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Abstract
The average properties of the well-known Subset Sum Problem can be studied by the means of its
randomised version, where we are given a target value z, random variables X1, . . . , Xn, and an
error parameter ε > 0, and we seek a subset of the Xi’s whose sum approximates z up to error ε.
In this setup, it has been shown that, under mild assumptions on the distribution of the random
variables, a sample of size O

(
log(1/ε)

)
suffices to obtain, with high probability, approximations

for all values in [−1/2, 1/2]. Recently, this result has been rediscovered outside the algorithms
community, enabling meaningful progress in other fields. In this work we present an alternative
proof for this theorem, with a more direct approach and resourcing to more elementary tools, in the
hope of disseminating it even further.

2012 ACM Subject Classification

Keywords and phrases

1 Introduction

In the Subset Sum Problem (SSP), one is given as input a set of n integers X = {x1, x2, . . . , xn}
and a target value z, and wishes to decide if there exists a subset of X that sums to z. That
is, one is to reason about a subset S ⊆ [n] such that∑

i∈S

xi = z.

The special case where z is half of the sum of X is known as the Number Partition Problem
(NPP). The converse reduction is also rather immediate.1

Be it in either of these forms, the SSP finds applications in a variety of fields, ranging
from combinatorial number theory [24] to cryptography [12,18]. In complexity theory, the
SSP is a well-known NP-complete problem, being a common base for NP-completeness proofs.
In fact, the NPP version figures among Garey and Johnson’s six basic NP-hard problems [11].
Under certain circumstances, the SSP can be challenging even for heuristics that perform
well for other NP-hard problems [17,23], and a variety of dedicated algorithms have been

1 To find a subset of X summing to z, one only needs to solve the NPP for the set X ∪ {2z,
∑

i∈[n] xi}.
By doing so, one of the parts will consist of the element

∑
i∈[n] xi alongside the desired subset.
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2 Revisiting the Random Subset Sum problem

proposed to solve it [5, 9, 14–16], even using quantum computing [3, 14, 19]. Nonetheless, it is
not hard to solve it in polynomial time if we restrict the input integers to a fixed range [2].
It suffices to recursively list all achievable sums using the first i integers: we start with
A0 = {0} and compute Ai+1 as Ai ∪ {a + xi+1 | a ∈ Ai}. For integers in the range [0, R],
the search space has size O(nR).

Studying how the problem becomes hard as we consider larger ranges of integers (relative
to n) requires a randomised version of the problem, the Random Subset Sum Problem
(RSSP), where the input values are taken as independently and identically distributed
random variables. In this setup, the work [4] proved that the problem experiences a phase
transition in its average complexity when the range of integers increases.

The result we approach in this work comes from related studies on the typical properties
of the problem. In [20] the author proves that, under fairly general conditions, the expected
minimal distance between a subset sum and the target value is exponentially small. More
specifically, they show the following result.

▶ Theorem 1 (Lueker, [20]). Let X1, . . . , Xn be i.i.d. uniform random variables over [−1, 1],
and let ε ∈ (0, 1/2). There exists a universal constant C > 0 such that, if n ≥ 2C log(1/ε),
then

Pr

∀z ∈
[
−1

2 ,
1
2

]
, ∃S ⊆ [n] :

∣∣∣∣z −
∑
i∈S

Xi

∣∣∣∣ ≤ 2ε

 ≥ 1 − exp

−

(
n
2 − C log 1

ε

)2

2n

 .

Even though Theorem 1 is stated and proved for uniform random variables over [−1, 1],
it is not hard to extend the result to distributions whose probability density function f

has bounded support and satisfies f(x) ≥ b for all x ∈ [−a, a], for some constants a, b > 0
(see Corollary 3.3 from [20]). With this added generality, the theorem has recently enabled
progress in the field of Machine Learning, taking part in a proof of the Strong Lottery Ticket
Hypothesis [22], in subsequent related works [6, 7, 10], and in Federated Learning [25].

The simplicity and ubiquity of SSP has granted the related results a special didactic place.
Be it as a first example of NP-complete problem [11], a path to science communication [13],
or a demonstration of advanced techniques [21], it has been a tool to make important, but
sometimes complicated, ideas easier to communicate. We try to recover some of this property
by proposing an alternative proof for it, that not only attains itself to more accessible tools,
but also preserves much of the intuition behind the theorem. We believe our argument to be
accessible enough for an undergraduate course on randomised algorithms.

1.1 Former work
The work [20] tackles Theorem 1 by considering the random variable associated to the
proportion of the values in the interval [−1/2, 1/2] that can be approximated up to error ε by
the sum of some subset of the first t variables, X1, . . . , Xt. They proceed by evaluating the
expected per-round growth of such variable, conditioned on the outcomes of X1, . . . , Xt, and
then applying a nonlinear transformation to such expected value in order to make it amenable
to analysis by martingale theory. This is only possible by restricting to approximations
realised by subsets for which all partial sums lie in [−1/2, 1/2]. The proof follows by employing
the previous evaluations in the construction of a suitable martingale, for which we could not
find an intuitive description. A subsequent application of the Azuma-Hoeffding bound [1]
followed by a case analysis leads to the result.
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In this work, we propose a simplified strategy, with fewer assumptions than the original.
This allows us to maintain the intuition of what our measures and variables describe. During
the analysis, we highlight the simplifications we make and provide details about them.

2 Our result

In this section, we provide an alternative argument for Theorem 1. Our approach yields a
slightly different thesis, yet preserving all the essence of the result. Most notably, our proof
directly2 ensures approximations for all values in [−1, 1], which is arguably more natural
than the original [−1/2, 1/2] range. We prove

▶ Theorem 2. Let X1, . . . , Xn be independent uniform random variables over [−1, 1], and
let ε ∈ (0, 1/3). There exist constants C > 0 and κ > 0 such that, if n ≥ C log(1/2ε), then

Pr

∀z ∈ [−1, 1], ∃S ⊆ [n] :
∣∣∣∣z −

∑
i∈S

Xi

∣∣∣∣ ≤ 2ε

 ≥ 1 − exp

−

(
n − C log 1

2ε

)2

κn

 .

Our argument takes shape much like the pseudo-polynomial algorithm we described in
the introduction. Leveraging the recursive nature of the problem, we construct a process
which, at time t, describes the proportion of the interval [−1, 1] that can be approximated
by some subset of the first t variables.

We will show that after some time (proportional to log(1/ε)) a factor of 1 − ε/2 of the
values in [−1, 1] can be approximated up to error ε.

2.1 Preliminaries
Let X1, . . . , Xn be realisations of random variables as in Theorem 2, and, without loss of
generality, fix ε ∈ (0, 1/3). We say a value z ∈ R is ε-approximated at time t if and only if
there exists S ⊆ [t] such that ∣∣∣∣z −

∑
i∈S

Xi

∣∣∣∣ < ε.

For 0 ≤ t ≤ n, let ft : R → {0, 1} be the indicator function for the event “z is ε-approximated
at time t”. Therefore, we have f0 = 1(−ε,ε), since only the interval (−ε, ε) can be approximated
by an empty set of values. From there, we can exploit the recurrent nature of the problem: a
value z can be ε-approximated at time t + 1 if and only if either z or z − Xt+1 could already
be approximated at time t. This implies that for all z ∈ R we have

ft+1(z) = ft(z) +
(
1 − ft(z)

)
ft(z − Xt+1). (1)

Now, to keep track of the proportion of values in [−1, 1] that can be ε-approximated at
each step, we define, for each 0 ≤ t ≤ n, the random variable

vt = 1
2

∫ 1

−1
ft(z) dz.

For better readability, throughout the text we will refer to vt simply as “the volume.”

2 The shorter range in Theorem 1 is a mere artefact of their proof and can be easily overcome.
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As we mentioned, our goal is to show that in at most n steps enough of the interval can
be approximated. More precisely, we aim to prove that vn ≥ 1 − ε/2, as this implies that
every value in [−1, 1] is either ε-approximated, or distant at most ε from an ε-approximated
value, so it must be 2ε-approximated.

2.1.1 Expected behaviour
Our first lemma provides a lower bound on the expected value of vt.

▶ Lemma 3. For all 0 ≤ t < n, it holds that

E
[
vt+1

∣∣X1, . . . , Xt

]
≥ vt

[
1 + 1

4 (1 − vt)
]

.

Proof. The definition of vt and the recurrence in Eq. (1) give us that

E
[
vt+1

∣∣X1, . . . , Xt

]
= E

1
2

∫ 1

−1
ft+1(z) dz

∣∣∣∣∣X1, . . . , Xt


=
∫ 1

−1

1
2

(
1
2

∫ 1

−1
ft(z) +

(
1 − ft(z)

)
ft(z − x) dz

)
dx

= 1
2

∫ 1

−1
ft(z) dz

∫ 1

−1

1
2 dx + 1

2

∫ 1

−1

1
2

∫ 1

−1

(
1 − ft(z)

)
ft(z − x) dz dx

= vt + 1
4

∫ 1

−1

(
1 − ft(z)

) ∫ 1

−1
ft(z − x) dx dz

= vt + 1
4

∫ 1

−1

(
1 − ft(z)

) ∫ z+1

z−1
ft(y) dy dz,

where the last equality holds by substituting y = z − x. For the previous ones we apply basic
properties of integrals and Fubini’s theorem to change the order of integration.

We now look for a lower bound for the last integral in terms of vt. To this end, we exploit
that, since all integrands are non-negative, for all u ∈ [−1/2, 1/2] we have∫ 1

−1

(
1 − ft(z)

) ∫ z+1

z−1
ft(y) dy dz ≥

∫ u+ 1
2

u− 1
2

(
1 − ft(z)

) ∫ z+1

z−1
ft(y) dy dz

≥
∫ u+ 1

2

u− 1
2

(
1 − ft(z)

) ∫ u+ 1
2

u− 1
2

ft(y) dy dz.

Both inequalities come from range restrictions: in the first we use that u ∈ [−1/2, 1/2] implies
[u − 1/2, u + 1/2] ⊆ [−1, 1]; for the second, we have that [u − 1/2, u + 1/2] ⊆ [z − 1, z + 1]
for all z ∈ [u − 1/2, u + 1/2].

To relate the expression to vt explicitly, we choose u in a way that the window [u −
1/2, u + 1/2] entails exactly half of vt. The existence of such u may become clear by recalling
the definition of vt. To make it formal, consider the function given by

h(u) = 1
2

∫ u+ 1
2

u− 1
2

ft(y) dy,

and observe that

min {h(−1/2), h(1/2)} ≤ vt

2 , and max {h(−1/2), h(1/2)} ≥ vt

2 .
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Thus, by the intermediate value theorem (Theorem 12), there exists u∗ ∈ [−1/2, 1/2] for
which h(u∗) = vt/2, that is, for which

1
2

∫ u∗+ 1
2

u∗− 1
2

ft(y) dy = vt

2 .

Applying the arguments above, we get

E
[
vt+1

∣∣X1, . . . , Xt

]
= vt + 1

4

∫ 1

−1

(
1 − ft(z)

) ∫ z+1

z−1
ft(y) dy dz

≥ vt + 1
2

∫ u∗+ 1
2

u∗− 1
2

(
1 − ft(z)

)(1
2

∫ u∗+ 1
2

u∗− 1
2

ft(y) dy

)
dz

= vt +
(

1
2 − vt

2

)
vt

2

= vt

[
1 + 1

4 (1 − vt)
]

.

◀

▶ Remark 4. Our proof of Lemma 3 marks an important divergence from [20]. While their
equivalent lemma provides the exact value for the expected growth, they only consider values
approximated by subsets whose partial sums all lie close to the value. More precisely, they
consider a value z to be approximated only if we can do so with a subset S ∈ [n] such that,
for each j ∈ S, it holds that (z −

∑
i∈S:i≤j Xi) ∈ [− 1

2 , 1
2 ]. They name such approximations

admissible.
Lemma 3 tells us that, if vt were to behave as expected, it should grow exponentially up

to 1/2, at which point 1 − vt starts to decrease exponentially. The rest of the proof follows
accordingly, with Section 2.2 analysing the progress of vt up to one half, and Section 2.3
following the complementary value, 1 − vt, starting from one half.

2.2 Growth of the volume up to 1/2
Arguably, the main challenge in analysing the RSSP is the existence of over-time dependencies.
Deciding how to overcome it sets much of the course the proof will take. Our strategy
consists in constructing another process which dominates the original one while being free of
dependencies.
▶ Remark 5. This approach marks yet another divergence from [20], perhaps the most
important one. They proceed by constructing a suitable martingale to apply the Azuma-
Hoeffding inequality [1], which is robust to dependencies. To do so, they seek a version of
Lemma 3 with a tighter bound. This is difficult to compute, and we believe was an important
motivation for restricting the analysis to admissible approximations. Moreover, a proper
martingale is only achieved after applying a non-linear transformation to their analogous of
vt, further hindering any intuition about the involved measures.

Let τ1 be the first time at which the volume exceeds 1/2, that is, let

τ1 = min
{

t ≥ 0 : vt >
1
2

}
.

We have seen so far that up to time τ1 the process vt enjoys exponential growth in expectation.
In the following lemma we apply a basic concentration inequality to translate this property
into a constant probability of exponential growth for vt itself.
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▶ Lemma 6. For all 0 ≤ t < τ1 and β ∈ (0, 1/8) it holds that

Pr
[
vt+1 ≥ vt(1 + β)

∣∣X1, . . . , Xt, t < τ1
]

≥ pβ ,

where pβ = 1 − 7
8(1−β) .

Proof. The result shall follow easily from reverse Markov’s inequality (Lemma 14) and the
bound from Lemma 3. However, doing so requires a suitable upper bound on vt+1 and,
while 2vt would serve the purpose, such bound does not hold in general.

We overcome this limitation by fixing t and considering how much vt would grow in the
next step if we were to consider only values ε-approximated at time t that happen to lie
in [−1, 1] after being translated by Xt+1. Making it precise by the means of the recurrence
in Eq. (1), we define

ṽ = 1
2

∫ 1

−1
ft(z) +

(
1 − ft(z)

)
ft(z − Xt+1) · 1[−1,1](z − Xt+1) dz.

This expression differs from the one for vt+1 only by the inclusion of the characteristic
function of [−1, 1]. This not only implies that ṽ ≤ vt+1, but also that ṽ can replace vt+1 in
the bound from Lemma 3, since the argument provided there eventually restricts itself to
integrals within [−1, 1], trivialising 1[−1,1]. Moreover, as we obtain ṽ without the influence of
values from outside [−1, 1], we must have ṽ ≤ 2vt. Finally, using that t < τ1 implies vt < 1/2
and chaining the previous conclusions in respective order, we conclude that

Pr
[
vt+1 ≥ vt(1 + β)

∣∣X1, . . . , Xt, t < τ1
]

≥ Pr
[
ṽ ≥ vt(1 + β)

∣∣X1, . . . , Xt, t < τ1
]

≥ E [ṽ | X1, . . . , Xt, t < τ1] − vt(1 + β)
2vt − vt(1 + β)

≥
9
8 vt − vt(1 + β)
2vt − vt(1 + β)

= 1 − 7
8(1 − β) ,

where we applied the reverse Markov’s inequality in the second step. ◀

The previous lemma naturally leads us to look for bounds on τ1, that is, to estimate the
time needed for the process to reach volume 1/2. As expected, the exponential nature of the
process yields a logarithmic bound.

▶ Lemma 7. For all β ∈ (0, 1/8) and all integers t with

t ≥ 1
pβ

⌈
log 1

2ε

log(1 + β)

⌉
,

we have that

Pr [τ1 ≤ t] ≥ 1 − exp

−
2p2

β

t

t − 1
pβ

⌈
log 1

2ε

log(1 + β)

⌉2
 .

Proof. The main idea behind the proof is to define a new random variable which stochastically
τ1 while being simpler to analyse. We begin by discretizing the domain (0, 1/2] of the volume
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into sub-intervals {Ii}1≤i≤i∗ as follows:
I1 = (0, ε],

Ii =
(

ε (1 + β)i−1
, ε (1 + β)i

]
for 2 ≤ i < i∗,

Ii∗ =
(

ε (1 + β)i∗−1
,

1
2

]
,

where i∗ is the smallest integer for which ε (1 + β)i∗
≥ 1

2 , i.e.

i∗ =
⌈

log 1
2ε

log(1 + β)

⌉
.

Now, for each i ≥ 0, we direct our interest to the number of steps required for vt

to exit the sub-interval Ii after first entering it. By Lemma 6, this number is majorized
by a geometric random variable Yi ∼ Geom(pβ). Therefore, we can conclude that τ1 is
stochastically dominated by the sum of such variables, that is, for t ∈ N, we have

Pr [τ1 ≥ t] ≤ Pr

 i∗∑
i=1

Yi ≥ t

 . (2)

Let Bt ∼ Bin(t, pβ) be a binomial random variable. For the sum of geometric random
variables, it holds that

Pr

 i∗∑
i=1

Yi ≤ t

 = Pr
[
Bt ≥ i∗] .

Since E [Bt] = tpβ , the Hoeffding bound for binomial random variables (Lemma 15) implies
that, for all λ ≥ 0, we have

Pr
[
Bt ≤ tpβ − λ

]
≤ exp

[
−2λ2

t

]
.

Setting t such that tpβ − λ = i∗, we get

Pr

 i∗∑
i=1

Yi ≥ t

 ≤ Pr
[
Bt ≤ i∗]

≤ exp

−
2
(
tpβ − i∗)2

t



= exp

−
2p2

β

(
t − i∗

pβ

)2

t

 ,

as long as λ = tpβ − i∗ ≥ 0, that is, for all

t ≥ 1
pβ

⌈
log 1

2ε

log(1 + β)

⌉
.
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Finally, applying this to Eq. (2) and passing to complementary events, we obtain that

Pr [τ1 ≤ t] ≥ 1 − exp

−
2p2

β

(
t − i∗

pβ

)2

t

 .

◀

2.3 Growth of the volume from 1/2

From now we study the second half of the process: from the moment the volume reaches
1/2 up to the time it gets to 1 − ε/2. We do so by analysing the complementary stochastic
process, i.e., by tracking, from time τ1 onwards, the proportion of the interval [−1, 1] that
does not admit an ε-approximation. More precisely, we consider the process {wt}t≥0, defined
by wt = 1 − vτ1+t.

We shall obtain results for wt similar to those we have proved for vt. Fortunately, as we
will see, those proofs offer even less resistance. We start with an analogous of Lemma 3.

▶ Lemma 8. For all t ≥ 0, it holds that

E
[
wt+1

∣∣X1, . . . , Xτ1+t

]
≤ wt

[
1 − 1

4 (1 − wt)
]

.

Proof. From the definition of wt+1 and Lemma 3, it follows that

E
[
wt+1

∣∣X1, . . . , Xτ1+t

]
= 1 − E

[
vτ1+t+1

∣∣X1, . . . , Xτ1+t

]
≤ 1 − vτ1+t

[
1 + 1

4
(
1 − vτ1+t

)]
= wt − 1

4wt(1 − wt)

= wt

[
1 − 1

4 (1 − wt)
]

.

◀

Let τ2 the first time that wt gets smaller than or equal to ε, that is, let

τ2 = min
{

t ≥ 0 : wt ≤ ε

2

}
.

The following lemma bounds this quantity, in analogy to Lemma 7.

▶ Lemma 9. For every t > 0, it holds that

Pr [τ2 ≤ t] ≥ 1 − 1
ε

·
(

7
8

)t

.

Proof. Applying that 1 − wt = vτ1+t > 1
2 to Lemma 8 gives the bound

E
[
wt+1

∣∣X1, . . . , Xτ1+t

]
≤ 7

8wt. (3)
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Moreover, from the conditional expectation theory, for any two random variables X and Y ,
we have E

[
E [X | Y ]

]
= E [X]. From this and Eq. (3), we can conclude that

E [wt] = E
[
E
[
wt

∣∣X1, . . . , Xτ1+t−1
]]

≤ 7
8E
[
wt−1

]
,

which, by recursion, yields

E [wt] ≤
(

7
8

)t

E [w0]

≤ 1
2

(
7
8

)t

.

Finally, by Markov’s inequality (Lemma 13),

Pr [τ2 ≥ t] ≤ Pr
[
wt ≥ ε

2

]
≤ 2E [wt]

ε

≤ 1
ε

(
7
8

)t

,

and the thesis follows from considering the complementary event. ◀

2.4 Putting everything together
In this section, we conclude our argument, finally proving Theorem 2. Let τ = τ1 + τ2, the
first time at which the sequence of vt’s reaches at least 1 − ε/2.

▶ Lemma 10. Let ε ∈ (0, 1/3). There exist constants C > 0 and κ > 0 such that for every
t ≥ C log(1/2ε), it holds that

Pr [τ ≤ t] ≥ 1 − exp

−

(
t − C log 1

2ε

)2

κt

 .

Proof. The definition of τ allows us to apply Lemmas 7 and 9 quite directly. Indeed if, for
the sake of Lemma 7, we assume t ≥ 2

pβ

⌈
log 1

2ε

log(1+β)

⌉
for some β ∈ (0, 1/8), we have

Pr [τ ≤ t] = Pr [τ1 + τ2 ≤ t]
≥ Pr

[
τ1 ≤ t/2, τ2 ≤ t/2

]
≥ Pr

[
τ1 ≤ t/2

]
+ Pr

[
τ2 ≤ t/2

]
− 1

≥ 1 − exp

−
p2

β

t

t − 2
pβ

⌈
log 1

2ε

log(1 + β)

⌉2
− 1

ε
·
(

7
8

)t/2
.

where the second inequality holds by the union bound.
The remaining of the proof consists in computations to connect this expression to the

one in the statement.
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To this end, we start by choosing β = 1/16 and by observing that for every λ ≥ 3/2, we
have

exp

−
p2

β

t

t − 2
pβ

⌈
log 1

2ε

log(1 + β)

⌉2
+1

ε

(
7
8

)t/2
≤ exp

−
p2

β

t

(
t −

2λ log 1
2ε

pβ log(1 + β)

)2
 , (4)

for all ε < 1/3 and

t ≥
2λ log 1

2ε

pβ log(1 + β) .

More precisely, let αε = Cβ log 1
2ε where Cβ = 2

pβ log(1+β) . By dividing Eq. (4) by its
right-hand side, we obtain

exp
[
(λ2 − 1)p2

β
α2

ε

t + 2(1 − λ)p2
βαε

]
+ exp

[
λ2p2

β
α2

ε

t +
(

pβ log(1+β)
2 − 2λp2

β

)
αε +

(
p2

β − log 8
7

2

)
t + log 2

]
≤ 1. (5)

Observe that, since t ≥ λαε and p2
β − log 8

7
2 < 0, the left-hand side of Eq. (5) is at most

exp

−

(
1 − λ2

λ
+ 2(λ − 1)

)
p2

βαε

+ exp

(pβ log(1 + β)
2 − λ

2 log 8
7

)
αε + log 2

 .

We rewrite the above expression as

e−a0αε + 2e−a1αε
(a)
≤ 1,

by setting a0 =
(

1−λ2

λ + 2(λ − 1)
)

p2
β > 0 and a1 = −

(
pβ log(1+β)

2 − λ
2 log 8

7

)
> 0. As for

(a), it holds for all values of ε ∈ (0, 1/3). ◀

Choosing β = 1/16, κ = 1/p2
β and C = 3

pβ log(1+β) , for all ε ∈ (0, 1/3) and t ≥ C log 1
2ε ,

Lemma 10 can be reformulated as

Pr [vt ≥ 1 − ε] ≥ 1 − exp

−

(
t − C log 1

2ε

)2

κt

 .

Theorem 2 follows by observing that once we can approximate all but an ε/2 proportion
of the interval [−1, 1], any z ∈ [−1, 1] either is ε-approximated, or it is distant at most ε

from a value that it is ε-approximated, which implies that z is 2ε-approximated.
▶ Remark 11. Our proof worsens the minimum number of variables t for which the theorem
holds. In particular, from [20] we get that t must be at least 2(1 + log2 e) log(1/ε) ∼
4.89 log(1/ε). In our case, t must be at least 3 · 15/ log(17/16) · (log(1/ε) − log 2) ∼
742.27(log(1/ε) − log 2). We highlight that this work provides an existence proof, pro-
posing no algorithms. Thus, we focused on the proof simplicity rather than on constant
optimisation.
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A Tools

▶ Theorem 12 (Intermediate Value Theorem). Let g : [a, b] → R be a continuous real-valued
function such that λ = min{g(a), g(b)} < max{g(a), g(b)} = Λ. Then, for any value
δ ∈ [λ, Λ], there exists a point a < cδ < b such that g(cδ) = δ.

▶ Lemma 13 (Markov’s inequality). Let X be a non-negative random variable. Then for all
c > 0, we have

Pr [X ≥ c] ≤ E [X]
c

.

▶ Lemma 14 (Reverse Markov’s inequality). Let X be a random variable such that X ≤ u for
some constant u ∈ R. Then for all c < u, we have

Pr [X > c] ≥ E [X] − c

u − c
.

Proof. We apply Markov’s inequality (Lemma 13) to the random variable Y = u − X. Note
that Y is non-negative, since X ≤ u. We get

Pr [X ≤ c] = Pr [Y ≥ u − c] ≤ E [Y ]
u − c

= u − E [X]
u − c

,

and the thesis follows. ◀

▶ Lemma 15 (Hoeffding bounds [8]). Let X1, X2, . . . , Xn be independent random variables
such that Pr [0 ≤ Xi ≤ 1] = 1 for all i ∈ [n]. Let X =

∑n
i=1 Xi and E [X] = µ. Then

(i) for any λ ≥ 0 and µ ≤ µ+, it holds that

Pr
[
X ≥ µ+ + λ

]
≤ exp

(
−2λ2

n

)
;

(ii) for any λ ≥ 0 and 0 ≤ µ− ≤ µ, it holds that

Pr
[
X ≤ µ− − λ

]
≤ exp

(
−2λ2

n

)
.
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