ALMOST REDUCIBILITY OF QUASIPERIODIC SL(2, R)-COCYCLES IN ULTRADIFFERENTIABLE CLASSES, AND AN APPLICATION TO THE REGULARITY OF THE LYAPUNOV EXPONENT
Résumé
Given a quasiperiodic cocycle in sl(2, R) sufficiently close to a constant, we prove that it is almost-reducible in ultradifferentiable class under an adapted arithmetic condition on the frequency vector. We also give a corollary on the Hölder regularity of the Lyapunov exponent.
Domaines
Systèmes dynamiques [math.DS]Origine | Fichiers produits par l'(les) auteur(s) |
---|