Moreover, Fx+N∩L0 is a nilpotent subalgebra
of L, since x2 ∈ Leib(L) ⊆ N , x2 ∈ L0 and using Lemma 5. Hence it is abelian,
and so [N ∩ L0, x] = 0 and

[N, x] = [L1, x] = L1 .

It follows that L1 = Rk
x(N) for all k ≥ 1. But now, a straightforward induction

proof shows that

[L0, L1] ⊆ [L0, R
k
x(N)] ⊆ L1 + [Rk

x(L0), N ]

for all k ≥ 1. Since Rk
x(L0) = 0 for some k this yields that [L0, L1] ⊆ L1. Thus

L1 is an abelian ideal of L, and so L1 = 0, as, otherwise, W ⊆ L1 ∩ L0 = 0. This
yields that Fx + N is nilpotent and thus abelian, whence A ⊆ ZL(N) ⊆ N , by
Lemma 7. This contradiction implies that N = C.

(v) Clearly W = AsocL. Suppose first that L is φ-free. Then W = AsocL = N ,
by [19, Theorem 7.4]. So suppose now that AsocL = W = N . Then L splits over
AsocL by Theorem 3 and (iii). But now L is φ-free by [19, Theorem 7.3]. �

It is shown in [20] that monolithic solvable Lie A-algebras are not necessarily
metabelian. However, when a Leibniz A-algebra is completely solvable the situation
is more straightforward.

Theorem 10. Let L be a monolithic completely solvable Leibniz A-algebra. Then
the maximal nilpotent subalgebras of L are L2 and the Cartan subalgebras of L
(that is, the subalgebras that are complementary to L2.)

Proof. Let U be a maximal nilpotent subalgebra of L and let W be the monolith
of L. Then L2 = (U ∩ L2) ⊕K where U ∩ L2,K are ideals of L and [U,K] = K,
by Lemma 9. Either W ⊆ U ∩ L2 and K = 0 or else W ⊆ K and U ∩ L2 = 0.

In the former case N = L2 ⊆ U , by Theorem 9. But then U ⊆ ZL(N) ⊆ N ,
by Lemma 7, so U = L2. In the latter case U is a Cartan subalgebra of L, by
Theorem 8. �



118 David A. Towers

Finally we give necessary and sufficient conditions for a monolithic algebra to
be a completely solvable Leibniz A-algebra.

Lemma 10. Let L = L2 u B be a metabelian Leibniz algebra, where B is a sub-
algebra of L, and suppose that [L2, b] = L2 for all b ∈ B. Then L is a completely
solvable A-algebra.

Proof. Let U be a maximal nilpotent subalgebra of L. We have L2 = (U ∩L2)⊕K
where K is an ideal of L and [U,K] = K, by Lemma 9. Let u = x+ b ∈ U , where
x ∈ L2, b ∈ B. Then L2 = [L2, b] = [L2, u], so L2 = Ri

u(L2) for all i ≥ 1. It follows
that L2 = K from which U2 ⊆ U ∩ L2 = 0 and L is an A-algebra. �

Theorem 11. Let L be a monolithic Leibniz algebra. Then L is a completely
solvable A-algebra if and only if L = L2uB is metabelian, where B is a subalgebra
of L and [L2, b] = L2 for all b ∈ B (or, equivalently, Rb acts invertibly on L2).

Proof. Suppose first that L is a completely solvable A-algebra. Then L = L2 uB
is metabelian, where B is a subalgebra of L, by Theorem 3. Let b ∈ B and let
L = L0 u L1 be the Fitting decomposition of L relative to Rb. It is easy to see,
as in Lemma 9, that L2 = (L2 ∩ L0) u L1 and L2 ∩ L0 and L1 are ideals of L, so
L2 = L2 ∩ L0 or L2 = L1 as L is monolithic. The former implies that [L2, b] = 0.
But then [

b, [b, L2]
]
⊆ [b2, L2] +

[
[b, L2], b

]
⊆ [L2, b] = 0 ,

so L2 + Fb is a nilpotent subalgebra of L and hence is abelian. This yields that
L2 and Fb are ideals of L, which is impossible. It follows that L2 = L1, whence
[L2, b] = L2. If θ = Rb|L2 then L2 = ker θu Im θ, so ker θ = {0} and θ is invertible.

The converse follows from Lemma 10. �

6 Cyclic Leibniz algebras
Cyclic Leibniz algebras, L, are generated by a single element. In this case L has a
basis a, a2, . . . , an(n > 1) and product

[an, a] = α2a
2 + · · ·+ αna

n .

Let T be the matrix for Ra with respect to the above basis. Then T is the com-
panion matrix for

p(x) = xn − αnx
n−1 − · · · − α2x = p1(x)n1 . . . pr(x)nr ,

where the pj are the distinct irreducible factors of p(x). Then we have the following
result.

Theorem 12. L is a cyclic Leibniz A-algebra if and only if α2 6= 0, and then

L = L2 u F (an − αna
n−1 − · · · − α2a)

and we can take p1(x)n1 = x.
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Proof. Suppose first that α2 = 0 and let j be such that αj 6= 0 but αk = 0 for
2 ≤ k ≤ j − 1. Put

x = an−j+2 − αna
n−j+1 − · · · − αja .

Then Rj−1
a (x) = 0, so x belongs to a Cartan subalgebra C of L, by [13, Theorem

4.4]. But
x2 = −αja

n−j+3 + αnαja
n−j+2 + · · ·+ α2

ja
2 6= 0

since j ≥ 3. It follows that C is a nilpotent subalgebra of L which is not abelian,
and so L is not an A-algebra.

If α2 6= 0, it is easy to check that

Fb = F (an − αna
n−1 − · · · − α2a)

is a subalgebra of L which complements L2, and [L2, b] = L2. It follows from
Lemma 10 that L is an A-algebra. Moreover, p(x) is divisible by x only once. �

Theorem 13. The cyclic Leibniz A-algebra L is monolithic if and only if p(x) has
exactly two irreducible factors (one of which is x).

Proof. This follows easily from [13, Corollary 4.5]. �

Corollary 3. The cyclic Leibniz A-algebra L is monolithic and φ-free if and only if
p(x) = xp2(x). In this case

L = L2 u F (an − αna
n−1 − · · · − α2a) ,

where L2 is the only ideal of L, and is the null space of p2(x).

Proof. Theorem 13 and [13, Corollaries 4.2, 4.5 and 4.7]. �

Corollary 4. If the underlying field is algebraically closed, then the cyclic Leibniz
A-algebra L is monolithic and φ-free if and only if it is two dimensional with
[a2, a] = a2.

Proof. Clearly p(x) is quadratic, so L is two dimensional, and replacing a by
(1/
√
α2)a gives the claimed multiplication. �

7 Solvable Leibniz A-algebras over an algebraically closed field
The following result was proved for Lie algebras by Drensky in [5].

Theorem 14. Let L be a solvable Leibniz A-algebra over an algebraically closed
field F . Then the derived length of L is at most 3.

Proof. First note that we can assume that the ground field is of characteristic
p > 0, since otherwise L is completely solvable and so of derived length at most 2.
Suppose that L is a minimal counter-example, so the derived length of L is four.

Let A be a minimal ideal of L contained in Leib(L), and put N = L(2). We
have that L(3) = A. Put L̄ = L/Leib(L) and for each x ∈ L write x̄ = x+Leib(L).
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Then A is an irreducible right L̄-module, and hence an irreducible right U -module,
where U is the universal enveloping algebra of L̄. Let φ be the corresponding
representation of U and let x̄ ∈ L̄, n ∈ N . Then [[x̄, n̄], n̄] = 0̄, whence [x̄, n̄p] = 0
and so n̄p ∈ Z = Z(U).

Let n1, n2 ∈ N . Then n̄p1, n̄
p
2 ∈ Z, so α1n̄

p
1+α2n̄

p
2 ∈ ker(φ), for some α1, α2 ∈ F ,

since dimφ(Z) ≤ 1, by Schur’s Lemma. Since F is algebraically closed, there are
β1, β2 ∈ F such that α1 = βp

1 , α2 = βp
2 , so

(β1n̄1 + β2n̄2)p = βp
1 n̄

p
1 + βp

2 n̄
p
2 ∈ ker(φ) ,

since [n̄1, n̄2] = 0̄. It follows from this together with Lemma 5 thatA+F (β1n1+β2n2)
is a nilpotent subalgebra of L and hence abelian. Thus β1n̄1 + β2n̄2 ∈ ker(φ) and
so dimφ(N̄) ≤ 1. Hence ZN (A) has codimension at most 1 in N .

Then dimN/ZN (A) ≤ 1. Suppose that dimN/ZN (A) = 1. Put S = L/ZN (A).
Then dim(S(2)) = 1. It follows that S/ZL(S(2)) ⊆ RS(S(2)) and so has dimension
at most one, giving

[S(1), S(2)] + [S(2), S(1)] = 0 .

But now S(1) is nilpotent but not abelian. As S must be an A-algebra, this is a con-
tradiction. We therefore have that dim(L(2)/ZL(2)(A)) = 0, whence [A,L(2)] = 0.

Now we can include L(3) in a chief series for L. So let

0 = A0 ⊂ A1 ⊂ · · · ⊂ Ar = L(3)

be a chain of ideals of L each maximal in the next. By the above we have
[Ai, L

(2)] ⊆ Ai−1 for each 1 ≤ i ≤ r. It follows that L(2) is a nilpotent subal-
gebra of L and hence abelian. We infer that L(3) = 0, a contradiction. The result
follows. �
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