Homography-Based Loss Function for Camera Pose Regression - Archive ouverte HAL
Article Dans Une Revue IEEE Robotics and Automation Letters Année : 2022

Homography-Based Loss Function for Camera Pose Regression

Résumé

Some recent visual-based relocalization algorithms rely on deep learning methods to perform camera pose regression from image data. This paper focuses on the loss functions that embed the error between two poses to perform deep learning based camera pose regression. Existing loss functions are either difficult-to-tune multi-objective functions or present unstable reprojection errors that rely on ground truth 3D scene points and require a two-step training. To deal with these issues, we introduce a novel loss function which is based on a multiplane homography integration. This new function does not require prior initialization and only depends on physically interpretable hyperparameters. Furthermore, the experiments carried out on well established relocalization datasets show that it minimizes best the mean square reprojection error during training when compared with existing loss functions.
Fichier principal
Vignette du fichier
RA_L_2022_clean.pdf (992.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03654445 , version 1 (03-05-2022)

Identifiants

Citer

Clémentin Boittiaux, Ricard Marxer, Claire Dune, Aurélien Arnaubec, Vincent Hugel. Homography-Based Loss Function for Camera Pose Regression. IEEE Robotics and Automation Letters, 2022, 7 (3), pp.6242-6249. ⟨10.1109/LRA.2022.3168329⟩. ⟨hal-03654445⟩
189 Consultations
230 Téléchargements

Altmetric

Partager

More