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NMPC via qLPV models and Taylor-based Scheduling Parameter
Extrapolation: A Cartesian Robot Case Study

Marcelo M. Morato1,2, Amir Naspolini1, Julio E. Normey-Rico1 and Olivier Sename2

Abstract— In this brief paper, we present an overview of
recent advances on Model Predictive Control (MPC) synthesis
for nonlinear systems using quasi-Linear Parameter Varying
(qLPV) embeddings. For such, we consider a highly nonlinear
Cartesian robot benchmark as a case study. Specifically, we
advocate on the use of recursive Taylor-based extrapolation
maps to generate accurate estimates for the future trajectories
of the qLPV scheduling parameters, as shown in recent findings.
We show how these estimates can be used to enhance and
fasten the corresponding MPC algorithms, offering comparable
performances to state-of-the-art techniques, while maintaining
relieved numerical burden during the implementation. Through
realistic simulations of the Cartesian robot, we demonstrate
the effectiveness and the real-time capabilities of the discussed
method, which is tested against widely acknowledged techniques
(the SQP qLPV MPC framework, and the CasADi NMPC
solver).

I. INTRODUCTION

Model Predictive Control (MPC) is a very wide-spread
method for the regulation of constrained processes [1]. Over
the last decades, it has had considerable research interest,
with extensions developed for a wide variety of systems and
settings. The theoretical establishment of MPC corresponds
to the formal guarantees of recursive feasibility of the
optimisation and closed-loop stability [2].

Many works have studied the application of MPC for
nonlinear systems (NMPC), e.g. [3], [4]. Nevertheless, such
algorithms are usually not trivial and their corresponding
online implementation comes at the cost of increases numer-
ical burden due to the inherent nonlinear predictions, which
complicates real-time applications. Until the late 10s, even
the most efficient NMPC algorithms displayed exponential
complexity growth w.r.t. system size. Recent tools have
shown how these algorithms can be fastened [5], [6], yet
through approximations of the nonlinear optimisation.

Anyhow, recent advances have shown how exact NMPC
solutions with real-time capabilities can be generated through
quasi-Linear Parameter Varying (qLPV) embeddings, see [7],
[8]; compare also to the survey [9] and references therein.
LPV models are able to describe nonlinear and time-varying
behaviours under linear dynamics structures [10], which
depend on known, bounded scheduling parameters ρ.
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The elegance of qLPV-embedding MPC design resides
on the fact that the “full-blown” nonlinear predictions are
replaced by linear ones [9], thus enabling fast operation
of the corresponding optimisation. The majority of these
algorithms (first proposed in [11] being established and
generalised there since) are based on an iterative mechanism
to estimate the future scheduling trajectories, applying the
qLPV scheduling function over the previewed state trajectory
and re-evaluating the optimisation until a certain convergence
criteria is reached. Thereby, the resulting control algorithm
has the numerical burden of a Sequential Quadratic Program
(SQP).

Recent works have developed an alternative approach
to the prior, where the future scheduling trajectories are
estimated through linear recursive Taylor-based extrapolation
laws [12], [13]. The novelty of this alternative is that the
resulting MPC algorithm does not require to evaluate many
QPs per sample, but rather just a single one. Moreover, con-
vergence of the estimates to the true scheduling trajectories
are obtained within a few samples, enabled by easy-to-verify
sufficient conditions [14].

Fig. 1. Case study: Cartesian robot benchmark.

The concept of NMPC using the qLPV-embedding ap-
proach is recent, and the advances on linear Taylor-based
scheduling trajectory estimates are even more recent. There-
fore, in this brief paper, we recall this concept, detailing
all necessary implementation steps. Moreover, we use a
(highly nonlinear) Cartesian robot system, as illustrated in
Fig. 1, as a benchmark to demonstrate the effectiveness of
these algorithms. Specifically, we compare the Taylor-based
technique, as proposed by the Authors in [14], to the state-
of-the-art SQP qLPV MPC approach from [7], as well as
to a benchmark NMPC solution generated through CasADi



[5]. Our intent is to advocate the use of qLPV-embedding
with Taylor-based parameter extrapolation as a benchmark
approach to NMPC.
Paper organisation. In Sec. II, we we present the Cartesian
robot benchmark system and the required setup for the
corresponding qLPV embedding. In Sec. III, we provide
the general qLPV NMPC problem setup, as well as the
underlying assumptions required for correct implementation;
we also give simple solutions to generate terminal ingredients
that ensure stability and recursive feasibility properties. In
Sec. IV, we detail the Taylor-based scheduling parameter
trajectory extrapolation mechanism, also providing a brief
convergence proof. In Sec. V, simulation results are pre-
sented, comparing the qLPV MPC approach to state-of-the-
art NMPC. Concluding remarks are drawn in Sec. VI.
Notation. The index set N[a,b] represents {i ∈ N | a ≤ i ≤
b}, with 0 ≤ a ≤ b. The identity matrix of size j is denoted
as Ij ; Ij,{i} denotes the i-th row of Ij . col{·} denotes the
vectorisation of the entries and diag{v} denotes the diagonal
matrix generated with the line vector v. The predicted value
of a given variable v(k) at time instant k + i, computed
based on the information available at instant k, is denoted
as v(k + i|k). K refers to the class of positive and strictly
increasing scalar functions that pass through the origin. ‖ · ‖
denotes the 2-norm. In matrix inequalities, (?) denotes the
corresponding symmetrical transpose.

II. PRELIMINARIES: CASE STUDY AND QLPV
EMBEDDING

In this Section, we present the basic requirements for
qLPV embeddings and then apply them to considered case
study. For such, consider the following generic discrete-time
nonlinear system:

G :=

{
x(k + 1) = f (x(k), u(k)) ,
y(k) = fy (x(k), u(k)) , (1)

being k ∈ N the sampling instant, x ∈ Rnx the vector of
states, u ∈ Rnu the vector of control inputs, and y ∈ Rny
the vector of measured outputs. Without loss of generality,
we assume that the origin is an admissible equilibrium point
of G, i.e. there exists some ū s.t. f(0, ū) = 0. We assume
that the states x are measured, thus we use the state-feedback
u(k) := κ(k)x(k) to ensure that the dynamics of G adhere to
desired specifications. We consider two possible objectives:
(a) Regulation (steering x to the origin), and (b) Tracking
(steering y to a steady-state target yr, which conversely
means steering (x, u) to a steady-state target pair (xr, ur)).

The system in Eq. (1) is subject to state and input con-
straints, which define an admissible operation: x ∈ X :=
{x ∈ Rnx : ‖xj‖ ≤ xj ,∀j ∈ N[1,nx]} and u ∈ U := {u ∈
Rnu : ‖ui‖ ≤ ui,∀i ∈ N[1,nu]}. The nonlinear function
f(x, u) is assumed of class C1 over Z := X × U , i.e.
differentiable with first continuous derivatives.

A. qLPV Embedding

Assume that the nonlinear system G satisfies an exact
differential inclusion property [9], which means that it can

be embedded to a qLPV model. Therefore, suppose that
there exists a map H(x, u) ⊆ R(nx+ny)×(nx+nu) such that
[f(x, u) fy(x, u)] := H(x, u)

[
x u

]T
, ∀(x, u) ∈ Z . In

this case, it is implied that Eq. (1) is equivalent to:

G :=

 x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) ,
y(k) = C(ρ(k))x(k) +D(ρ(k))u(k) ,
ρ(k) = fρ(x(k)) ∈ P .

(2)

The model in Eq. (2) is qLPV, with an endogenous
nonlinear function fρ(·) that results in the scheduling pa-
rameters ρ(k), which are bounded and known at each in-
stant k. These variables are unknown for any future instant
k + j , ∀j ∈ N[1,∞]. Through the sequel, we use P :={
ρj ∈ R | ρ

j
≤ ρj ≤ ρj ,∀j ∈ Z[1,nρ]

}
.

In order to relieve conservativeness of the considered MPC
algorithm, we assume that the scheduling variables exhibit
bounded rates of variation:

Assumption 1: The scheduling variables ρ(k) evolve
along the horizon with bounded rates of variation. This is:
δρ(k + 1) = (ρ(k + 1)− ρ(k)) ∈ δP := {δρj ∈ R :
δρ
j
≤ δρj ≤ δρj ,∀j ∈ N[1,np]}.

Remark 1: For simplicity, we present qLPV embedding
in Eq. (2) for a realisation of the nonlinear dynamics with
a scheduling proxy that is only dependent on the state
variables, i.e. fρ(·) is only a function of x(k). We stress
some cases this function is state- and input-dependent, i.e.
ρ = fρ(x, u). The detailed procedures are applicable to such
cases without loss of generality.

B. A Nonlinear Benchmark: Cartesian Robot

As previously stated, a highly nonlinear case study is used
as a benchmark to demonstrate the effectiveness of the qLPV-
embedding approach to MPC. Specifically, we consider the
Cartesian robot system, which basically consists of a winch
(vertical movement, z-axis), and is capable of performing
movements along rails (longitudinal movement, x-axis. This
robot is a benchmark nonlinear system in the likes of [15];
a graphical scheme is given in Fig. 1.

In order to model the dynamics of this Cartesian robot,
the following baseline hypotheses are taken into account:

1) The beam translation force along the tracks F (t),
with corresponding mass M , can be imposed by an
operator;

2) The winch cables are rigid, of negligible mass, and of
constant length l;

3) The load mass m is concentrated at one point, that is,
the geometry of the load is negligible compared to the
dimensions of the bridge;

4) The pendulum motion of the load is subjected to a
viscous frictional torque given by bθ̇(t), with b > 0;

5) The translational motion of the beam along the rail
undergoes a viscous friction dẋv(t), with d > 0;

6) The acceleration of gravity is denoted g.

Thence, using Lagrangian mechanics and the Euler-



Lagrange equation, the following set of ODEs is obtained:

ẍv(t) =
F (t)

M +m sin2(θ(t))
− bθ̇(t) cos(θ(t))

l(M +m sin2(θ(t)))

− mlθ̇(t)2 sin(θ(t))

M +m sin2(θ(t))
− mg sin(θ(t)) cos(θ(t))

M +m sin2(θ(t))

− dẋv(t)

M +m sin2(θ(t))
,

θ̈(t) =
F (t) cos(θ(t))

l(M +m sin2(θ(t)))
− dẋv(t) cos(θ(t))

l(M +m sin2(θ(t)))

− g sin(θ(t))(M +m)

l(M +m sin2(θ(t)))
− bθ̇(t)(M +m)

ml2(M +m sin2(θ(t)))

−mθ̇(t)
2 sin(θ(t)) cos(θ(t))

M +m sin2(θ(t))
.

We consider that the output of this system is the load
position (which is to be controlled), given by:

y(t) = xc(t) = xv(t)− l sin(θ(t)) ,

where the control input is u(t) = F (t) and the vector of state

variables is given by x(t) =
[
θ(t) θ̇(t) xv(t) ẋv(t)

]T
. The

following parameters are used: the cable length l is of 7 m.
The mass of the beam M and the mass of the load m are,
respectively, 5000 Kg and 20000 Kg. The viscous friction
constant d in the beam is of 2000 Kg/s and the viscous
friction torque constant b in the load is of 0.00172 Kg m2/s.

This system must be regulated such that the following
constraints are respected: θ ∈ [−π, π] rad (angle between the
load and the beam); θ̇ ∈

[
− 1

7 ,
1
7

]
rad/s (load angular speed);

xv ∈ [−50, 50] m (beam position on the rail); ẋv ∈ [−1, 1]
m/s (beam speed); u ∈ [−100, 100] N (force on the beam);
y ∈ [−50, 50] m (load position).

This system operates under a sampling period of Ts = 1 s,
which gives a corresponding qLPV-embedding realisation as
in Eq. (2), with system matrices given in Eqs. (5)-(6). This
qLPV realisation is generated with:

ρ(k) = fρ(x(k), u(k)) =


cos(x1(k))

1
M+m sin2(x1(k))

sinc(x1(k))
x1(k + 1)2

x1(k)2

 . (3)

We note that both x(k) and u(k) are known and measured
variables at instant k, and thus ρ(k) can be generated
explicitly through the nonlinear proxy fρ(·). As previously
explained, the future behaviour of the scheduling parameters,
i.e. ρ(k + j),∀j ≥ 0 is unknown, but estimated.

III. THE MPC SETUP

Taking into account the presented case study and the
corresponding qLPV embedding realisation, we now detail
the closed-loop paradigm with MPC.

Consider the robot system G is regulated through an
MPC algorithm, which generates a state-feedback control law

u(k) = κx(k), where κ is the corresponding feedback gain.
This policy must be such that the state trajectories are steered
to a given steady-state target, in an admissible manner (in the
regulation case, this steady-state is the origin). Thus, in order
to generate the MPC law, the qLPV model from Eq. (2) is
spanned along a prediction horizon of Np steps. For such
the future scheduling trajectory Pk = col{ρ(k + j|k)},∀j ∈
N[0,Np−1], from which only ρ(k) is a priori known. Pk is
generated through the Taylor-based extrapolation procedure,
detailed in Sec. IV.

A. MPC Design

Consider the following cost function:

J(x(k), Pk) =

Np∑
i=1

` (x(k + i|k), u(k + i− 1|k))

+ V (x(k +Np|k)) ,

where the stage cost, which weights the performance along
the horizon, is quadratic, as follows: `(x, u) = ‖x‖Q+‖u‖R.
We name V (x) as the terminal cost, used to penalise the
state at the end of the prediction horizon. We consider Q
and R as positive definite weighting matrices, used to imply
the envisioned trade-off between control effort and state
regulation. In the sense of the case study, this trade-off is set
between driving the load to a certain position (regulation)
while minimising the beam translation force (control effort).

Definition 1: Positive Invariant Set
Assume that there exists a terminal set Xf . Xf is a positively
invariant set for G iff, for any x(k) ∈ Xf and ρ(k) ∈
P , it follows that x(k + 1) ∈ Xf , where x(k + 1) :=
(A(ρ(k)) +B(ρ(k))κ)x(k).

Consider that there exists a terminal set Xf which is
positive invariant for G. Then, the MPC is implemented
as follows: at each sampling instant k, the states x(k) are
measured, the scheduling trajectory Pk is computed, and
the following optimisation problem is solved, embedding
performance objectives and constraints:

min
Uk

J(x(k), Pk) , (4)

s.t. Xk = A(Pk)x(k) + B(Pk)Uk ,
Yk = C(Pk)x(k) + D(Pk)Uk ,
x(k + j|k) ∈ X ,∀j ∈ N[1,Np] ,
u(k + j − 1|k) ∈ U ,∀j ∈ N[1,Np] ,
x(k +Np|k) ∈ Xf ,

where Xk = col{x(k + j|k)} ,∀j ∈ N[1,Np] denotes the
predicted sequence of states, Yk = col{y(k + j|k)} ,∀j ∈
N[0,Np−1] gives the predicted sequence of outputs, and Uk =
col{u(k + j|k)},∀j ∈ N[0,Np−1] gives the sequence of
control actions along the prediction horizon. The prediction
matrices A(·), . . . ,D(·) are given in Eqs. (7)-(9), maintain-
ing the same form for all discrete-time samples k ≥ 0.

Let J? (x(k), Pk) be the optimal solution of the opti-
misation in Eq. (4) at instant k, from which U?k is the
optimal sequence of control inputs. Then, the MPC law



A(ρ) =


0 1 0 0

−Tsg(M+m)ρ3ρ2
l

−mρ1ρ2ρ3(ρ4 + ρ5) +
b(M+m)ρ2

l2m
1 + 2mρ1ρ2ρ3ρ5 − b(M+m)ρ2

l2m
dρ1ρ2
l

−dρ1ρ2
l

0 0 0 1

−Tsmgρ1ρ2ρ3 + bρ1ρ2
l
−mlρ2ρ3(ρ4 + ρ5) − bρ1ρ2

l
+ 2mlρ2ρ3ρ5 dρ2 1− dρ2

 . (5)

B(ρ) =
[
0 Tsρ1ρ2

l
0 Tsρ2

]T
. C(ρ) =

[
−lρ2 0 1 0

]
. (6)

A(Pk) =


A(ρ(k))

A(ρ(k + 1))A(ρ(k))
...

A(ρ(k +Np − 1))A(ρ(k +Np − 2)) . . . A(ρ(k))

 , C(Pk) =


C(ρ(k))

C(ρ(k + 1))A(ρ(k))
...

C(ρ(k +Np − 1))A(ρ(k +Np − 2)) . . . A(ρ(k))

 . (7)

B(Pk) =


B(ρ(k)) 0 . . .

A(ρ(k + 1))B(ρ(k)) B(ρ(k + 1)) . . .
...

A(ρ(k +Np − 1)) . . . A(ρ(k + 1))B(ρ(k) A(ρ(k +Np − 1)) . . . A(ρ(k + 2))B(ρ(k + 1)) . . .

 . (8)

D(Pk) =


D(ρ(k)) 0 . . .

C(ρ(k + 1))B(ρ(k)) D(ρ(k + 1)) . . .
...

C(ρ(k +Np − 1))A(ρ(k +Np − 2)) . . . A(ρ(k + 1))B(ρ(k) C(ρ(k +Np − 1)) . . . C(ρ(k + 2))B(ρ(k + 1)) . . .

 . (9)

at instant k is given by the application the first entry of
U?k = col{u?(k + j|k)},∀j ∈ N[0,Np−1], i.e. u?(k|k),
to the process. In order for the MPC to render closed-
loop stability and a recursively feasible optimisation, the
terminal ingredients (cost V (·) and set Xf ) should verify
some conditions, further detailed in Sec. III-C.

B. Tracking

Consider that a tracking objective is envisioned, as in the
considered case study application, for which the controlled
output is the load position, which must steered to a given set-
point. Then, the stage cost `(x, u) must be set in order to
minimise the variations of (x, u) from the desired set-point
target (xr , ur), which implies in an output target goal yr.
Following the lines of [16], the target goal can be generated
using an offline reference optimisation selector, as follows.

Proposition 1: Assume there exists a linear (parameter
varying) combination of the states x and inputs u that ensures
y(k) → yr, considering the qLPV dynamics in Eq. (2).
Then, the target goal zr =

[
xr ur

]>
can be determined

through the solution of:

min
zr

‖
[
C(fρ(zr)) D(fρ(zr))

]
zr − yr‖2 , (10)

s.t.
[

(A(fρ(zr))− Inx) B(fρ(zr))
]
zr = 0nx ,

fρ(zr) ∈ P , z>r ∈ (Xf × U) .
Proof: This optimisation finds an admissible steady-

state target zr that imposes the output tracking objective. Full
details of the proof are given in [16]. Note that this target
selection problem can be solved online, at each sampling
instant, if the output reference goal yr is time-varying, which
adds computational complexity.

C. Terminal Ingredients

We proceed by further detailing the how the terminal
ingredients should be generated in order to render an asymp-
totically stable closed-loop, as well as a recursively feasible
optimisation.

Assumption 2: The scheduling parameters assume a con-
stant value in steady-state, i.e. ρ = ρr.

Assumption 3: The stage cost function is positive definite
and uniformly continuous such that `(e, δ) ≥ α`(‖e‖) and
|`(e1, δ1)−`(e2, δ2)| ≤ λe(‖e1−e2‖)+λδ(‖δ1−δ2‖), where
α`, λe and λδ are K-functions. It is implied that `(0, 0) = 0.

Assumption 4: 1) There exists an admissible terminal
feedback law κt (x) ∈ U ,∀x ∈ X .

2) The terminal set Xf is closed, contains the origin, and
represents an admissible positive invariant set.

3) The terminal cost V (·) is continuous and positive
for all x ∈ X . Moreover V (·) represents a control
Lyapunov function for the unconstrained qLPV system
in Eq. (2), meaning that there exist constants b > 0 and
σ > 1 such that V (x) ≤ b|x|σ . It is implied, thus, that
V (A(fρ(x))x+B(ρ)κt(x))−V (x) ≤ `(x, κt(x)), for
V (x1) − V (x2) ≤ αr (|x1 − x2|) (i.e. V (·) is a K
function).

The previous assumptions are standard. Accordingly, the
following theorems ensure an admissible MPC operation.

Theorem 1: Stability and Recursive Feasibility [2]
Suppose the there exists a terminal control law u = kt(x).
Consider that the qLPV system in Eq. (2) is controlled by
the MPC, as rendered through Eq. (4). Then, input-to-state
stability is ensured if the following conditions hold:
(C1) The origin x = 0 lies in the interior of Xf ;
(C2) Xf is positively invariant under the terminal feedback
controller κt(·).
(C3) The discrete Lyapunov equation is verified ∀x ∈ Xf

and ∀ ρ ∈ P: V (x+)− V (x, ) ≤ −`(x, κt(x)).
(C4) The image of the terminal control is admissible, i.e.
κt(·) ∈ U , ∀ρ ∈ P .
(C5) The terminal set Xf is a subset of X .

Assuming that the initial solution of the MPC problem U?k
is feasible, then, the MPC is recursively feasible.

Proof: This proof is standard; refer to [2].



In order to satisfy the conditions required by Theorem
1, we choose the following quadratic terminal cost function
V (x) = xTTx, where T = TT is a positive definite weight.
Accordingly, the terminal set Xf is taken as a sub-level set
of the terminal cost, i.e. Xf := {x ∈ Rnx |xTTx ≤ 1}.
By construction, Xf is an ellipsoidal set constraint, which
should be positively invariant for the terminal feedback κt(·).
Thus, the following theorem gives a numerically solvable
sufficient solution that generates these terminal ingredients.

Theorem 2: Terminal Ingredients [8]
Conditions (C1)-(C5) from Theorem 1 are satisfied if there
exist a symmetric positive definite matrix T ∈ Rnx×nx
and a rectangular matrix W ∈ Rnu×nx such that Y =
T−1 > 0, W = KY and that LMIs (11)-(13) hold under
the minimisation of log det{Y } for all ρ ∈ P . The terminal
feedback is then given by κt(·) = Kx.

Y ? ? ?
(A(ρ)Y +B(ρ)W ) Y ? ?

Y 0 Q−1 ?
W 0 0 R−1

 ≥ 0 , (11)

[
x2
j I{j}Y

I{j}Y
T Y

]
≥ 0, j ∈ N[1,nx] , (12)[

u2
i I{i}W
? Y

]
≥ 0, i ∈ N[1,nu] . (13)

Proof: Consider Pk is known (via the extrapolation
procedure detailed in Sec. IV). Since ρ(k) = fρ(x(k)), it
follows that ρ(k) = ρr in steady-state, iff limk→+∞ x(k) =
xr. Then, by applying a Schur complement to LMI (11), we
obtain condition (C3), which suffices for (C2). By definition,
an ellipsoid ensures (C1). (C4) and (C5) are respectively
satisfied by applying Schur complements to LMI (12) and
(13). In turn, the terminal feedback κt(x) = Kx ensures that
the qLPV system is asymptotically stable. This concludes the
proof.

Remark 2: The terminal ingredients provided through
Theorem 2 ensure recursive feasibility and asymptotic sta-
bility of the state trajectories. We note that LMI (11) is
infinite-dimensional; in practice, its solution can be found
by enforcing the inequalities over a sufficiently dense grid
of points ρ ∈ P . Then, the solution can be verified over
a denser grid. If quadratic terminal ingredients are exces-
sively conservative, a parameter-dependent alternative can be
sought, if necessary, refer to [8].

IV. SCHEDULING PARAMETER EXTRAPOLATION

The concept of MPC is based on spanning a prediction
of the process variables along a future horizon window. For
such, we use the full state and output predictions Xk =
A(Pk)x(k)+B(Pk)Uk, Yk = C(Pk)x(k)+B(Pk)Dk, with
prediction matrices given in Eqs. (7)-(9). For such, the future
scheduling sequence Pk is required.

Accordingly, we detail, in this Section, the recent frame-
work from [13], [14], which uses a first-order Taylor ex-
pansion of the scheduling proxy fρ(x(k)) to construct the
future scheduling sequence. First and foremost, we stress
that the main advantage of this extrapolation is that predicted

sequence Pk is generated through a single recursive linear
law, numerically much cheaper than the state-of-the-art pro-
cedure from [7], which requires the iterative re-evaluation of
P lk = fρ(X

l−1
k ), where the super-index l indicates the l-th

iteration of the MPC optimisation.
Denote δx(k + j) = x(k + j + 1) − x(k + j)

as the incremental state deviation. By definition, δx is
bounded1 to a compact and convex box-type set ∆X :={
δx ∈ Rnx : |δxj | ≤ δxj ,∀j ∈ N[1,nx]

}
.

The method is as follows: re-write the static scheduling
map fρ(x) through the following Taylor expansion: approx-
imated by:

fρ(x) = fρ(x)|x̆ +
∂fρ(x)

∂x

∣∣∣∣
x̆

(x− x̆) + ξρ , (14)

being x̆ the expansion point and ξρ a residual which inherits
the discrepancy between the real static map and its approx-
imate. Since fρ(x) is assumed class C1, it is direct that the
partial derivatives ∂fρ(x)

∂x

∣∣∣
x̆

are ultimately bounded for all
x̆ ∈ X .

From this development, we obtain:

ρ(k + 1) = ρ(k) + f∂ρ (k)δx(k) + ξρ(k) ,
...

ρ(k +Np − 1) = ρ(k +Np − 2)

+ f∂ρ (k +Np − 2)δx(k +Np − 2)

+ ξρ(k +Np − 2) ,

where the derivative terms are given by f∂ρ (k + j) =
∂fρ(x)
∂x

∣∣∣
x(k+j)

. Note that ρ(k) and δx(k) are known variables

at each instant k, whereas f∂ρ (k) can be numerically evalu-
ated. In practice, f∂ρ (k + j) is unknown for j ∈ N[1,N−2]

but it can be replaced by f∂ρ (k+ j) = f∂ρ ,∀ j ∈ N[1,N−2],
where f∂ρ denotes the partial derivative evaluated at instant
k, see the discussion in [14]. By doing so, it is implied that
ρ(k + j) ≈ ρ(k + j − 1) + f∂ρ δx(k + j − 1|k).

Therefore, the estimate for the future scheduling variables
can be written as the sum of the estimate from the previous
sample corrected with an adjustment term f∂ρ δx(k+ j − 1).
Through the sequel, we neglect the bias term ξρ, since it is
bounded and small, as argued in [14]. In any case, robustified
MPC schemes with respect to such estimation error are
discussed in [8], [13]. Accordingly, we can write the vector-
wise extrapolation in a recursive fashion:

Pk = Pk−1 + f∂ρ δXk , (15)

where the sequence of state increments is given by δXk =
col{δx(k + j)}T ,∀j ∈ N[0,Np−2].

Lemma 1: Assume that fρ(·) is class C1 and that f∂ρ is
ultimately bounded. Assume that the system (2) is stable
in closed-loop with u(k) = κx(k). Then, the recursive
extrapolation algorithm in Eq. (15) converges.

1Bounds can be generated directly from Eq. (2), using x ∈ X .



Proof: This proof is reduced for brevity, full de-
tails are given in [14], which presents five (simple-to-
verify) sufficient conditions for convergence. Consider that
the residual term ξρ(k + j) should turn null. Thus, use
limk→∞ x(k) = xr holds (stability) and take ξρ(k) =
fρ(x(k+1))−fρ(x(k))−f∂ρ δx(k). Due to the stabilisation,
it directly follows that limk→∞ fρ(x(k)) = limk→∞ fρ(xr)
and limk→∞ δx(k) = 0, which implies in limk→∞ ξρ(k) =
− limk→∞ f∂ρ δx(k) → 0. This concludes the proof.

We recall the major advantages of this Taylor-based
extrapolation method: (i) the resulting online operation is
recursive, only residing in linear operations (i.e. Eq. (15)),
thus being numerically-cheap; (ii) the estimated scheduling
parameter trajectories Pk converge to the true values within
a finite number of discrete-time samples (as gives Lemma 1),
which means that precise information on the future behaviour
can be passed to the MPC); (iii) the estimation error is small
and bounded (refer to [14, Lemma 3]).

V. NONLINEAR SIMULATION RESULTS

In this Section, we show the simulation results of the
nonlinear case study. Specifically, in order to illustrate the
effectiveness of the qLPV-embedding approach to NMPC
design, three distinct strategies are used to control the
Cartesian robot:
• The benchmark approximation-based NMPC solution

CasADi, from [5].
• The state-of-the-art SQP-based qLPV MPC from

[7], previously shown as a comparable method
to approximation-based NMPC solutions (such as
ACADO, GRAMPC, and CasADi), e.g. [17]. In this
approach, the QP in Eq. (4) is solved l times per sample,
with the scheduling parameter trajectory estimate being
given by P lk = fρ(X

l
k).

• The highlighted Taylor-based extrapolation single QP
qLPV MPC from [13], [14], where the scheduling
trajectory is estimated by the means of Eq. (15).

For simplicity, we denote these methods henceforth as
“CasADi NMPC”, “SQP qLPV MPC”, and “Taylor qLPV
MPC”, respectively. The following results were obtained in
a 2.1 GHz, 8 RAM PC, using Matlab, Yalmip, and Gurobi
(qLPV MPCs), and Python (CasADi).

As previously stated, the control objective is to steer
the load position y(k) according to a piece-wise constant
reference signal r(k), which must be tracked. Thereof, we
use the corresponding tracking stage cost `(x, u) = ‖y −
yr‖Q + ‖u‖R, which can be rewritten as ‖x − xr‖Qx +
‖u− ur‖Rx using suitable coordinate changes. The tracking
objective given through (xr, ur) is obtained via Proposition
1. For the synthesis of the MPCs, we use a prediction
horizon of Np = 10 samples, together with the following
weighting matrices Q = 1, and R = 0.02 (thus prioritising
output tracking over control effort minimisation). The initial
conditions are: x(0) = [0 − 1

4000 3 1
100 ]T and u(0) = 0.

Remark 3: The CasADi solution is implemented with
minor changes to the control input constraints (a stricter
slew rate is used) and to the stage cost `(·) (used as
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Fig. 2. Scheduling trajectory and Taylor-based extrapolation estimates
(at different samples). Coloured lines represent the trajectory estimates of
Np-samples, while the blue curve stands for the real scheduling parameter
trajectory.

‖x − xr‖Q + ‖u‖R). These adjustments are done in order
to bypass the strong nonlinearities of the MPC optimisation
at some samples, which are softened and thus infeasibility
is avoided.

First of all, we show the accurateness of the scheduling
parameter trajectory estimated generated by the Taylor-based
recursive argument, detailed in Sec. IV. This is illustrated in
Fig. 2, which gives the full behaviour of ρ5 plotted against
sampled trajectories of the fifth entry of Pk. Evidently, the
recursive extrapolation law generates very precise estima-
tions, with negligible residual (also true for the remaining
scheduling variables, not shown due to lack of space).
This further emphasises the applicability of the Taylor-based
extrapolation scheme, which is reliable and passes precise
information to the MPC regarding the future behaviour of ρ.
A significant advantage is that each Pk is generated linearly
at sample k, which is numerically very cheap (in contrast
to the SQP method, which requires a nonlinear vector map
P lk = fρ(X

l
k) and multiple QPs).

Next, Figs. 3 and 4 show the output and input trajecto-
ries, respectively, obtained with each control method. The
results from CasADi are slightly deviated due to the issues
mentioned in Remark 3. We stress that both qLPV MPC
methods yield very similar results in terms of reference
tracking, which is obtained with offset-free error in steady
state. For the considered system, the SQP MPC approach
took, in average, two iterations of its internal loop to achieve
a solution, meaning that it held a computational complexity
of roughly two QPs per sample.

Finally, Table I presents corresponding performance in-
dexes2, given w.r.t. those from the CasADi NMPC solution
(benchmark). We highlight the key findings:

1) In terms of real-time capabilities, the qLPV MPC
approaches are shown to be very fast solutions to

2We use IAE as
∑
k ‖r(k)− y(k)‖, being r(k) the reference signal.
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Fig. 3. Cartesian robot: Reference tracking results.

NMPC. The average computational burden with these
approaches (tc) is even smaller than what is required by
CasADi (more than 20 times smaller), which is quite
impressive.

2) Despite the SQP qLPV MPC solution being widely
applied in recent works, e.g. [7], [17], we advocate for
the use of the Taylor-based approach from [14]. By
using a linear recursive estimate to estimate Pk, the
total numerical burden of the controller is reduced in
over 30 %, since only one QP is required to be solved
per sample (and not multiple ones as in [7]). As shown
in [14, Lemma 3]), we note that the estimation residual
can be easily verified to be bounded, small, and null
in steady-state.

3) The use of qLPV-embeddings is an elegant and effi-
cient way to encapsulate nonlinearities of system that
satisfy differential inclusion. The corresponding MPCs
do not have to resort to any nonlinear optimisation, but
rather quadratic ones. Furthermore, less conservative
control is allowed, since recursive feasibility is ensured
and the artifices to circumvent feasibility losses due to
local minima (i.e. Remark 3) do not have to be used.

TABLE I
PERFORMANCE COMPARISON.

Method rms{J(·)} IAE tc
CasADi NMPC 100% 100% 353.9 ms

SQP qLPV MPC 0.33% 77.83% 17.4 ms
Taylor qLPV MPC 0.33% 77.83% 12.3 ms

VI. CONCLUDING REMARKS

In this paper, we advocate for the qLPV-embedding frame-
work as a standard approach for the development of NMPC
algorithms with exact solution. Specifically, we highlight and
exemplify recent findings on use of recursive Taylor-based
extrapolation maps to generate accurate estimates for the fu-
ture trajectories of the process qLPV scheduling parameters.
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Fig. 4. Cartesian robot: Control inputs.

Using a highly nonlinear Cartesian robot system, we demon-
strate the effectiveness of the qLPV approach using these
Taylor-based extrapolation estimates. For such, the method
is compared in terms of numerical burden and achieved
performances to a state-of-the-art qLPV MPC technique and
a benchmark NMPC solution (CasADi). We show how the
analysed framework is able to achieve comparable results
to state-of-the-art NMPC algorithms with much reduced
numerical burden; the method enables real-time NMPC ap-
plications using only one quadratic program and one linear
recursive law per sample during the implementation, which
is a significant advance.
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