Predicting Future Occupancy Grids in Dynamic Environment with Spatio-Temporal Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Predicting Future Occupancy Grids in Dynamic Environment with Spatio-Temporal Learning

Résumé

Reliably predicting future occupancy of highly dynamic urban environments is an important precursor for safe autonomous navigation. Common challenges in the prediction include forecasting the relative position of other vehicles, modelling the dynamics of vehicles subjected to different traffic conditions, and vanishing surrounding objects. To tackle these challenges, we propose a spatio-temporal prediction network pipeline that takes the past information from the environment and semantic labels separately for generating future occupancy predictions. Compared to the current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds and in a relatively complex environment from the nuScenes dataset. Our experimental results demonstrate the ability of spatiotemporal networks to understand scene dynamics without the need for HD-Maps and explicit modeling dynamic objects. We publicly release our occupancy grid dataset based on nuScenes to support further research.
Fichier principal
Vignette du fichier
IV22_0312_FI.pdf (2.56 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03663880 , version 1 (10-05-2022)

Identifiants

Citer

Khushdeep Singh Mann, Abhishek Tomy, Anshul Paigwar, Alessandro Renzaglia, Christian Laugier. Predicting Future Occupancy Grids in Dynamic Environment with Spatio-Temporal Learning. IV 2022 - 33rd IEEE Intelligent Vehicles Symposium, Jun 2022, Aachen, Germany. pp.1-6. ⟨hal-03663880⟩
68 Consultations
141 Téléchargements

Altmetric

Partager

More