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Abstract: We are given a simulation budget ofB points to calculate an expectation µ = E (F (U)).
A Monte Carlo method achieves a root mean squared risk of order 1/

√
B, while a Randomized

Quasi Monte Carlo (RQMC) method achieves an accuracy σB � 1/
√
B. The question we

address in this work is, given a budget B and a confidence level δ, what is the optimal size of
error tolerance such that P(|Est− µ| > TOL) ≤ δ for an estimator Est to be determined? We
show that a judicious choice of “robust” aggregation methods coupled with RQMC methods
allows to reach the best TOL. This study is supported by numerical experiments, ranging from
bounded F (U) to heavy-tailed F (U).

Keywords: Robust statistics; Quasi Monte Carlo methods; PAC bounds
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1 Introduction

Context. The Monte Carlo method for computing an integral is one of the most popular numerical
schemes and has been recognized by the Society for Industrial and Applied Mathematics [8] among
the 10 algorithms which have most influenced the development and practice of the engineering
sciences during the 20th century. We are concerned with the evaluation of a d-dimensional integral
of the form

µ =

∫
[0,1]d

F (x)dx = E (F (U)) , (1.1)

with F : [0, 1]d 7→ R and U ∼ U([0, 1]d). The above is written under a generic form of expectation
with respect to (w.r.t.) the uniform distribution over the unit cube: it is not really a restriction
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since even in the case where the Quantity of Interest (QoI) is an expectation w.r.t. a more complex
distribution, in practice we usually generate uniform samples and after some transformations specific
to the sampling scheme, we are back to Eq. (1.1) with some F related to the QoI and to the sampling
scheme.

The current work is devoted to the use of Randomized Quasi Monte Carlo Sequences (RQMCS)
to evaluate µ and specifically, how to derive some confidence intervals that are provably better than
those obtained with usual independent random sequences (standard Monte Carlo method). Monte
Carlo and Quasi Monte Carlo methods are discussed in several monographs [41, 55] and review
articles [58, 4, 20]. For RQMCS, see [29], [13], [28] for reviews. We fix a few notation:

• we make use of n independent mini-batches, each providing an estimate (µ
(i)
N , i = 1, . . . , n) of

µ;

• the i-th mini-batch estimate is computed as an average of F along a sequence of N points
(R

(i)
1 , . . . ,R

(i)
N ) so that

µ
(i)
N :=

1

N

N∑
j=1

F (R
(i)
j ). (1.2)

The RQMCS (R
(i)
1 , . . . ,R

(i)
N ) are usually generated using a low-discrepancy deterministic se-

quence including an appropriate randomization: for such techniques, see the Cranley-Patterson
rotation [9], scrambled nets [43][14, Chapter 13]. Usually the size N being given (as a power
of an integer in the case of (t,m, d)-nets), one has to choose a RQMCS of that size; for exten-
sible sequence, see [21][14, Chapter 4]. The key properties of the RQMCS are that each R(i)

j

is distributed as U([0, 1]d), while having the N points fill more regularly the unit cube than
usual independent random points so that

σ2
N := Var

(
µ

(i)
N

)
= o(N−1) as N → +∞, (1.3)

for appropriate functions F and RQMCS. See [46, Theorem 1] or [16, Corollary 1] showing the
above estimate under the sole assumption that F is square integrable and when the RQMCS
is based on a (t,m, d) scrambled net. For strong law of large numbers for F (U) ∈ Lp (p > 1),
see the recent work [54]. In [51, Theorem 3], it is proved that σN = O

(
N−3/2[log(N)](d−1)/2

)
for smooth functions and scrambled nets. We refer to Section 3.3 for quantitative results.

All in all, as an estimator of µ, we can consider the Empirical Mean (EM) over the n mini-batches:

µN,n :=
1

n

n∑
i=1

µ
(i)
N .

Because R(i)
j is uniformly distributed, µN,n is advantageously an unbiased estimator of µ. The

quadratic error equals its variance:

E
(
|µN,n − µ|2

)
= Var

(
µN,n

)
=
σ2
N

n
= o

(
N−1

)
n−1, (1.4)

as N → ∞, showing that the distribution of µN,n concentrates much around its mean. We aim
at designing non-asymptotic confidence intervals (CIs) of µ for estimators (possibly different from
µN,n) which would efficiently leverage the fast convergence rate (1.3).
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Concentration-of-measures. Concentration-of-measure inequalities are the crux for deriving CIs
of the form

P
(
|µN,n − µ| ≤ g(δ)

)
≥ 1− δ, δ ∈ (0, 1). (1.5)

It reads as "Given a confidence level at least equal to 1− δ, what is the error bound obtained with
that confidence level?". It is somewhat equivalent to the other representation

P
(
|µN,n − µ| ≥ ε

)
≤ f(ε), ε ≥ 0, (1.6)

which reads as given an error tolerance ε, how likely does the EM achieve this error tolerance.
Informally, the two viewpoints are related by ε = g(δ) and δ = f(ε).

Let us examine the available conditions under which (1.5) is satisfied: the final message of this
brief discussion is that the g-bound depends on the QMC-variance σ2

N but also on other QMC-
quantities that are harder to control, which mitigates the interest of using RQMCS under this form.

Asymptotic bounds. The Central Limit Theorem gives, as n→ +∞,

P
(
|µN,n − µ| ≤ φ−1(1− δ/2)

σN√
n

)
→ 1− δ , (1.7)

where φ−1(q) is the quantile function of the standard Normal distribution. For a 95% CI, we
have φ(0.975) ' 1.96. For later reference, note that φ−1(1− δ/2) ∼

√
2 log(1/δ) as δ → 0. On

the one hand, (1.7) is a nice bound which shows well the interest of RQMCS for which σN → 0

as N → +∞. On the other hand, this bound is valid only as n→ +∞, and it is not clear how
the benefit of a small σN is transferred to a probable bound on |µN,n − µ| for a finite n. This
question is natural though as (1.4) suggests that, given a fixed computational budget of order
n×N , increasingN might yield better risk bounds than increasing n. Therefore, the asymptotic
behavior where N � n is unlikely to be met in practice and in theoretical situations of interest.
As will be discussed in the following, finite sample concentration inequalities for sums of
independent random variables can be used to prove risk bounds for µN,n. However, these are
never as good as the asymptotic ones, even under strong assumptions such as boundedness
of µ(i)

N , and they are deteriorating rapidly when these assumptions are relaxed to allow for
unbounded µ

(i)
N . Before we move to other aggregation procedures of the µ(i)

N , let us review
classical and recent bounds that can be proved for the empirical mean.

Finite sample bounds for bounded µ(i)
N . Assume that µ(i)

N is almost surely bounded by a constant cN .
This happens, for example, when F is bounded by c with cN ≤ c. Under this assumption,
Hoeffding’s inequality [3, Theorem 2.8] gives (1.6) with f(ε) = 2 exp

(
− nε2

2c2N

)
and (1.5) with

g(δ) = cN
√

log(2/δ)/n. These bounds have a similar flavor as the asymptotic ones, with the
important difference that the variance σN is replaced by the sup-norm cN = ‖µ(i)

N ‖∞. This
yields a huge downgrading of the bounds since the Low Discrepancy (LD) property of RQMCS
ensures σN → 0 but not cN → 0 (actually, typically, one has cN → |µ|). Therefore, Hoeffding’s
inequality does not allow to benefit from the LD property of RQMCS.
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In this situation where the variance is much smaller than the sup-norm, it is well known that
Hoeffding’s inequality can be improved into Bennett’s inequality [3, Theorem 2.9]. Indeed, in
our setting, Bennett’s inequality gives (1.6) with

f(ε) = 2 exp

(
−
nσ2

N

c2
N

h

(
cNε

σ2
N

))
, h(u) = (1 + u) log(1 + u)− u for u ≥ 0.

The function h behaves like u 7→ u2 around 0 and like u 7→ u log(u) when u→∞.

To understand the improvement brought by this bound, let us now precise the asymptotic
situation with respect to n and N that we will be interested in. Assume that cN is a constant
(which makes sense as it is typically asymptotically |µ| > 0), we let δ be free to allow for
very small confidence levels and we will discuss the bounds in the case where the variance
nσ2

N → 0, as this is the case with the usual Monte Carlo sampling. Set the error toler-
ance ε � cN log(1/δ)/(n log(cN log(1/δ)/(nσ2

N ))). Fix first δ, then the quantity appearing
in the function h in Benett’s bound, cNε/σ2

N � [nσ2
N log(1/(nσ2

N ))]−1 → ∞. It follows that
h(cNε/σ

2
N ) � cNε/σ2

N log(cNε/σ
2
N ) and thus f(ε) = δ. For fixed confidence level δ, this bound

can be compared with the one we got from Hoeffding’s inequality. First, we see that the de-
pendency with respect to confidence level is slightly worse here, of order log(1/δ)/ log log(1/δ)

instead of
√

log(1/δ) in Hoeffding’s result. However, the bound derived from Bennett’s in-
equality yields a substantial improvement with respect to n,N , the new bound being of order
{n log(1/nσ2

N )}−1 instead of 1/
√
n. This risk bound benefits from small σN but remains larger

than the asymptotic one σN/
√
n: Indeed,

{n log(1/nσ2
N )}−1

σN/
√
n

=
1

(nσ2
N )1/2 log(1/nσ2

N )
→∞, when nσ2

N → 0 .

Finally, both bounds, compared to the asymptotic result, are only valid under the assumption
of bounded µ(i)

N (or F ), which is still a strong restriction for the QoI (1.1).

Finite sample bounds under exponential moments for µ(i)
N . In this paragraph and the following, we

show that the boundedness assumption on F can be slightly relaxed without deteriorating
Benett’s risk bounds by more than a logarithmic factor. Consider first the case where µ(i)

N has
finite exponential moments. More precisely, assume the following Bernstein’s conditions

E
(
|µ(i)
N − µ|

q
)
≤ q!

2
σ2
Nc

q−2
N , for any integer q ≥ 2,

where cN > 0. It is easy to check that this assumption implies in particular that cN is an
upper bound on the Orlicz norm ‖µ(i)

N ‖ψ1 . cN rather than on the sup-norm in Benett’s case.
In this case, Bernstein’s inequality (see [3, Theorem 2.10]) ensures that (1.6) holds with

f(ε) = 2 exp

(
− nε2

2(σ2
N + cNε/3)

)
. (1.8)

Choose ε = CcN log(1/δ)/n, this bound becomes

log(f(ε)) = log 2−
C2c2

N log(1/δ)2

2(nσ2
N + Cc2N log(1/δ))

.
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In the asymptotic nσ2
N → 0, it yields f(ε) ≤ δ. Hence, the error bound is only slightly

deteriorated compared to the previous paragraph, by extra logarithmic factors log(1/(nσ2
N ))

in n,N and 1/ log log(1/δ) w.r.t. δ, while this result holds under the relaxed assumption.
As for the sup-norm, the Orlicz norm cN is typically asymptotically bounded but does not
converge to 0. Therefore, the upper bound (1.8) does not benefit more (actually slightly worse)
from the better variance estimate from RQMCS. Finally, while this result holds for unbounded
F , it still requires a strong sub-exponential behavior of µ(i)

N , which remains much stronger than
the existence of a finite second moment.

Finite sample bounds for β-heavy-tailed µ(i)
N . In [6], the case where µ(i)

N have β-heavy-tailed distribu-
tion (see formal definition below) was considered that allowed to cover in particular log-normal
distributions (where all polynomial moments are finite but all exponential moments are infi-
nite). Suppose that there exists β > 1 such that the Orlicz norm ‖F (U)‖HTβ is finite, where

‖F (U)‖HTβ := inf {c > 0 : E (Ψβ (|F (U)|/c)) ≤ 1} ,
with Ψβ(x) := exp((ln (x+ 1))β)− 1 for x ≥ 0.

In this case, it follows from [6, Corollary 2.3] that there exists a universal constant c > 0 such
that (1.6) holds with

f(ε) = 2 exp

−
ln

1 +
εn

c
(
σN
√
n+ ‖µ(1)

N ‖HTβ Ψ1/β(n)
)
β

 .

Here, the sequence Ψ1/β(n)→ +∞ as n→ +∞ but with Ψ1/β(n)/nγ → 0 for any γ > 0. This
bound yields, as in the previous examples, an error bound of order (for small ε)

ε �
‖µ(1)

N ‖HTβ Ψ1/β(n) log(1/δ)1/β

n
, when nσ2

N → 0 ,

for a confidence level log(f(ε)) = δ. The degradation log(1/δ) ↔ log(1/δ)1/β is the price
to pay to assume only a finite β-heavy-tails for µ(i)

N . A strong feature of this result is that
the dependency with respect to n,N remains 1/n (up to slow varying terms). Regarding our
problem, the LD property of RQMCS still does not imply ‖µ(1)

N ‖HTβ → 0, so these bound still
do not leverage fully the benefits of the LD property of RQMCS.

Finite sample bounds under finite second moment for µ(i)
N . In the extreme case where only the sec-

ond moment of µ(i)
N is finite, then Chebyshev-Cantelli’s inequality implies

P
(
µN,n − µ ≥

σN√
δn

)
∨ P

(
µN,n − µ ≤ −

σN√
δn

)
≤ δ ∀δ ∈ (0, 1) .

Here, the dependency with respect to n,N , σN√
n
, is the targeted order of magnitude. On the

other hand, the dependency on the confidence level 1/
√
δ is significantly deteriorated compared

with the previous results, of order log(1/δ)1/β , log(1/δ) or even
√

log(1/δ) in the asymptotic
case: for δ = 5 % (resp. δ = 0.1 %), we have 1/

√
δ = 4.47 (resp. 31.62), while log(1/δ) = 3

(resp. 6.91) and
√

log(1/δ) = 1.73 (resp. in 2.63) arising in (1.7).
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To summarize, none of the finite sample concentration inequalities yield the desired bounds for
the empirical mean: We need other aggregation procedures to reach risk bounds with the targeted
behavior, w.r.t. n, N and δ. In particular, we would like the new estimators to overcome the
following undesirable features of the empirical mean:

• Asymptotic bounds are verified if n → ∞ while N is fixed, while RQMCS is particularly
relevant when N → +∞ at least as fast as n, which implies in particular that, asymptotically,
nσ2

N → 0.

• The finite sample bounds for the empirical mean hold

– either with a reasonable dependency on δ but under strong conditions on µ(i)
N and with a

sub-optimal behavior with respect to n, N ,

– or with the optimal dependency w.r.t. n, N and under weak conditions (finite variance)
but with a prohibitive behavior w.r.t. δ.

In this paper, our aim is to propose new estimators of µ based on aggregation of µ(i)
N different from

the empirical mean that do not suffer these restrictions. In particular, these estimators should satisfy
finite sample risk bounds that, as the empirical mean in the asymptotic regime

• are proportional to the optimal rate σN/
√
n with respect to n,N , thus fully benefiting from

the LD property of RQMCS;

• are proportional to the optimal
√

log 1/δ rate with respect to δ, so as to be relevant even for
very small confidence levels.

Interestingly, this question is related to the work of Catoni [5]. In this paper, the author wondered
if one can design an estimator of the expectation µ = E (X) of a random variable X from an
independent identically distributed (i.i.d.) sample X1, . . . , Xn with sub-Gaussian deviation tails
assuming only a finite second moment of each variable Xi. He proved that it is possible to build
estimators µ̂δ,σ depending on the confidence level δ and the variance σ such that

P

(
|µ̂δ,σ − µ| > Cnσ

√
log 1/δ

n

)
≤ δ ,

with leading constant Cn asymptotically as n → ∞ not larger than the optimal value
√

2, as long
as the confidence level δ ≥ exp(−cn) for some absolute constant c. Notice that this bound exhibits
precisely the behavior we are seeking for our estimators: the deviation bounds are proportional to
σ
√

log(1/δ)/n, which yields both the optimal rate σN/
√
n with respect to n,N and the optimal rate√

log(1/δ) with respect to δ when applied to the random variables Xi = µ̂
(i)
N . Catoni’s estimators are

M -estimators generalizing slightly the famous Huber estimators from classical robust statistics, see
[17] and [23] for classical references. Let us pause for a second to stress important points regarding
this result: Compared to the empirical mean, there are indeed important restrictions to this result,
that may be undesirable in our application.
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• First, the estimator depends on the variance parameter σ2, which is typically unknown in
applications.

• Second, it also depends on the confidence level δ.

• Third, the confidence level δ has to be sufficiently large (at least of order exp(−cn)).

The biggest problem to apply this result is the dependency of the estimator on σ2 (look at the
numerical experiments from Section 5 though where Catoni’s strategy is applied replacing σ2 by an
appropriate estimator). However, Catoni’s work was followed by [10] that showed that the median-of-
means principle can be used to build estimators achieving similar theoretical results (although with
worse leading constants Cn >

√
2). Compared with Catoni’s estimators, median-of-means estimators

do not depend on σ and are robust to the presence of a few outliers. This proves that the first
restriction we discussed can be overcome. The paper [10] also showed, however, that the dependency
in the confidence level δ is mandatory without further information on the distribution of X and that
the third restriction always holds unless X is sub-Gaussian with a link between its variance and
its ψ2-norm. Therefore, both the second and third restrictions can only be removed under stronger
assumptions on the distribution of X: For the second one, it is sufficient for example to assume
a link between its fourth and second moments (see [10]). Other robust estimators have then been
proposed and analyzed, including Trimmed-mean estimators, that will be presented and discussed
in detail in Section 2. These results have also been extended to multivariate mean expectation, see
in particular the survey [34] for an overview on this topic.

Asymptotic error assessment. Last, to complete the state-of-the-art picture, let us mention
some references about evaluating RQMC error asymptotically (although our focus is on non-asymptotic
estimates). In numerical software packages, stopping criteria are sometimes proposed [2, 7] as ap-
proximate error assessment methods. Besides, in some cases, the distribution of µ̄(i)

N for N large can
be close to a normal distribution: if so, µN,n is also (approximately) normally distributed, so the
Empirical Mean is exactly a (sub)-Gaussian estimators (and thus optimal); then, robust estimators
are not expected to yield much improvement against EM. These cases of asymptotic normality are
known for (0,m, d)-scrambled nets and for F with Lipschitz continuous first derivatives, see [33];
sufficient conditions are, furthermore, studied in [39]. However, the approximate normality of µ(i)

N

may not hold, as exemplified by [30]. All in all, non-asymptotic approaches keep all its advantages
compared to the asymptotic point of view. Last, we refer to the work [26] by Kunsch and Rudolf,
which has been pointed out to us by the authors when our work was finalized and presented in
conference: their work deals with theoretical asympotic minimal error bounds for confidence in-
tervals for functions having some smoothness: our approach is different and complementary since
we investigate the construction of mean estimation procedure with finite number of RQMC points
achieving provable error bounds, see Section 4.

Our contributions. This paper combines Robust Estimators to Quasi Monte Carlo method to
exhibit Robust Randomized Quasi Monte Carlo (RRQMC) estimates that can be provably highly
accurate with large probability. To the best of our knowledge, this combination is original. To take
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advantage of the full potential of robust statistics capable of handling heavy-tailed distributions, we
allow the case of unbounded F (U) to be handled: this raises new issues when quantifying how σN
converges to 0 asN →∞. This convergence has been studied for smooth (and bounded) functions F ,
see [45] [44]. The expected integration error (L1-error) is analyzed for irregular (fractional regularity)
but bounded functions in [11], and for singular functions in [50]. We extend results of the latter
reference to the Mean Square Error σ2

N , see Theorem 3.4. This shows that when F (U) has four finite
polynomial moments, the RRQMC method converges still faster than the usual Monte Carlo method
and robust methods allow a high-concentration of the statistical error around 0, see Theorem 4.1.
Numerical experiments in Section 5 confirm how beneficial the combination of RQMCS and robust
estimators is, even in the case of smooth and bounded F .

Outline. In Section 2 we review the Robust Mean estimators existing in the literature and the
best confidence bounds available. Section 3 is devoted to present some of the (Robust) Quasi Monte
Carlo methods with their properties. In the last theoretical Section 4 we derive results combining
the two previous approaches. In Section 5, we test numerically these various methods.

2 Theory of Robust Mean estimators

We present some standard robust estimators as well as some recent ones. In this whole section, we
denote by X1, . . . , Xn a sequence of i.i.d. real random variables with expectation µ = E (X1) and
finite variance σ2 = Var (X1). The quantity µ̄n is the empirical mean estimator of the X1, . . . , Xn

sample. These results will be applied to our problem by considering Xi = µ
(i)
N , so σ = σN and

µ̄n = µN,n. Let also µ̂n denote a generic mean estimator built from X1, . . . , Xn.
In this section we will present the concentration inequalities with the convention Eq. (1.5),

(g(δ), δ) as it is customary in this literature.

2.1 Sub-Gaussian distributions

Using
Φ−1(1− δ/2) ≤

√
2 log(2/δ)

and the Central Limit theorem we have

lim
n→∞

P

(
|µ̄n − µ| ≤ σ

√
2 log(2/δ)

n

)
≥ 1− δ

for δ ∈ (0, 1).

Definition 2.1. A random variable X is called sub-Gaussian if it satisfies for all λ ∈ R

E (exp (λ (X − µ))) ≤ exp
(
σ̃2λ2/2

)
where σ̃ is proportional to the ψ2-norm of X − µ.
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It is easy to show using Chernoff’s bound that sub-Gaussian random variables satisfy, for any
δ ∈ (0, 1)

P

(
|µ̄n − µ| ≤ σ̃

√
2 log(2/δ)

n

)
≥ 1− δ.

Actually, it can be shown that the empirical mean only achieves this bound (w.r.t. n and δ, for all
δ) if X is sub-Gaussian. In particular thus, if the distribution of X1 has a finite variance only, the
empirical mean does not have sub-Gaussian tails. [5] shows that, under this assumption, Chebyshev’s
inequality is tight. In the following sections, we present several robust alternatives to the empirical
mean. As explained in the introduction, these estimators typically depend on the confidence level δ
that has therefore to be set by the statistician. This and our ultimate goal motivate the following
definition.

Definition 2.2. Given δ ∈ (0, 1), we say that an estimator of the mean µ is a δ-Sub-Gaussian mean
estimators (SGME) µ̂n

.
= µ̂n(X1, . . . , Xn), if it satisfies

P

(
|µ̂n − µ| ≥ Lσ

√
log(2/δ)

n

)
≤ δ.

for some 0 < L < +∞.

Informally, δ-sub-Gaussian estimators are those we are interested in as they exhibit provably risk
bound of optimal order both with respect to n, σ and δ. It turns out that such estimators exist even
under weak finite second moment assumptions on data, but they have to depend on the confidence
level.

Remark 2.1 (Optimality of sub-Gaussian Mean Estimator). SGME are optimal in the sense that
for any estimator of the mean µ̂n and confidence level δ ∈ (0, 1), there exists a Gaussian distribution
N (µ, σ2) such that

P (µ̂n − µ ≥ rσ) ≤ δ,

where r ≥ φ−1(1 − δ) [5, Proposition 6.1]. Since φ−1(1 − δ) ∼
√

2 log(1/δ) for small δ we must
have L ≥ Loptimal =

√
2 for any mean estimator working for all finite variance distributions. An

estimator satisfying L =
√

2 + o(1) is referred to as “nearly optimal.âĂİ

2.2 Trimmed Mean

Perhaps the most intuitive robust estimator is the trimmed mean which removes the most extreme
samples and takes the empirical mean on the remaining samples. The asymptotic behavior of this
estimator is well known, see for example [59]. However, the non-asymptotic deviation bounds have
only recently been investigated. We present here a result from [34, Theorem 6] attributed to [42]
(work unpublished at the date of our work).

For α ≤ β, define the truncation function

ϕα,β(x) =


β if x > β,

x if x ∈ [α, β],

α if x < α.
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For y1, . . . , ym ∈ R, let y∗1 ≤ y∗2 ≤ · · · ≤ y∗m be a non-decreasing rearrangement.

Theorem 2.1 (Theorem 6 [34]). Let n be an even integer. Let X1, . . . , Xn/2, Y1, . . . , Yn/2 be i.i.d.
random variables with mean µ and variance σ2.

1. Let δ ∈ (0, 1) be such that n > (32/3) log(8/δ) and

ε =
32 log(8/δ)

3n
.

2. Assume for simplicity that εn/2 is an integer.

3. Let α = Y ∗εn/2 and β = Y ∗(1−ε)n/2 and set the trimmed mean estimator as

µ̂n =
2

n

n/2∑
i=1

ϕα,β (Xi) .

Then

P

(
|µ̂n − µ| ≤ 19σ

√
2 log(8/δ)

n

)
≥ 1− δ.

In words, the trimmed mean is a δ-sub-Gaussian estimator. It does not depend on σ but it is
"structurally not" nearly optimal as a trimmed mean is based essentially on only half of the sample
(the other half being used to compute the trimming levels α and β). The constant L = 19 appearing
in the bound can probably be optimized, it differs from the constant L = 9 given in [34, Theorem
6] which is the result of a typo.

2.3 Median-of-Means

An alternative to trimmed mean, that has theoretically the same kind of properties, is given by
median-of-means. The idea is to partition the dataset into batches, take the mean on each batch
and then aggregate these estimators by taking their median. These estimators are structurally robust
to the presence of a few outliers due to the median step, but they can also easily be shown to be
δ-sub-Gaussian when the number of blocks is of order log(1/δ). We present these estimators and
this property formally in this section.

Definition 2.3. The Median-of-Means estimator µ̂n of a sample X1, . . . , Xn is defined as

µ̂n = median
(
X̄J1 , . . . , X̄Jk

)
(2.1)

where X̄Jl = |Jl|−1
∑
i∈Jl

Xi and Jl is a partition of {1, . . . , n}, that is {1, . . . , n} =

k⋃
l=1

Jl and Jl
⋂
Jl′ =

∅ for l 6= l′, each batch Jl has roughly the same size. In the following, we denote by m = |Jl| assuming
n = km.
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We used the notation |J | .= Card(J) to denote the cardinal of an ensemble. Note that the result
depends on the arrangements of the sample.

Median-of-means estimators appeared independently in various communities, see for example
[40, 1]. Their sub-Gaussian property was established in [10]. We present here a slightly tighter
result.

Theorem 2.2 (Theorem 4.1 [10]). Let X1, . . . , Xn be i.i.d. random variables with mean µ and
variance σ2. Let m, k be positive integers assume that n = mk. Then the Median-of-Means estimator
µ̂n introduced in Definition 2.3, is a δ-sub-Gaussian estimator with k = d8 log (1/δ)e ≤ n, that is

P

(
|µ̂n − µ| ≤ σ

√
32 log(1/δ)

n

)
≥ 1− δ.

A permutation-invariant version of Median-of-Means estimators exists (also related to a higher
order Hodges-Lehmann estimator), see the discussion in [38, Section 3.4]. There, the median is
taken over all possible equi-partitions of the samples, median

(
X̄J , J ∈ A(k)

n

)
, A(k)

n = {J : J ⊆
{1, . . . , n}, |J | = k}. In this case, it is not clear how the deviation bounds are modified, but we

expect a better estimate. Of course,
∣∣∣A(k)

n

∣∣∣ =

(
n

k

)
so this estimator is not tractable in practice.

2.4 Z–estimators

Parameter estimation often relies on minimization (or maximization) criteria such as the Maximum
Likelihood estimator. Another classical example is the problem of estimating a location parameter θ
by minimizing the mean square error

∑
i(Xi − θ)2. The minimum is reached at the empirical mean

θ∗ = µ̄n. Generalizing that idea, M-estimators were introduced [24] to minimize the expression of the
type

∑
i ρ(Xi − θ) for some well-chosen function ρ. Similarly, Z–estimator of a location parameter

are defined as the zero of the expression
∑

i ψ(Xi− θ) where ψ = ρ′ is called the influence function.
Here we consider Z–estimators, µ̂n, defined as the zero of the following equation

Rn,ψ(θ) =

n∑
i=1

ψ (α(Xi − θ)) , (2.2)

where the influence function ψ : R → R is an antisymmetric non-decreasing function and α ∈ R is
a tuning parameter. Different choices of influence function yield different estimators. For example,
ψ(x) = x gives the empirical mean, while ψ(x) = sign(x) gives a median estimator. The behavior
at large |x| determines the outliers’ importance.

2.4.1 Huber’s influence function

The Huber’s influence function [24] is defined as

ψ(x) =


1 if x > 1,

x if |x| ≤ 1,

−1 if x < −1.

(2.3)

11



Essentially all large values above some threshold dictated by α are treated with the same weight.
In this case the following result shows that the Huber M–estimator is sub-Gaussian.

Theorem 2.3 (See for example [36, Section 3]). Let X1, . . . , Xn be i.i.d. random variables with
mean µ and variance σ2. Let δ ∈ (0, 1) be such that n > 2 log(2/δ). Define the Huber’s mean
estimator µ̂n as the zero of Eq. (2.2) with influence function Eq. (2.3) and parameter

α =

√
2 log(4/δ)

nσ2
. (2.4)

Then Huber’s mean estimator is a δ-sub-Gaussian estimator, that is

P

(
|µ̂n − µ| < 8σ

√
2 log(4/δ)

n

)
≥ 1− δ.

Notice that, contrary to the previously introduced estimators, Huber’s estimator depends on the
variance σ2 through the tuning parameter α. In practice, this undesirable feature can be partially
overcome by taking an estimator of σ2. However, one should be careful with such estimator that
has to be robust when the dataset is corrupted.

2.4.2 Catoni’s influence function

Catoni in [5] proposes the following influence function

ψ(x) =

{
log(1 + x+ x2/2) if x ≤ 0,

− log(1− x+ x2/2) if x > 0.
(2.5)

This function is not bounded and the resulting estimators are therefore still sensitive to very large
outliers. However, the logarithmic growth at infinity allows to reduce the importance of “reasonable
outliers” arising in i.i.d. samples from finite two moments distributions as shown by the following
result.

Theorem 2.4 ([5]). Let X1, . . . , Xn be i.i.d. random variables with mean µ and variance σ2. Let
δ ∈ (0, 1) be such that n > 2 log(2/δ). Define Catoni’s mean estimator µ̂n as the zero of Eq. (2.2)
with the influence function Eq. (2.5) and the parameter

α =

√√√√ 2 log(2/δ)

nσ2
(

1 + 2 log(2/δ)
n−2 log(2/δ)

) . (2.6)

Then

P

(
|µ̂n − µ| < σ

√
2 log(2/δ)

n− 2 log(2/δ)

)
≥ 1− δ. (2.7)

The sub-Gaussian bound satisfied by Catoni’s estimator is therefore tight up to a 1

1− 2 log(2/δ)
n

=

1 + o(1) term when log(1/δ)/n→ 0. As Huber’s estimators, the tuning parameter defining Catoni’s
estimators depends on the variance σ2 which might be unknown. When an interval [σ1, σ2] is known
such that σ ∈ [σ1, σ2], Catoni [5] showed that this dependency can be removed using Lepski’s
method. However, the bounds are only tight when the ratio σ2/σ1 is bounded and this extra step
makes the leading constant in the risk bound bigger than its optimal value

√
2.
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2.4.3 Lee Valiant estimator

In a recent work, Lee and Valiant [31] propose a tight SGME up to a term going to zero, that does
not require any knowledge on the variance.

Definition 2.4. For a given δ, define the Median Of Mean estimator Eq. (2.1) κ .
= κ(X1, . . . , Xn)

computed on k = log(1
δ ) ≤ n groups with δ ≥ e−n and k an integer. The Lee Valiant estimator is

then defined as

µ̂n = κ+
1

n

n∑
i=1

(Xi − κ)(1−min(α(Xi − κ)2, 1))

where the parameter α is the solution of the monotonic, piecewise-linear equation

n∑
i=1

min(α(Xi − κ)2, 1) =
1

3
log

(
1

δ

)
. (2.8)

Theorem 2.5 ([31]). Let X1, . . . , Xn be i.i.d. random variables with mean µ and variance σ2. Let
δ ∈ (0, 1) be such that δ ≥ e−n and assume that k = log(1

δ ) is an integer. Then, Lee-Valiant’s
estimator µ̂n introduced in Definition 2.4, satisfies

P

(
|µ̂n − µ| < σ(1 + o(1))

√
2 log(1/δ)

n

)
≥ 1− δ, (2.9)

where the o(1) term goes to zero when (δ, log(1/δ)/n)→ (0, 0).

In this result, the o(1) term is not explicit, this is also the case in the proof of this theorem
in [31]. This means that the risk bound cannot be used directly to derive confidence intervals in
applications. When κ = 0, Lee-Valiant’s estimator can be reformulated as an M–estimator. The

condition (2.8) guarantees that “
1

3
log

(
1

δ

)
of the samples are discarded”.

2.4.4 Minsker-Ndaoud’s Estimator

In an even more recent work, Minsker and Ndaoud [38] propose another SGME that does not require
any information on the variance and describe its properties in detail. The idea is as for Median-of-
Means, to divide the sample X1, . . . , Xn into k blocks of similar size and take the empirical mean X̄l

of each block Jl. However, instead of computing the median of the block they propose a weighted
mean where each weight is inversely proportional to the empirical variance σ̄l.

Definition 2.5. Let pMN ≥ 1. Minsker-Ndaoud’s estimator µ̂n of a sample X1, . . . , Xn is defined
as

µ̂n =

k∑
l=1

X̄l/σ̄
pMN

l

k∑
l=1

1/σ̄pMN

l

, (2.10)
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where X̄l = |Jl|−1
∑
i∈Jl

Xi is the empirical mean over the block Jl, and σ̄l denotes the empirical

standard deviation. The sample {1, . . . , n} =

k⋃
l=1

Jl is divided into k blocks, Jl
⋂
Jl′ = ∅ for l 6= l′, of

size m = |Jl| assuming n = km.

The weights give less importance to the block with large variance (and possibly outliers). Note
that for pMN = 0, it corresponds to the empirical mean, while for pMN →∞ only the block with the
smallest variance is considered. In [38] the authors consider the case pMN = 1 and pMN = 2. We
state a simplified δ dependent version of their main theorem showing that the estimator (2.10) is an
SGME.

Theorem 2.6 ([38, Theorem 3.1 with Lemma 3.2]). Let X1, . . . , Xn be i.i.d. random variables with
mean µ and variance σ2. Let δ ∈ (0, 1) be such that δ & e−

√
n/ log(n). Then, Minsker-Ndaoud’s

estimator µ̂n introduced in Definition 2.5 with k = log(3/δ) blocks of size m = n/k satisfies for
pMN ≥ 1

P

(
|µ̂n − µ| < σCpMN

√
1 + log(3/δ)

n

)
≥ 1− δ,

for some CpMN > 0 constant depending only on pMN.

Notice that the range of δ for which this result applies is more restrictive than in the other
results. The constant CpMN > 0 is sub-optimal in this result, but it is also proved in the paper that the
estimator is also asymptotically normal [38], with optimal variance (i.e.,

√
n(µ̂n−µ)

d−−−→
n→∞

N (0, σ2)),
which is an interesting feature that suggests a good practical behavior.

2.4.5 Discussion

We have defined five “robust” estimators all satisfying sub-Gaussian bounds with different L. Up to
recently, Catoni’s estimators had the best theoretical guarantees (see Eq. (2.7)) given some infor-
mation on the variance σ2 because L =

√
2(1 + o(1)) ≈ Loptimal. In practice, this yields important

improvements over other SGME like Median-of-Means and Trimmed Mean that do not request
knowledge of the variance but have larger L. However, recent results like Lee Valiant [31] show
that the best of both worlds is possible: they obtain quasi optimal bound (see Eq. (2.9)) without
any knowledge on the variance. In our practical experiments in Section 5, we confirm this impres-
sion: the estimators from Lee Valiant and Minsker Ndaoud look like they have the best practical
performances. The theoretical non-asymptotic deviation bounds obtained by Minsker and Ndaoud,
see Theorem 2.6, does not explicit the leading constant. However, as suggested by their asymptotic
result, it seems like this constant can be proved to be very close to optimal, even for reasonable pMN.
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3 Theory of Quasi Monte Carlo methods

Say that we wish to approximate the QoI Eq.(1.1) by a quadrature rule, i.e., an expression of the
form

µ '
N∑
j=1

wjF (xj)
.
= µ̄N

for a given sequence of point (x1, . . . ,xN ) and weights (w1, . . . , wN ). Common examples of deter-
ministic quadrature rules are tensored one-dimensional rules (of Newton, Gauss, Clenshaw-Curtis,
etc. types) or sparse grids (Smolyack’s quadrature rules). Generally speaking, the error convergence
rate depends on the dimension d and on the regularity of the function F , see [60] and references
therein for an overview. The purpose of Monte Carlo, Quasi Monte Carlo and Randomized Quasi
Monte Carlo methods is to obtain convergence rates that are completely or almost independent of
the dimension d. The most classical approach is to use equal weights wj = 1/N .

3.1 Monte Carlo

Let U1, . . . ,UN be N independent vectors uniformly distributed over [0, 1]d. For square integrable
functions F , set σ2 = Var (F (U)) where U ∼ U([0, 1]d): we have Var (µ̄N ) = σ2

N , i.e., choosing
randomly the quadrature point U1, . . . ,UN leads to an RMSE of order O(N−1/2). This result is
usually worse than the deterministic quadrature rules in small dimensions, but it is both independent
of the dimension d and the integrand regularity.

3.2 Quasi Monte Carlo

Instead of using N independent uniformly distributed random variables, quasi Monte Carlo meth-
ods use deterministic sequences (ξ1, . . . , ξN ) that asymptotically fills well the unit hypercube (like
random sequences), thus the name quasi Monte Carlo (QMC) methods. We review briefly the basic
properties of these QMC methods. Let us define the multidimensional interval

[a, b) =

d∏
k=1

[ak, bk)
.
= {x ∈ Rd | ak ≤ xk < bk, k = 1, . . . , d},

assuming ak < bk for any k. To measure how well a point sequence (ξ1, . . . , ξN ) fills the d-dimensional
cube [0, 1]d, following [41, Section 2.1], we introduce the star discrepancy defined as

D∗N (ξ1, . . . , ξN )
.
= sup
x∈[0,1]d

|∆(x; ξ1, . . . , ξN )|, where ∆(x; ξ1, . . . , ξN )
.
=

1

N

N∑
j=1

1ξj∈[0,x)−
d∏

k=1

xk.

If the d-dimensional cube was filled homogeneously, the proportion N−1
∑N

j=1 1ξj∈[0,x) of points
inside the multidimensional interval [0,x) would exactly be equal to its Lebesgue measure, thus
∆(x; ξ1, . . . , ξN ) = 0. The perfect homogeneity is out of reach but the error can be made quite
small.
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Definition 3.1. A d-dimensional infinite sequence ξ1, ξ2, . . . is said to have Low Discrepancy (LD)
if

D∗N (ξ1, ξ2, . . . , ξN ) = O
(
N−1(logN)d

)
as N →∞.

3.2.1 Koksma-Hlawka error bound

The Koksma-Hlawka inequality [25, 22] provides an error bound for the finite N estimate of any
sequence (u1, · · · ,uN ), ∣∣∣∣∣∣ 1

N

N∑
j=1

F (uj)− µ

∣∣∣∣∣∣ ≤ VHK(F )D∗N (u1, . . . ,uN ), (3.1)

where VHK(F ) is the Hardy-Krause variation of the function F . In words VHK(F ) is defined as the
supremum over all multidimensional intervals partitions of the variations of F between intervals
vertices (see [41, p.19] for details). If VHK(F ) < +∞, we write F ∈ BVHK([0, 1]d) or simply
F ∈ BVHK. Observe that if F is unbounded then F /∈ BVHK; this means that for heavy-tailed
random variable F (U), the above (3.1) is not informative since the right-hand side is infinite.

If F is smooth with continuous mixed partial derivatives, then F ∈ BVHK and we have

VHK(F ) =
∑

∅6=u⊆{1,...,d}

∫
[0,1]|u|

∣∣∣∣∣∂|u|F∂xu
(xu : 1−u)

∣∣∣∣∣ dxu,
where for a non-empty set of coordinates u and for x ∈ [0, 1]d, xu : 1−u denotes the point y ∈ [0, 1]d

with yj = xj for j ∈ u and yj = 1 for j /∈ u, see [13, p.176]. It is known that the inequality
(3.1) is tight for smooth functions, see [41, Theorem 2.12]. Besides, extension of (3.1) to function F
satisfying fractional regularity conditions is achieved in [11].

All in all, for any LD sequence as in Definition 3.1 and F ∈ BVHK we have∣∣∣∣∣∣ 1

N

N∑
j=1

F (ξj)− µ

∣∣∣∣∣∣ = O
(
N−1(logN)d

)
,

which is asymptotically better than MC. However, this estimate is completely deterministic, neces-
sarily biased and error bounds are difficult to evaluate in practice since the bounding terms VHK(F )

and D∗N (ξ1, . . . , ξN ) are not easily tractable.

3.2.2 Digital nets and sequence

The construction of LD sequences satisfying Definition 3.1 with good properties is an active research
area. Ideally, one wants both the LD sequence to have good theoretical guarantees and efficient
algorithm to generate large N sequence in large dimension d. Moreover, as we will discuss in
Section 3.3, we will be interested in a sequence that can be randomized while preserving their LD
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characteristics. For detailed reviews on LD sequence see [41, 13]. Here we only focus on digital
net/sequence [14] because of their well-studied properties (see Section 3.3).

Let us define (t,m, d)-nets and (t, d)-sequences, also referred as digital nets and sequences. Let
b ≥ 2 an integer base in which to represent real numbers. Consider the elementary intervals Ek(c)

in base b which are subintervals of [0, 1)d of the form

Ek(c) =

d∏
j=1

[
cj

bkj
,
cj + 1

bkj

)
,

for integers kj and cj , with kj ≥ 0 and 0 ≤ cj < bkj .

Definition 3.2. Let m and t be integers with 0 ≤ t ≤ m. A sequence (x1, . . . ,xN ) of N = bm points
in [0, 1)d is called a (t,m, d)-net in base b if every elementary interval Ek(c) in base b of volume
bt−m contains precisely bt points of the sequence.

The parameter t defines the quality of the net, with smaller values implying better equidistribu-
tion. From [41, Theorem 4.10], it is known that a (t,m, d)-net in base b satisfies the LD property of
Definition 3.1.

Definition 3.3. The infinite sequence x1,x2, . . . ,∈ [0, 1)d is a (t, d)-sequence in base b if for all
k ≥ 0 and m ≥ t the sequence xkbm+1, . . . ,x(k+1)bm is a (t,m, d)-net in base b.

Digital nets are “closed” sequences of points (with a fixed number of points N = bm) whereas
digital sequence are “open” infinite sequences, which has the advantage of providing as many points
as desired by the user.

3.3 Randomized Quasi Monte Carlo

One drawback with QMC estimation is that it provides a (deterministic) error estimate (Koksma-
Hlawka inequality (3.1)) which can be very loose and is as hard as the QoI to compute. Randomized
low discrepancy sequences have been introduced to allow easier error estimation. The deterministic
LD sequence (ξ1, . . . , ξN ) is transformed into a random (R1, . . . ,RN ) that is still LD (with prob-
ability 1) with Rj ∼ U([0, 1]d) for all j ∈ {1, . . . , N}. This new sequence is called a Randomized
Quasi Monte Carlo Sequence (RQMCS). Hence, the RQMCS is composed of identically distributed
uniform random variables which are not independent. The dependency is the key difference with
Monte Carlo sampling. Given a RQMCS of N points R1, . . . ,RN ∈ [0, 1]d, the estimator of the QoI
is

µ̄N =
1

N

N∑
j=1

F (Rj). (3.2)

Due to the uniform distribution of each point, the RQMC estimate is unbiased.

3.3.1 Nested Uniform Scrambling (NUS)

There are several ways to randomize a LD sequence (ξ1, . . . , ξN ) which can affect the convergence
rates, see [29, 13, 28] for reviews. Scrambling is a randomization method that is typically applied to
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(t,m, d)-net (sequence) by shuffling each digit of each coordinate of theRj . Among the different class
of scrambling, there is the nested uniform scramble [43] (sometimes referred to as Owen scrambling).
It preserves their (t,m, d)-net (sequence) character [43, Proposition 1] with probability 1 and each
point is uniformly distributed [43, Proposition 2] (independently of the digital net/sequence character
of the sequence). The Nested Uniform Scrambling (NUS) has strong theoretical guarantees, we will
expose some in the following. We will from now on referred to QMC sequence scrambled as in [43]
simply as scrambled sequences. Recently, it has been proved in [54] that for any F ∈ Lp with p > 1,
the estimator (3.2) based on a scrambled (t, d)-sequence follows a strong law of large numbers.

3.3.2 Variance of scrambled nets

In view of the discussion in the introduction, the standard deviation σN given by

σ2
N := Var

 1

N

N∑
j=1

F (Rj)


plays an important role. We expect that for an RQMCS, it goes to 0 faster than N−1 (the case of
MC method).

General bounds. In a series of works [43, 44], Owen has shown that for nested uniform scram-
bling, the above variance is bounded by N−1 up to a multiplicative factor, for any value of N , see
Theorem 3.1. Moreover, in [46, Theorem 1], it is shown that Nσ2

N → 0 under the sole assumption
of square integrable F . We summarize these results in the following statement, which definitely
justifies to use RQMC as a variance reduction technique.

Theorem 3.1. Let R1, · · · ,RN be the points of nested uniform scrambling of a (t,m, d)-net in base
b where N = bm. Assume that F is such that σ2 := Var (F (U)) <∞. Then

lim
N→+∞

Nσ2
N = 0 (3.3)

and we have

σ2
N ≤ bt

(
b+ 1

b− 1

)d σ2

N
.

The proof relies on an ANOVA Haar wavelet decomposition of the variance using the structure
of (t,m, d) scrambled net. The above non-asymptotic bound should be seen as a worst-case variance
estimate, showing that the RQMC variance cannot be worst than the Monte Carlo variance up to a
factor, given a budget of N points; this is cheering. The factor growths exponentially fast with the
dimension d. This does not contradict Eq. (3.3), it just says that for a fixed N , there might exist a
worst case function F reaching this bound.

The first asymptotic result is really appealing, and states that RQMC based on an NUS is
asymptotically always better than MC. It will be of main importance when combined with robust
mean estimators of Section 2.
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Bounds for F ∈ BVHK. When the integrand F satisfies some regularity properties (typically
F ∈ BVHK), the previous variance reduction can be improved. It directly stems from the Koksma-
Hlawka bound (3.1), assuming that the convergence in Definition 3.1 is valid with a deterministic
upper-bound:

σ2
N = E

(
(µ̄N − µ)2

)
≤ E

(
(D∗N (R1, . . . ,RN )VHK(F ))2

)
= O

(
log(N)2d

N2

)
.

For the scrambling of a digital net, the above can be refined as follows. The result is due to [51,
Theorem 3] .

Theorem 3.2. Assume that the function F is smooth, in the sense that ∂|u|

∂xu
F (x) is continuous on

[0, 1]d for all possible u ⊆ {1, · · · , d}. If the Ri’s are a nested uniform scramble of (t,m, d)-net in
base b, then

σ2
N = O

(
log(N)d−1

N3

)
.

as N → +∞.

Bounds when F /∈ BVHK. Because F ∈ BVHK implies that F is bounded (discarding heavy-
tailed F (U)), many practical situations are not covered by the previous assumption. However, the
case of bounded and fractional smooth functions can be covered by the extension of the Koksma
Hlawka inequality by [11]. The case of discontinuous F is studied in [19, 18]. Therefore, we now
focus our subsequent discussion on unbounded F , to handle fat or heavy-tailed F (U), which is to
us a primary challenge.

To obtain more precise scaling of the variance σ2
N , one needs assumptions on F singularities.

Definition 3.4. The function F on [0, 1]d has corner singularities no worse than
∏d
k=1 x

−Ak
k if∣∣∣∣∣∂|u|F (x)

∂xu

∣∣∣∣∣ ≤ C
d∏

k=1

x
−Ak−1{k∈u}
k

holds for all u ⊆ {1, 2, . . . , d}, some Ak ∈ (0, 1) and some C < ∞. Here xk is the k-th component
of the vector x.

Setting p? = (maxk Ak)
−1, observe that F (U) is in Lp for any p < p?. Thus, the condition

0 < Ak < 1 ensures just that F is at least integrable (but potentially singular).
In the case of such a F , the integration error can be estimated, see [49, Theorem 5.7].

Theorem 3.3. Let R1, . . . ,RN ∼ U([0, 1]d) with E (D∗N (R1, . . . ,RN )) = O
(
N−1+ε

)
for all ε > 0.

If F satisfies Definition 3.4, then for any ε > 0,

E (|µ̄N − µ|) = O
(
N−1+ε+maxk Ak

)
.

Appendix A includes a proof of this result. The result in [49] is in fact slightly more generic
as it considers singularities possibly both at the origin and 1 = (1, . . . , 1). The result is extended
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to arbitrary singularity point [50, Theorem 1] and arbitrary RQMC sequence (not only scrambled
nets).

We provide the analog theorem for the variance. This is one of our contributions. Before, we
introduce the useful concept of joint density between random pairs of sequence points.

Definition 3.5. Let (R1, . . . ,RN ) be a sequence of random points such that for each Ri ∼ U([0, 1]d)

and E (F (U)) = µ and Var (F (U)) = σ2 <∞. Let I, J be two different integers valued in {1, . . . , N}
picked with uniform distribution (independent from (R1, . . . ,RN )). Define by Ψ(dx, dy) the joint
distribution of (RI ,RJ): for any measurable function ` : [0, 1]d × [0, 1]d 7→ R+,

E (`(RI ,RJ)) :=

∫
[0,1]d×[0,1]d

`(x,y)Ψ(dx,dy).

With this definition at hand, we have, for any square integrable function G,

1

N(N − 1)

∑
i 6=j

E (G(Ri)G(Rj)) = E (G(RI)G(RJ))

=

∫
[0,1]d×[0,1]d

G(x)G(y)Ψ(dx,dy). (3.4)

We are now in a position to state a new variance bound, which proof is postponed to Appendix A.

Theorem 3.4. Let R1, . . . ,RN be a RQMCS: each Ri ∼ U([0, 1]d) and for any ε > 0, there exists
(deterministic) Dε <∞ with P

(
D∗N (R1, . . . ,RN ) ≤ DεN

−1+ε
)

= 1 for all N large enough.
Assume that F satisfies Definition 3.4 (with maxk Ak < 1

2) and that the joint distribution
Ψ(dx, dy) has a density (w.r.t. Lebesgue measure on [0, 1]d × [0, 1]d) uniformly bounded (in N),
then for any ε > 0,

σ2
N = O

(
N−2+ε+2 maxk Ak

)
.

As a consequence of Theorem 3.4, for square integrable function (i.e., the condition maxk Ak <

1/2), RQMC is asymptotically better than MC: this is consistent with Theorem 3.1. In addition,
the smaller maxk Ak, the faster the convergence.

We shall mention that without the condition on the joint distribution Ψ(dx,dy), one can still
get that σ2

N = O
(
N−1+ε+2 maxk Ak

)
(see Remark (A.1) in Appendix A) which is better than MC

when maxk Ak < 1/4 (F (U) has four finite polynomial moments).
By leveraging [62, Theorem 3.6], we additionally prove that the property of bounded density is

satisfied for a (0,m, d)-net in base b ≥ 2. See Appendix B for the proof.
We shall mention that the hypothesis on the existence of deterministic Dε is satisfied for the

scrambled (t,m, d)-net, as it is a (t,m, d)-net to which we can apply the deterministic bound from
[41, Theorem 4.6 and Theorem 4.10] on the discrepancy.

4 Error bounds for Robust Quasi Monte Carlo

Combining the previous results of robust mean estimation (Section 2) and RQMCS with scrambled
nets (Section 3.3), one obtains the following “Robust Quasi Monte Carlo” finite sample result.
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Theorem 4.1. Let F : [0, 1]d 7→ R such that F (U) (with U ∼ U([0, 1]d)) has mean µ and finite
variance σ2. Consider a (t,m, d)-net in base b where N = bm, and n independent replicas of the
related nested uniform scramble which we denote (R

(i)
j : 1 ≤ j ≤ N)1≤i≤n. Set the i-th RQMC-

empirical mean µ(i)
N as in (1.2).

Then, for a given δ > 0, define a sub δ-Gaussian estimator µ̂n(µ̄
(1)
N , . . . , µ̄

(n)
N ) as defined in

Definition 2.2 (with some Lδ,n ∈ (0,∞)), assuming that the restriction condition between δ and n is
satisfied. Then

P

(
|µ̂n − µ| ≤ σNLδ,n

√
log(2/δ)

n

)
≥ 1− δ.

Remind that in full generality σN = o(N−1/2) and that some more precise bounds are available
(see Theorem 3.2 and Theorem 3.3). The above Theorem is to the best of our knowledge the first
result stating a non-asymptotic error bounds for RQMC making explicit the advantage of variance
reduction owing to RQMCS, under the sole assumption of square integrable F (U).

Interestingly, the bound presented here resembles the theoretical asympotic minimal error bounds
derived for some class of smooth functions found in [26] and where the conclusion’s question is “It
remains a challenging open problem to find randomized integration methods that have the right
dependence on the uncertainty while fully exploiting the smoothness.” Our result exhibits the
optimal dependence on δ which combined with scrambled nets gives for smooth integrands σN =

O(N−3/2−ε) for all ε > 0, see Theorem 3.2. The rate of σN can be made explicitly dependent on
the integrand regularity with higher order scrambled nets [12, Theorem 10] matching closely the
optimal confidence bounds in [26, e.g. Eq. (7)].

5 Numerical Experiments

We compare the Monte Carlo (MC) approach and Randomized Quasi Monte Carlo (RQMC) for
mean estimator. We will use the following abbreviations: EM: Empirical Mean, LV: Lee Valiant,
MN: Minsker Ndaoud, CA: Catoni estimator, HU: Huber. In all the following for the Minsker
Ndaoud estimator (Definition 2.5) we use pMN = 1. The number of realizations used to obtain the
distributions of µ̂n is denoted by M .

5.1 Illustration of Robust Mean Estimators

We illustrate the robustness of the estimator presented in Section 2 in the “most extreme case”
where the sample X1, . . . , Xn comes from a Pareto distribution whose density function is fX(x) =

θ/x1+θ1x≥1 with finite second moment i.e., θ > 2. For these examples, we use the α parameter of the
Catoni (2.6) and Huber (2.4) estimators, the exact standard deviation σ of the Pareto distribution.
Figure 1 shows the distribution of different (standardized) estimators µn for different θ compared
with their Gaussian asymptotic distribution. Because of the relative small number of samples n = 56

and the heavy tail character of the distribution, the behavior of all estimators (including EM) is far
from normality. However, if EM estimator distribution suffers heavy tails other robust estimators
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are much less affected. It is clear that the most robust estimators HU, LV and especially MN trades
robustness against bias, whereas CA seems like the robust estimator with the smallest bias.

(a) θ = 2.1 (b) θ = 3.1

Figure 1: Distribution of
√
n(µ̂n − µ)/σ for different estimators. The X are i.i.d. random variables

of Pareto distribution with parameter θ. The number of samples is n = 56 and confidence level
δ = 3e−8 ' 0.1%. M = 107.

5.2 Tests for Robust Quasi Monte Carlo

5.2.1 QMC Numerical Methods and Software

Choosing between all the different available LD sequences is difficult and one is never consis-
tently better than others in terms of variance reduction, for example [32] finds that Lattice can
in some cases outperform digital nets and in some other not. See discussion [52, Chapter 16
End Notes]. While most theoretical results use NUS for scrambling [43], other methods like dig-
ital shift or Linear Matrix Scrambling [37] (or both combined) are commonly used and imple-
mented in software like scipy.stats.qmc [61], qmcpy [7] because they are much faster and their
variance reduction performances look as good as NUS. See [48] for a comparison of some scram-
bling methods. In our numerical example, we use the NUS [43] implemented in a Julia ver-
sion that was inspired by R code described on Owen’s personal webpage [53]. These Julia ver-
sions are available on https://github.com/dmetivie/RobustMeans.jl and https://github.com/
dmetivie/RandomizedQuasiMonteCarlo.jl. Note that for practitioners, the actual implementation
time of QMC and RQMC methods is a major concern and one can prefer fast implementation to
strong theoretical guarantees.

5.2.2 Integrand F

Several papers have provided careful numerical tests, see for example [32, 57, 47, 15, 27]. Different
types of “difficult” integrands F can be considered:

• The latent dimension d of x is typically large. This is a common case encountered in financial
or engineering problems.
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• F is not smooth, for instance it is only C1([0, 1]d), or it oscillates a lot.

• F is square integrable but not more (fat-tailed distributions). This is typical in risk manage-
ment applications.

Such functions are found in the literature and also in applications such as finance where F represent
some gain, and µ is the average gain or the risk evaluation.

We consider integrands of the form [52, Chapter 15]

F (x) = Fβ,G(x) =
d∏

k=1

(1 + βkGk(xk)) (5.1)

where for all k ∈ {1, · · · , d}, Gk : [0, 1] 7→ R satisfies∫ 1

0
Gk(x)dx = 0,

∫ 1

0
G2
k(x)dx = 1 (5.2)

for β ∈ Rd. It is easy to show that

µ = 1 and σ2 =

d∏
k=1

(1 + β2
k)− 1.

We now consider Gk(x) = Gε(x) for all k ∈ {1, · · · , d} with

Gε(x) =

√
2ε(2ε+ 1)

|1− 2ε|

(
1

x
1
2
−ε
− 2

2ε+ 1

)
.

The function Gε satisfies the conditions (5.2) for ε ∈ (0, 1/2) ∪ (1/2,+∞). Moreover, for such ε,
Fβ,G ∈ L2([0, 1)). The β control how each dimension participates in the integrand. We choose

βk =
β

log(1 + k)
,

so that the larger dimensions participate less than the first (but the logarithmic decay remains very
gentle compared to the exponential ones often considered in the literature). For ε ∈ (0, 1/2), F is
unbounded.

5.2.3 Numerical Results

For all tests M = 105 realizations are used to obtain the distributions. We compute the sample
variance σ̂2

N = 1
M×n−1

∑n×M
i=1 (µ

(i)
N − µ̄N )2 where µ̄N = 1

M×n
∑n×M

i=1 µ
(i)
N to estimate the mean. We

use this estimator to calibrate the α parameter for Catoni (2.6) and Huber (2.4) estimators.
In Figures 2, 3 and 4, we show examples of Monte Carlo (MC) vs. Randomized Quasi Monte

Carlo integration in dimension d = 17 with both non-singular and singular integrands. On Figure
2, we show only the empirical (1 − δ)-quantile for the absolute error |µ̂N,n − µ|/µ while on Figure
3, we show the distribution of the standardized error compared with a Normal distribution. In this
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(a) δ = 3e−4 ' 0.055, n = 12, n(σ̂
(MC)
N )2 ' 4 × 10−5

and n(σ̂
(RQMC)
N )2 ' 4× 10−6.

(b) δ = 3e−8 ' 0.001, n = 56, n(σ̂
(MC)
N )2 ' 2 × 10−4

and n(σ̂
(RQMC)
N )2 ' 2× 10−5

Figure 2: Estimated quantile Q̂1−δ of the distribution of |µ̂N,n−µ|/|µ| where F = Fβ,G is defined in
(5.1) with ε = 2×105 and β such that σ = 1/2. Here F is smooth and bounded of range [−0.01, 200].
We use d = 17, N = 216. The mean estimator acronyms are defined in the text. The RQMC is
based on the first N point of a nested uniform scrambled of the Sobol sequence. The horizontal lines
show the σ̂NΦ−1(1− δ/2)/

√
n values.

(a) δ = 3e−4 ' 0.055, n = 12 (b) δ = 3e−8 ' 0.001, n = 56

Figure 3: Same data as Figure 2 but only for the RQMCS. We show the full standardized distribution
against the normal distribution.

example, F is bounded and smooth, yet the EM even at δ = 5% (Figure 3a) performs worst in for
RQMCS than robust estimators.

On Figure 4, we show an example with a singular integrand. We represent for the absolute error
|µ̂N,n − µ|/µ the estimate quantile Q̂1−δ (top of the whisker) and estimated quantiles Q̂1/4, Q̂3/4

forming the box. The dots are the remaining outliers.
Observations:

• Case where F is bounded and smooth (ε = 2 × 105) Figures 2 and 3. The range of F is
approximately [−0.01, 200] and most of the distribution is located around−0.01. As announced
with the MC approach, each µ

(i)
N is expected to approximately follow a Normal distribution

because N is large. Thus, the estimate µ̂N,n is also approximately Normal, which is observed
since all estimators are almost on the theoretical Normal quantile level σ(MC)

N Φ−1(1−δ/2)/
√
n.

For RQMCS, the Central Limit theorem generally does not apply or if it applies the asymptotic
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Figure 4: Box plot distribution of |µ̂N,n − µ|/|µ| where F = Fβ,G is defined in (5.1) with ε = 0.05

and β such that σ ' 0.5. We use d = 17, n = 56, N = 215, δ = 3e−8 ' 0.001, n = 56. The mean
estimator acronyms are defined in the text. The RQMC is based on the first N point of a nested
uniform scrambled of the Sobol’s sequence. The upper whisker is set to extend up to Q̂1−δ. The
horizontal lines show the σ̂NΦ−1(1− δ/2)/

√
n values.

behavior might be long to achieve even for very large N . Here despite the function being
smooth and the scrambling method as in the Loh Central Limit theorem [33, Theorem 1]
(the condition on the dimension d is not respected, so the theorem does not apply directly)
the µ(i)

N are far from being Normal random variables. Moreover, when nσ2
N is smaller robust

estimators are expected to be better than EM as discussed in the Introduction. This is observed
for confidence levels of 95%, Figure 3a and even more so for smaller δ = 0.001, Figure 3b.

• When F is singular at the origin as x−1/2+ε, mimicking a heavy tail distribution, the advantages
of combining Robust estimators with RQMCS are even more striking. Central Limit theorem
regime is not completely reached even for MC simulations, despite N = 215.

6 Conclusion

In this paper, we are interested with robust and efficient estimation methods for very generic inte-
grals. We want to provide accurate error bounds for the estimate. So far, the main tool is to use
asymptotic normality which might either be long to be satisfied or not valid when using RQMCS
with generic integrands.

We review various sub Gaussian estimators from the most well known e.g., Median of Means,

25



Huber Z-estimator, to the newest e.g., Lee Valiant and Minsker Ndaoud. These estimators are
compared in terms of theoretical advantage and disadvantage, as well as in a numerical illustration.
We then introduce the concept of (Randomized) Quasi Monte Carlo methods with a special focus
on scrambled nets which are known to always produce asymptotically better estimate than MC as
long as F ∈ L2. We prove a new asymptotic scaling for the variance when F is smooth but singular
at the origin.

Our paper proposes a new methodology combining the two previous concepts to fully exploit
the variance reduction σN = o(1/N) provided by Randomized QMC thanks to sub Gaussian es-
timators. First it is used to build non-asymptotic quasi-optimal confidence intervals which are
opposed to classical concentration inequalities which are always not optimal with respect to their
variance dependence in the regime nσ2

N small. Then, we illustrate numerically both for a bounded
smooth integrand and a singular one, the practical benefits of our Robust Randomized Monte Carlo
methodology.

This paper only deals with one-dimensional integrand F ∈ R. One natural question is how does
the proposed methodology generalize in Rq for q > 1? The sole concept of sub Gaussian estimator is
different. Some recent efforts e.g., [35] have been made to find robust multidimensional estimators.
These are defined as estimators satisfying µ̂n(X1, . . . , Xn) for a sample of random vector X1, . . . , Xn

(up to multiplicative constants)

P

(
‖µ̂n − µ‖ ≥

√
Tr(Σ)

n
+

√
2λmax log(1/δ)

n

)
≤ δ

where ‖·‖ is the Euclidean norm, Σ is the covariance matrix, and λmax its maximum eigenvalue. How
does variance reduction methods such as Quasi Monte Carlo influence sub Gaussian bound? Do we
still expect a strong gain over the Empirical Mean estimator and multidimensional concentration
inequality? These issues are left for further investigation.

A Variance of unbounded integrands

Our purpose is to establish Theorems 3.3 and 3.4. We use the standard notations from Section 3.

Framework. We consider functions satisfying Definition 3.4 (with Ak ∈ (0, 1)) where there is
only one singularity at the origin. Essentially, we treat here the case of smooth functions with a
singularity at the origin.

Low-Variation extensions of F . Following ideas by Sobol’ [56] and Owen [49, Section 2.3], we
extend F into F̃ ∈ BVHK as follows. Given η ∈ (0, 1) which value is set later, define the hyperbolic
region avoiding 0 (the location of the singularity of F ) by

Kη :=

x ∈ [0, 1]d |
∏

1≤k≤d
xk ≥ η

 ,
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The next construction ensures that F = F̃ on Kη and that

|F̃ (x)− F (x)| ≤ B̃
d∏

k=1

x−Akk , ∀x /∈ Kη, (A.1)

for some constant B̃. Note that Kη contains the anchor point 1, in the sense that x ∈ Kη implies
[x,1] ⊆ Kη. Under this condition we can write

F (x) = F (1) +
∑
u6=∅

∫
[1u,xu]

∂|u|F

∂xu
(zu : 1−u)dzu.

The low variation extension is

F̃ (x) = F (1) +
∑
u6=∅

∫
[1u,xu]

1zu:1−u∈Kη
∂|u|F

∂xu
(zu : 1−u)dzu.

Indeed, by the fundamental theorem of calculus F̃ = F on x ∈ Kη. In addition, from [49, Proof
of Theorem 5.5] and taking advantage of Definition 3.4, we get F̃ ∈ BVHK, with VHK(F̃ ) =

O(η−maxk Ak) assuming the largest Ak is unique and O(η−maxk Ak−ε) for any ε > 0 otherwise.
Last, this extension F̃ satisfies the error bound (A.1), see [49, Lemma 5.1].

If we consider the RQMC sequence (R1, . . . ,RN ) not necessarily inside Kη, the estimator (3.2)
satisfies

|µ̄N − µ|

≤

∣∣∣∣∣∣ 1

N

N∑
j=1

F̃ (Rj)−
∫

[0,1]d
F̃ (x)dx

∣∣∣∣∣∣+

∫
[0,1]d

|F̃ (x)− F (x)|dx+
1

N

N∑
j=1

∣∣∣F (Rj)− F̃ (Rj)
∣∣∣

≤
(3.1)

D∗N (R1, . . . ,RN )VHK(F̃ ) +

∫
Kc
η

|F̃ (x)− F (x)|dx+
1

N

N∑
j=1

∣∣∣F (Rj)− F̃ (Rj)
∣∣∣ . (A.2)

Bound on L1-Error. Let us prove Theorem 3.3. Take the expectation in (A.2):

E (|µ̄N − µ|) ≤ E (D∗N (R1, . . . ,RN ))VHK(F̃ ) + 2

∫
Kc
η

|F̃ (x)− F (x)|dx.

From [49, Lemma 5.4], we get∫
∏
k x

k<η
|F̃ (x)− F (x)|dx ≤ O

(
η1−ε−maxk Ak

)
. (A.3)

Hence, we obtain

E (|µ̄N − µ|) = O
(
N−1+ε/2

)
O(η−maxk Ak−ε/2) +O

(
η1−ε−maxk Ak

)
,

whence the result when we take η = N−1. Theorem 3.3 is proved.
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Bound on the variance. To get the analog result for the variance, take the square of (A.2) and
the expectation: it gives

Var (µ̄N ) ≤ 3E
(
D∗N (R1, . . . ,RN )2

)
VHK(F̃ )2 + 3

(∫
Kc
η

|F̃ (x)− F (x)|dx

)2

+ 3E

( 1

N

N∑
i=1

|F (Ri)− F̃ (Ri) |

)2
 .

Setting η = N−1, the two first terms on the above right-hand side are O
(
N−2+ε+2 maxk Ak

)
using

the same estimates as before (i.e., (A.3) and the bound on VHK(F̃ )). It remains to upper-bound the
last term. Expanding the square of the average, using the decomposition (3.4) and that the joint
distribution Ψ(dx, dy) has a uniformly bounded density (by a constant CΨ), it readily follows

E

( 1

N

N∑
i=1

|F (Ri)− F̃ (Ri) |

)2


=
1

N

∫
[0,1]d

|F (x)− F̃ (x)|2dx+
N − 1

N

∫
[0,1]d×[0,1]d

|F (x)− F̃ (x)| |F (y)− F̃ (y)|Ψ(dx, dy)

≤ 1

N

∫
Kc
η

|F (x)− F̃ (x)|2dx+ CΨ

(∫
Kc
η

|F (x)− F̃ (x)|dx

)2

. (A.4)

Similarly to (A.3) and using (A.1), we derive∫
∏
k x

k<η
|F̃ (x)− F (x)|2dx ≤ O

(
η1−ε−2 maxk Ak

)
, (A.5)

for any ε > 0. Taking η = N−1, plugging (A.5) and (A.3) into (A.4) gives

E

( 1

N

N∑
i=1

|F (Ri)− F̃ (Ri) |

)2
 = O

(
1

N
N−1+ε+2 maxk Ak + (N−1+ε+maxk Ak)2

)
= O

(
N−2+2ε+2 maxk Ak

)
.

This gives (the arbitrary ε values are adjusted to correspond)

Var (µ̄N ) = O
(
N−2+ε+2 maxk Ak

)
.

This asymptotic regime is better than Monte Carlo O(N−1) when maxk Ak < 1/2.

Remark A.1. In the case where the assumption of bounded density for the joint density distribution
Ψ is not available, we can still use the rough bound

E

( 1

N

N∑
i=1

|F (Ri)− F̃ (Ri)|

)2
 ≤ E

(
|F (R1)− F̃ (R1)|2

)
=

∫
∏
k x

k<η
|F̃ (x)− F (x)|2dx.

With the use η = N−1 and (A.5), we obtain

Var (µ̄N ) = O
(
N−1+ε+2 maxk Ak

)
,

which for maxk Ak < 1/4 is better than Monte Carlo.
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B Bounded density for the joint distribution Ψ(dx, dy)

This joint distribution function Ψ is studied in detail for a base b digital scrambled (t,m, d)-nets in
[62]. Their definition of base b digital scramble definition includes NUS and other types of scrambles.
This boundness hypothesis of Ψ is satisfied all over [0, 1]2d for digital nets (0,m, d) in base b, where
we can obtain using [62, Lemma 3.4 and Theorem 3.6],

Ψ(dx, dy)

dxdy
≤ 2d+1bm+d

(bm − 1)(b− 1)d
≤ 2d+1 sup

N≥2

(
N

N − 1

)d+1

= 4d+1

uniformly in x, y.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The Space Complexity of Approximating the Frequency
Moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

[2] C. Bayer, H. Hoel, E. von Schwerin, and R. Tempone. On non-asymptotic optimal stopping
criteria in Monte Carlo simulations. SIAM Journal on Scientific Computing, 36(2):A869–A885,
2014.

[3] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities. A nonasymptotic theory
of independence. Clarendon Press, Oxford, 2013.

[4] R. E. Caflisch. Monte-Carlo and Quasi-Monte-Carlo methods. Acta numerica, 7:1–49, 1998.

[5] O. Catoni. Challenging the empirical mean and empirical variance: A deviation study. Annales
de l’I.H.P. Probabilités et statistiques, 48(4):1148–1185, 2012.

[6] L. Chamakh, E. Gobet, and W. Liu. Orlicz norms and concentration inequalities for β-heavy
tailed random variables. In minor revision for Bernoulli, 2021.

[7] S.-C. T. Choi, F. J. Hickernell, R. Jagadeeswaran, M. J. McCourt, and A. G. Sorokin. Quasi-
Monte Carlo software. arXiv:2102.07833, Oct. 2021.

[8] B. Cipra. The Best of the 20th Century: Editors Name Top 10 Algorithms. SIAM News
https://archive.siam.org/news/news.php?id=637, 33(4), 2000.

[9] R. Cranley and T. N. L. Patterson. Randomization of number theoretic methods for multiple
integration. SIAM Journal on Numerical Analysis, 13(6):904–914, 1976.

[10] L. Devroye, M. Lerasle, G. Lugosi, and R. I. Oliveira. Sub-Gaussian mean estimators. The
Annals of Statistics, 44(6):2695–2725, 2016.

[11] J. Dick. Koksma–Hlawka type inequalities of fractional order. Annali di Matematica Pura ed
Applicata, 187(3):385–403, 2008.

29



[12] J. Dick. Higher order scrambled digital nets achieve the optimal rate of the root mean square
error for smooth integrands. The Annals of Statistics, 39(3):1372–1398, June 2011.

[13] J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: the Quasi-Monte Carlo way.
Acta Numerica, 22:133–288, 2013.

[14] J. Dick and F. Pillichshammer. Digital nets and sequences: discrepancy theory and quasi–Monte
Carlo integration. Cambridge University Press, 2010.

[15] H. Faure and C. Lemieux. Generalized Halton sequences in 2008: A comparative study. ACM
Transactions on Modeling and Computer Simulation, 19(4):15:1–15:31, 2009.

[16] M. Gerber. On integration methods based on scrambled nets of arbitrary size. Journal of
Complexity, 31(6):798–816, 2015.

[17] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust statistics: the
approach based on influence functions, volume 196. Wiley, New York, 1986.

[18] Z. He. Quasi-Monte Carlo for discontinuous integrands with singularities along the boundary
of the unit cube. Mathematics of Computation, 87(314):2857–2870, 2018.

[19] Z. He and X. Wang. On the convergence rate of randomized Quasi–Monte Carlo for discontin-
uous functions. SIAM Journal on Numerical Analysis, 53(5):2488–2503, 2015.

[20] P. Hellekalek. On the assessment of random and quasi-random point sets. In Random and
quasi-random point sets, pages 49–108. Springer, 1998.

[21] F. J. Hickernell, H. S. Hong, P. L’Écuyer, and C. Lemieux. Extensible lattice sequences for
quasi-Monte Carlo quadrature. SIAM Journal on Scientific Computing, 22(3):1117–1138, 2000.

[22] E. Hlawka. Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung. Annali
di Matematica Pura ed Applicata, 54(1):325–333, 1961.

[23] P. Huber and E. Ronchetti. Robust Statistics. Wiley, New York, second edition, 2009.

[24] P. J. Huber. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics,
35(1):73–101, 1964.

[25] J. Koksma. Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo 1. Math-
ematica B (Zutphen), 11(7-11):43, 1942.

[26] R. J. Kunsch and D. Rudolf. Optimal confidence for Monte Carlo integration of smooth func-
tions. Advances in Computational Mathematics, 45(5):3095–3122, Dec. 2019.

[27] P. L’Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance and Stochastics,
13(3):307–349, 2009.

30



[28] P. L’Ecuyer. Randomized Quasi-Monte Carlo: An Introduction for Practitioners. In A. B. Owen
and P. W. Glynn, editors, Monte Carlo and Quasi-Monte Carlo Methods, Springer Proceedings
in Mathematics & Statistics, pages 29–52, Cham, 2018. Springer International Publishing.

[29] P. L’Ecuyer and C. Lemieux. Recent advances in randomized Quasi-Monte Carlo methods. In
M. Dror, P. L’Ecuyer, and F. Szidarovszky, editors, Modeling Uncertainty: An Examination of
Stochastic Theory, Methods, and Applications, International Series in Operations Research &
Management Science, pages 419–474. Springer US, New York, NY, 2002.

[30] P. L’Ecuyer, D. Munger, and B. Tuffin. On the distribution of integration error by randomly-
shifted lattice rules. Electronic Journal of Statistics, 4:950–993, 2010.

[31] J. C. H. Lee and P. Valiant. Optimal sub-Gaussian mean estimation in R. arxiv:2011.08384,
2020.

[32] C. Lemieux and P. L’Ecuyer. Efficiency improvement by lattice rules for pricing Asian options.
In 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274), volume 1, pages
579–585, 1998.

[33] W.-L. Loh. On the asymptotic distribution of scrambled net quadrature. The Annals of Statis-
tics, 31(4):1282–1324, 2003.

[34] G. Lugosi and S. Mendelson. Mean estimation and regression under heavy-tailed distributions:
A survey. Foundations of Computational Mathematics, 19(5):1145–1190, 2019.

[35] G. Lugosi and S. Mendelson. Risk minimization by median-of-means tournaments. Journal of
the European Mathematical Society, 22(3):925–965, Dec. 2019.

[36] T. Mathieu. Concentration study of M-estimators using the influence function.
arxiv:2104.04416, 2022.

[37] J. Matoušek. On the l2-discrepancy for anchored boxes. Journal of Complexity, 14(4):527–556,
1998.

[38] S. Minsker and M. Ndaoud. Robust and efficient mean estimation: An approach based on the
properties of self-normalized sums. Electronic Journal of Statistics, 15(2):6036–6070, 2021.

[39] M. Nakayama and B. Tuffin. Sufficient conditions for a central limit theorem to assess the error
of randomized Quasi-Monte Carlo methods. In 2021 - Winter Simulation Conference, page 1,
Dec. 2021.

[40] A. S. Nemirovskij and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization.
Wiley-Interscience, 1983.

[41] H. Niederreiter. Random number generation and quasi-Monte-Carlo methods, volume 63 of
CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1992.

31



[42] R. Oliveira and P. Orenstein. The sub-Gaussian property of trimmed means estimators. Un-
published, IMPA, 2019.

[43] A. B. Owen. Randomly permuted (t,m, s)-nets and (t, s)-sequences. In H. Niederreiter and
P. J.-S. Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing,
Lecture Notes in Statistics, pages 299–317, New York, NY, 1995. Springer.

[44] A. B. Owen. Monte Carlo Variance of Scrambled Net Quadrature. SIAM Journal on Numerical
Analysis, 34(5):1884–1910, 1997.

[45] A. B. Owen. Scrambled net variance for integrals of smooth functions. The Annals of Statistics,
25(4):1541–1562, 1997.

[46] A. B. Owen. Scrambling Sobol’ and Niederreiter–Xing Points. Journal of Complexity, 14(4):466–
489, 1998.

[47] A. B. Owen. The dimension distribution and quadrature test functions. Statistica Sinica,
13(1):1–17, 2003.

[48] A. B. Owen. Variance with alternative scramblings of digital nets. ACM Transactions on
Modeling and Computer Simulation, 13(4):363–378, 2003.

[49] A. B. Owen. Halton sequences avoid the origin. SIAM Review, 48(3):487–503, 2006.

[50] A. B. Owen. Quasi-Monte Carlo for integrands with point singularities at unknown locations.
In H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo Methods, pages
403–417. Springer, 2006.

[51] A. B. Owen. Local antithetic sampling with scrambled nets. The Annals of Statistics,
36(5):2319–2343, 2008.

[52] A. B. Owen. Monte Carlo Theory, Methods and Examples. Stanford University, 2013.

[53] A. B. Owen. Nested uniform scrambled sobol’ points.
https://artowen.su.domains/code/rsobol.R, 2017.

[54] A. B. Owen and D. Rudolf. A strong law of large numbers for scrambled net integration. SIAM
Review, 63(2):360–372, 2021.

[55] I. H. Sloan. Lattice methods for multiple integration. Oxford University Press, 1994.

[56] I. M. Sobol’. Computation of improper integrals by means of equidistributed sequences. Doklady
Akademii Nauk SSSR, 210:278–281, 1973.

[57] I. M. Sobol’. Global sensitivity indices for nonlinear mathematical models and their Monte
Carlo estimates. Mathematics and Computers in Simulation, 55(1):271–280, 2001.

[58] J. Spanier and E. H. Maize. Quasi-random methods for estimating integrals using relatively
small samples. SIAM review, 36(1):18–44, 1994.

32



[59] S. M. Stigler. The asymptotic distribution of the trimmed mean. The Annals of Statistics,
1(3):472–477, 1973.

[60] V. Temlyakov. Multivariate approximation, volume 32. Cambridge University Press, 2018.

[61] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Po-
lat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt,
and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272, 2020.

[62] J. Wiart, C. Lemieux, and G. Y. Dong. On the dependence structure and quality of scrambled
(t,m, s)-nets. Monte Carlo Methods and Applications, 27(1):1–26, 2021.

33


	Introduction
	Theory of Robust Mean estimators
	Sub-Gaussian distributions
	Trimmed Mean
	Median-of-Means
	Z–estimators
	Huber's influence function
	Catoni's influence function
	Lee Valiant estimator
	Minsker-Ndaoud's Estimator
	Discussion


	Theory of Quasi Monte Carlo methods
	Monte Carlo
	Quasi Monte Carlo
	Koksma-Hlawka error bound
	Digital nets and sequence

	Randomized Quasi Monte Carlo
	Nested Uniform Scrambling (NUS)
	Variance of scrambled nets


	Error bounds for Robust Quasi Monte Carlo
	Numerical Experiments
	Illustration of Robust Mean Estimators
	Tests for Robust Quasi Monte Carlo
	QMC Numerical Methods and Software
	Integrand F
	Numerical Results


	Conclusion
	Variance of unbounded integrands
	Bounded density for the joint distribution (dbold0mu mumu xx2006owenHaltonSequencesAvoidxxxx,dbold0mu mumu yy2006owenHaltonSequencesAvoidyyyy)

