ALMOST REDUCIBILITY OF QUASIPERIODIC SL(2, R)-COCYCLES IN ULTRADIFFERENTIABLE CLASSES, AND AN APPLICATION TO THE REGULARITY OF THE LYAPUNOV EXPONENT - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

ALMOST REDUCIBILITY OF QUASIPERIODIC SL(2, R)-COCYCLES IN ULTRADIFFERENTIABLE CLASSES, AND AN APPLICATION TO THE REGULARITY OF THE LYAPUNOV EXPONENT

Résumé

Given a quasiperiodic cocycle in sl(2, R) sufficiently close to a constant, we prove that it is almost-reducible in ultradifferentiable class under an adapted arithmetic condition on the frequency vector. We also give a corollary on the Hölder regularity of the Lyapunov exponent.
Fichier principal
Vignette du fichier
Chatal-Chavaudret-SL2R-ultradiff.pdf (413.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03652944 , version 1 (27-04-2022)
hal-03652944 , version 2 (24-05-2022)

Identifiants

Citer

Maxime Chatal, Claire Chavaudret. ALMOST REDUCIBILITY OF QUASIPERIODIC SL(2, R)-COCYCLES IN ULTRADIFFERENTIABLE CLASSES, AND AN APPLICATION TO THE REGULARITY OF THE LYAPUNOV EXPONENT. 2022. ⟨hal-03652944v1⟩
131 Consultations
82 Téléchargements

Altmetric

Partager

More