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Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning

Khushdeep S. Mann1, Abhishek Tomy1, Anshul Paigwar1, Alessandro Renzaglia2 and Christian Laugier1

Abstract— Reliably predicting future occupancy of highly
dynamic urban environments is an important precursor for safe
autonomous navigation. Common challenges in the prediction
include forecasting the relative position of other vehicles,
modelling the dynamics of vehicles subjected to different traffic
conditions, and vanishing surrounding objects. To tackle these
challenges, we propose a spatio-temporal prediction network
pipeline that takes the past information from the environment
and semantic labels separately for generating future occupancy
predictions. Compared to the current SOTA, our approach
predicts occupancy for a longer horizon of 3 seconds and in
a relatively complex environment from the nuScenes dataset.
Our experimental results demonstrate the ability of spatio-
temporal networks to understand scene dynamics without the
need for HD-Maps and explicit modeling dynamic objects. We
publicly release our occupancy grid dataset based on nuScenes
to support further research.

I. INTRODUCTION

The ability to safely and intelligently navigate through
different traffic scenarios is an important aspect of Au-
tonomous Vehicles (AVs). Such navigation is relatively easy
for human drivers because they can interpret and predict
how the surrounding environment will evolve. However,
performing a similar prediction task is quite difficult for AVs
especially under different traffic conditions. Predictions in
the 3D world coordinates require the entire pipeline starting
from the detection of the 3D object in the LiDAR point cloud
along with the association of agents from the previous frames
to finally performing predictions using the previous sequence
to work accurately. Through this prediction pipeline, error
can creep in from any of the modules and can affect the
final results.

In this paper, we tackle the challenge of performing
long-term future predictions for AVs with Occupancy Grid
Maps (OGMs). OGMs are widely used in the industry as
they capture the local environment and dynamic agents
into discrete spatial cells. Each cell is classified as static,
dynamic, unknown, or free space. OGMs are probabilistic
representations, integrating uncertainties from sensors, and
temporal analysis. They provide a dense representation as
each portion of the space is analyzed and not limited to
objects of a given type or size.

Future frame prediction of the OGMs is equivalent to a
video prediction task with certain domain-specific knowledge
and modifications in the design of the model to capture the
discretized spatial information of agents and environments
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Fig. 1: Generated OGMs from nuScenes dataset are coupled with
corresponding ground truth 3D labels and fed into an spatio-
temporal prediction network pipeline. Network learns from past 4
sec contextual information and predicts 3 sec into the future.

in a normal driving scenario. Accordingly, recent works
have considered deep learning-based models for predicting
future video frames with OGMs [1], [2]. The existing works
usually separate the static and dynamic part for prediction
[3]. However, in our work, we propose a semantic scheme
that can better represent the different dynamics of specific
agents compared to a dynamic cell that may contain multiple
agents such as pedestrians, cyclists or a vehicle.

Main contributions of this work are:
• A Spatio-Temporal Network Pipeline for long-term

future occupancy grid prediction. Our approach uses
semantic labels of the vehicle in OGMs to model the
specific motion type of agents in the prediction rather
than using a generic combined prediction of static and
dynamic cells that contains the environment and various
types of agents such as cars, pedestrians, cyclists, etc.

• Publicly releasing an OGMs dataset consisting of static
environment and semantic labels for ease in long-
term prediction. Presenting the results for this dataset
with state-of-art video prediction models shows that
under this training scheme the models have consistent
performance even for long-term predictions. The code
and dataset are available at [4].

• Evaluate the effectiveness of a spatio-temporal module
in comparison to ConvLSTM for modelling the spatial
and temporal nature of future prediction in OGMs.

II. RELATED WORK

A. Video prediction task

In recent years, deep learning based video prediction has
emerged as a promising research direction with applications



in future sequence prediction to restore a high-resolution
video from its corresponding low-resolution frames. Video
prediction is defined as a self-supervised learning task to
extract meaningful temporal and spatial patterns in nat-
ural videos [5]. Within the video-prediction framework,
sequence-to-sequence architecture that takes in a sequence
of images and predicts future frames is a suitable model
for our task. Developments in the video-prediction task have
been adapted in the autonomous vehicle domain to predict
future trajectories of agents and RGB frames to predict future
occupancy grids. In the sequence-to-sequence architectures,
CNNs are used to model spatial information, while RNN
is used to incorporate the temporal information from the
sequence. The combination of an CNN and RNN can handle
the dynamic agents in the environment and extract the
necessary spatial relations for per-pixel prediction of both
static and dynamic objects in the environment [6].

In this work, we compare the performance of two video
prediction approaches, a ConvLSTM [7] and a PredRNN
[8] based network architecture, over the OGMs dataset.
ConvLSTM is based on prediction networks for language
and speech modelling tasks. In this, LSTM is used to pre-
serve the long-term temporal dynamics and non-markovian
properties in a network structure called a memory cell and
the convolutional layers act as filters to extract important
features from images. PredRNN builds upon this to include
spatial correlation and temporal dynamics in future image
prediction with the help of novel Spatio-Temporal LSTM
(ST-LSTM) blocks. In PredRNN, a new memory bank is
added that takes as input the memory flow from the output
of the previous frame ST-LSTM layer in the sequence. This
enables the module to learn complex spatial relations of the
transition between consecutive frames.

B. Occupancy grid prediction

Path prediction in the occupancy grid offers the benefit of
reducing the computational complexity of path association
through tracking of individual subjects and prediction of in-
dividual agents in large and cluttered driving scenarios. Also,
the interaction with other agents and the static environment is
implicitly captured by the occupancy grid prediction models.
The first end-to-end object tracking approach to directly map
raw sensor input to track objects in an indoor environment
with occlusion was presented in [9]. Building upon this,
authors proposed an end-to-end trainable framework that was
able to track a range of objects, including buses, cars, cyclists
and pedestrians through occlusion by predicting a fully non-
occluded occupancy grid from raw laser input recorded from
a stationary or moving vehicle with RNN for capturing the
temporal evolution of the state of the environment [10] [11].

A multi-step prediction using RNN was proposed in [1]
so that an accurate prediction of the drivable space was
extracted for efficient planning and navigation. The method
uses motion-related features between consecutive frames
to enhance the prediction of dynamic objects to account
for the dataset bias towards static objects. In subsequent
studies, separate predictions of the static and dynamic cells
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Fig. 2: Occupancy grid maps generated from the nuScenes dataset.
Agents belonging to the ’Vehicles’ category are of interest and
being marked by ’green’ semantic pixel labels using the projections
of ground truth 3D bounding boxes. Objects of any other type
including the static environment are marked in ’blue’. Different
road crossing motion scenarios from the dataset are presented.

were explored. A double-prong network architecture with a
separate stream for predicting static and dynamic objects
was proposed in [3] to retain dynamic objects and reduce
blurriness in long-term prediction. In [12], the static and
dynamic cells are predicted separately, however, the input
to the network is the entire OGM along with the velocity
of each cell obtained through DOGMA [13]. The proposed
model uses an encoder-decoder type architecture with Con-
vLSTM modules along with skip connections to extract
Spatio-temporal correlations.

III. DATASET

A. Generating occupancy grid maps

NuScenes dataset [14] contains recordings of 1000 scenes
recorded in Boston and Singapore. Each scene is 20s long
and collected at 20Hz. Annotations with 3D bounding boxes
are provided at 2Hz for 23 classes. NuScenes dataset contains
recordings from a camera, radar, and LiDAR for environment
perception along with high-quality manually annotated vec-
torized maps with GPU/IMU measurements. A large number
of annotations and environment maps along with track id’s
enable research on multiple tasks such as object detection,
tracking, and behavior modeling.

We generate the OGMs from NuScenes LiDAR point
clouds by considering a distance of 30m in cardinal direc-
tions from the centric ego-vehicle. We followed this scheme
with regards to different traffic scenarios and to capture as
many dynamic objects approaching towards or receding from
the ego-vehicle from all directions. To obtain the OGMs,
we adopt the Conditional Monte-Carlo Dense Occupancy
Tracker (CMCDOT) [15] with a resolution of 0.1m, that
eventually generates a 600× 600 grid size. This is a spatial



Fig. 3: Semantic occupancy grids consisting of environment and vehicles over the time frames of 0.5 sec. Grids are converted into binary
images and separately fed to spatio-temporal networks. We evaluate two spatio-temporal networks: PredRNN and ConvLSTM.

occupancy tracker that infers the dynamic of a scene by
discrete classification of pixels as static, dynamic, unknown,
or free space. Accordingly, we eliminate the unknown and
free occupancies and project the ground truth 3D boxes
onto the OGMs to obtain our experimental dataset shown
in Figure 2.

B. 3D to 2D projection of ground truth bounding boxes over
nuScenes dataset

Existing occupancy grid generators lack semantic informa-
tion about the detected objects in the environment. However,
the nuScenes dataset contains annotation of the 3D bounding
boxes of objects in the LiDAR point cloud at 2Hz which can
be utilized as semantic information in the occupancy grid.
The occupancy grids are generated with a resolution such
that each pixel in the occupancy grid map corresponds to
0.1m in the LiDAR point cloud. Corresponding to annotated
frames in the dataset, the generated grids are matched using
their timestamps, and the top corners of the bounding box
of object class ‘vehicle’ are transformed and plotted to the
grid.

IV. MODEL ARCHITECTURE

We consider spatio-temporal learning networks for per-
forming the prediction task. Accordingly, we implemented
state-of-art PredRNN architecture[8]. We use the ST-LSTM
building blocks for PredRNN and include ConvLSTM ar-
chitecture for baseline comparison. ST-LSTM unit is rep-
resented by (χt, H l

t−1, Clt−1, M l−1
t ), where l ∈ {1, . . ,

L} and L is the maximum number of recurrent units. At
a time instant t, χt is the input state, H l

t−1 is the output
hidden state from the previous unit, Clt−1 is the memory
state and M l−1

t is the saptio-temporal memory bank jointly
maintained by all nodes for learning unified representations
in the recurrent network. The inclusion of this memory bank
is the key difference as compared to ConvLSTM unit. We
consider four recurrent ST-LSTM and standard LSTM units
(L=4) in PredRNN and ConvLSTM networks respectively.
Each hidden state has 64 channels. Past time frames from t
- 4s to t, where t indicates the current time, over the interval
of ∆t = 0.5s are considered as inputs and future predictions
are done for t + 0.5s to t + 3s considering the same time
interval as demonstrated in Figure 3.

We adopt the reverse scheduled sampling scheme (RSS)
for the inputs during training the networks. Introduced in [8],
RSS is a curriculum learning strategy that forces sequence-
to-sequence models for learning long-term dynamics. A
gradual change in the encoder training process accomplishes
this by replacing previously generated frames with previous
ground truth frames. Following the previous work [16], [17],
we denote a unified predictive model fθ(.) for sequence
encoding. We denote the input context frames up to time
T as χinput = {χ1, . . ,χT } and predicted time frames under
the RSS scheme are given by:

χ̂t+1 = fθ

(
χ̂t

RSS7−−−→ χt, Ht−1, Ct−1,Mt−1

)
for t ≤ T

(1)
where, RSS7−−−→ denotes the gradual change in training process
by considering ground truth frame χt instead of generated
frame χ̂t. Under the RSS scheme, there exists a probability
εk ∈ [0,1] for sampling true frames χt ∈ χinput or a
probability (1 - εk) of sampling χ̂t. εk changes with number
of training iterations k, having an initial and end values as
εs and εe respectively. We formulate this increase with an
exponential equation as:

εk = εe − (εe − εs)× exp
(
− k

αe

)
(2)

Our model architecture consists of two training paths to
explicitly learn the dynamics of the static environment and
semantic vehicle objects as visible in Figure 3. Accordingly,
the overall loss function Lo is a weighted sum of static
environment loss Lstatic and semantic loss Lsemantic:

L0 = Lstatic + k0Lsemantic (3)

where ko is the weight factor for balancing the two loss
terms. The static and semantic loss functions

Lstatic =
1

W ×H

W×H∑
c=1

|y∗static(c)− ystatic(c)| (4)

Lsemantic =
1

W ×H

W×H∑
c=1

λc(y
∗
semantic(c)−ysemantic(c))2

(5)



are the mean of absolute differences of each cell c between
the ground truth labels y∗(c) and predicted labels y(c). λc is
a weighting factor for balancing the semantic cells against
the background. For each cell this factor is given by:

λc = 1 + ks ∗ y∗semantic(c) (6)

such that λc = 1 + ks for semantic cells and λc = 1
elsewhere.

V. TRAINING AND EXPERIMENTATION

The experimental dataset is described in section III-A.
We consider 80% of the dataset for training and 20% for
testing. Original OGMs provided in R600×600×3 are reduced
in spatial size to R256×256×1. The convolutional kernel size
is set to 5× 5 inside ST-LSTM and LSTM units. Networks
are trained using the Adam optimizer [18] with a starting
learning rate of 3× 10−4 with a batch size of 8 sequences.
We set εe = 1.0, εs = 0.5, and αe = 5 × 103 in equation
(2). We perform training for 25 epochs on 6109 sequences.
The models are tested on 1200 test sequences considering
the same input and prediction scheme. We set ko = 10 in
eqn. (3) and ks = 2 in eqn. (6) based on the validation
performance. We also compare the results of semantic MSE
between the spatio-temporal networks and linear projection
model [19]. Linear projection assumes constant instantaneous
velocity and uses it to evaluate the future position.

VI. RESULTS

A. Qualitative results

We consider a threshold of Po > 0.6 for classifying the
cells as occupied or not occupied. We use the same threshold
for the vehicles and the rest of the environment predictions.
The output of the model is a black and white image with a
value of either 0 or 1 to indicate an empty or occupied state in
the OGM. For representative purposes, in figure 4 and 5, the
cells with vehicle objects are represented by ’green’ colour
while static environment and objects other than vehicles are
assigned ‘blue’ colour.

Figure 4 illustrates a sample driving scenario with few
static vehicles and a vehicle moving in reverse direction on
a straight road. The future predictions from our proposed
pipeline using PredRNN and ConvLSTM are compared. The
top row depicts ground truth OGMs at specific prediction
times. The ego vehicle is fixed at the center and is traveling
in the forward direction in the OGMs. The motion of the
entire scene is relative to the ego vehicle. The cells with
the vehicles are depicted in green and the rest of the static
environment with other agents is represented in blue. In
this scenario, four vehicles are static and there is a lone
vehicle moving in the reverse direction with respect to the
ego-vehicle. The reverse-moving vehicle is marked with
dashed red lines for comparison across models. In figure
4(c), it can be seen that the network with ConvLSTM as
backbone fails to predict the vehicle even 2 sec into the future
whereas the PredRNN based network shows the vehicle in
the environment for the entire 3 sec prediction horizon.
However, it is to be noted that at 3 sec the predicted position

(a) Ground truth

(b) PredRNN predictions

(c) ConvLSTM predictions

Fig. 4: A scene depicting few static vehicles and a vehicle going in
reverse direction. Comparison between two spatio-temporal learning
networks over the future predictions of 1 sec, 2 sec and 3 sec.

of the vehicle lags in comparison to the actual position shown
in the ground truth. This could be attributed to the high speed
of the vehicle and a bias in the dataset with a large number
of forward-moving vehicles and their motion.

Figure 5 is an example scenario of a double-lane road
with static objects detected in the middle of the road. Apart
from correctly predicting vehicles, it is crucial that the model
has an accurate representation of free space in the drivable
area. In figure 5(b), it can be seen that the PredRNN-based
network can retain those small obstacles in the drivable area
(circled with dashed red lines) up to 2 sec into the future,
while ConvLSTM network fail to retain these crucial smaller
things. Also, for multiple vehicles moving in the forward
direction, the prediction from the ConvLSTM model gets
blurry and smaller for the vehicle at the front towards the
end of 3 sec as highlighted in the figure.

Certain scenarios where the ego-vehicle turns and the
entire scene rotates in the OGM are difficult to model and this
would require further studies where the static environment
of the future scenes or stored environment map with static
objects can be provided to the networks. Certain situations
are inherently difficult to account for such as a new vehicle
appearing in the scene for a few frames before t = 0 or a
vehicle tuning scenario at an intersection. However, in certain
situations, using the information from the structure of free
space, the network was able to correctly predict a vehicle’s
turning.



(a) Ground truth

(b) PredRNN predictions

(c) ConvLSTM predictions

Fig. 5: A scene describing three vehicles moving in forward
direction along with the static environment. Predictions with spatio-
temporal networks are presented over the future time horizon of 3
sec.

Prediction time
Trained networks 1 sec 2 sec 3 sec

PredRNN (separate) 85.32 ± 4.31 83.87 ± 4.87 82.92 ± 4.92
PredRNN (combined) 84.21 ± 4.26 82.84 ± 4.69 81.61 ± 5.04
ConvLSTM (separate) 82.39 ± 4.85 81.83 ± 5.00 81.07 ± 5.01

ConvLSTM (combined) 81.44 ± 4.96 81.27 ± 5.02 80.62 ± 5.00

TABLE I: Mean F1 scores (%) corresponding to 1200 test
scenarios subjected to individual time frames.

B. Quantitative results

We quantitatively measure the prediction performance of
the networks between the ground truth and predicted frames
based on metrics like F1 score, Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM) [20],
and Mean Squared Error (MSE). For each specific future
time instance, we report mean values of 1200 test scenarios.
These scenarios represent various urban traffic conditions and
navigation challenges.

Table I shows the F1 score comparisons between two
variants of PredRNN and ConvLSTM models over the future
prediction for 3 secs. Here, separate prediction imply sepa-
rately predicting static and semantic objects as described in
the model architecture (Figure 3). While combined prediction
implies predicting the entire OGM as shown in figure 1. It
is evident that for both models, separate prediction yields
slightly better results as compared to combined prediction.
Moreover, PredRNN performs better than ConvLSTM across
all time frames. As expected, a performance drop is observed

with increasing prediction steps but still, the obtained scores
are comparable to environment prediction with static ego-
vehicle[12].

Figures 6(a) and (b) present the OGM prediction plots
of PSNR and SSIM for two networks up to future 3 secs
respectively. While PSNR estimates the pixel-level similarity
between two images, SSIM measures the perceived changes
in structural information for the pixel that are spatially close
to each other. We set the sliding window size as 11 for SSIM
evaluation. PredRNN outperforms ConvLSTM implying that
the predicted frames from the former are more structurally
similar compared to later. Also, for each of these networks
the separate prediction scheme is better than combined
predictions. As we report the mean of several test scenarios,
a trend in performance drop is visible with prediction time.
This is addressed to the fact that certain scenarios wherein
the ego vehicle suddenly makes turns are difficult to predict
and reconstruct at longer time horizons.

Figures 6(c) and (d) show the computed pixel-level MSE
for grid cells corresponding to static and semantic ob-
jects separately. MSE values are expected to increase with
time due to the accumulation of prediction errors. At each
time step, PredRNN outperforms the ConvLSTM and linear
projection methods, exhibiting performance consistency as
observed in Figures 4 and 5. In general, the metrics across
different datasets cannot be compared. However, the scale of
MSE metric is comparable. Accordingly, the scale of both
static and semantic MSE is in the range of 10−2, both are
comparable to the previous literature [2], [3]. This range is
attributed to the fact that MSE is calculated over the entire
image dominated by free space which the model is able to
predict easily.

VII. CONCLUSION AND FUTURE WORK

We presented a pipeline for producing long-time (future
3 secs) OGM predictions of the urban environment in the
case of dynamic ego-vehicle. These predictions were done
separately for static and semantic obstacles with spatio-
temporal networks. Accordingly, the networks were able
to forecast the position of dynamic objects under different
traffic scenarios and overcome the challenge of vanishing
surrounding objects. We also showed that networks perform
slightly better while separately predicting the static and
semantic objects as compared to their combined predictions.

Our OGMs are based on nuScenes dataset and include
several real-world urban traffic conditions. We believe that it
is vital for current techniques in AVs to model and predict
these kinds of real-world scenarios and thus, we publicly
release this dataset for further enhancement in OGM based
research domain. For the future work, the current pipeline
can be extended for performing multi-modal predictions.
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Fig. 6: Frame-wise PSNR(↑), SSIM(↑), Static MSE (↓), and Semantic MSE (↓) results on the generated OGM dataset. The prediction
horizon is 3 sec during training and testing phases. Note that PredRNN (combined) and ConvLSTM (combined) predict an entire OGM,
thus separate Static and Semantic MSE cannot be reported for these cases. The Semantic MSE result from the linear projection of vehicle’s
bounding boxes is also presented in (d).
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