Mean estimation for Randomized Quasi Monte Carlo method - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Mean estimation for Randomized Quasi Monte Carlo method

Résumé

We are given a simulation budget of B points to calculate an expectation µ = E (F (U)). A Monte Carlo method achieves a root mean squared risk of order 1/ √ B, while a Randomized Quasi Monte Carlo method achieves an accuracy σ B 1/ √ B. The question we address in this work is, given a budget B and a confidence level δ, what is the optimal size of error tolerance such that P(|Est − µ| > TOL) ≤ δ for an estimator Est to be determined? We show that a judicious choice of "robust" aggregation methods coupled with RQMC methods allows to reach the best TOL. This study is supported by numerical experiments, ranging from bounded F (U) to heavy-tailed F (U).
Fichier principal
Vignette du fichier
RQMC_HAL_v2.pdf (802.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03631879 , version 1 (05-04-2022)
hal-03631879 , version 2 (18-06-2022)
hal-03631879 , version 3 (15-09-2023)
hal-03631879 , version 4 (14-09-2024)

Identifiants

  • HAL Id : hal-03631879 , version 2

Citer

Emmanuel Gobet, Matthieu Lerasle, David Métivier. Mean estimation for Randomized Quasi Monte Carlo method. 2022. ⟨hal-03631879v2⟩
395 Consultations
823 Téléchargements

Partager

More