Revisiting the Random Subset Sum problem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Revisiting the Random Subset Sum problem

Résumé

The average properties of the well-known \emph{Subset Sum Problem} can be studied by the means of its randomised version, where we are given a target value $z$, random variables $X_1, \ldots, X_n$, and an error parameter $\varepsilon > 0$, and we seek a subset of the $X_i$'s whose sum approximates $z$ up to error~$\varepsilon$. In this setup, it has been shown that, under mild assumptions on the distribution of the random variables, a sample of size $\mathcal{O}\left(\log (1/\varepsilon)\right)$ suffices to obtain, with high probability, approximations for all values in~$[-1/2, 1/2]$. Recently, this result has been rediscovered outside the algorithms community, enabling meaningful progress in other fields. In this work we present an alternative proof for this theorem, with a more direct approach and resourcing to more elementary tools, in the hope of disseminating it even further.
Fichier principal
Vignette du fichier
RandomSubsetSum.pdf (439.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03654720 , version 1 (28-04-2022)
hal-03654720 , version 2 (30-03-2023)

Identifiants

Citer

Arthur da Cunha, Francesco d'Amore, Frédéric Giroire, Hicham Lesfari, Emanuele Natale, et al.. Revisiting the Random Subset Sum problem. 2022. ⟨hal-03654720v1⟩
285 Consultations
336 Téléchargements

Altmetric

Partager

More