NMPC via qLPV models and Taylor-based Scheduling Parameter Extrapolation: A Cartesian Robot Case Study - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

NMPC via qLPV models and Taylor-based Scheduling Parameter Extrapolation: A Cartesian Robot Case Study

Résumé

In this brief paper, we present an overview of recent advances on Model Predictive Control (MPC) synthesis for nonlinear systems using quasi-Linear Parameter Varying (qLPV) embeddings. For such, we consider a highly nonlinear Cartesian robot benchmark as a case study. Specifically, we advocate on the use of recursive Taylor-based extrapolation maps to generate accurate estimates for the future trajectories of the qLPV scheduling parameters, as shown in recent findings. We show how these estimates can be used to enhance and fasten the corresponding MPC algorithms, offering comparable performances to state-of-the-art techniques, while maintaining relieved numerical burden during the implementation. Through realistic simulations of the Cartesian robot, we demonstrate the effectiveness and the real-time capabilities of the discussed method, which is tested against widely acknowledged techniques (the SQP qLPV MPC framework, and the CasADi NMPC solver).
Fichier principal
Vignette du fichier
MED22_qLPVMPC_CaseStudy.pdf (502.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03654135 , version 1 (28-04-2022)

Identifiants

Citer

Marcelo Menezes Morato, Amir Naspolini, Julio Elias Normey-Rico, Olivier Sename. NMPC via qLPV models and Taylor-based Scheduling Parameter Extrapolation: A Cartesian Robot Case Study. MED 2022 - 30th Mediterranean Conference on Control and Automation, Jun 2022, Athènes, Greece. ⟨10.1109/MED54222.2022.9837209⟩. ⟨hal-03654135⟩
77 Consultations
91 Téléchargements

Altmetric

Partager

More