Geodesics in first-passage percolation cross any pattern - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2023

Geodesics in first-passage percolation cross any pattern

Antonin Jacquet
  • Function : Author
  • PersonId : 1131642

Abstract

In first-passage percolation, one places nonnegative i.i.d. random variables (T (e)) on the edges of Z d. A geodesic is an optimal path for the passage times T (e). Consider a local property of the time environment. We call it a pattern. We investigate the number of times a geodesic crosses a translate of this pattern. Under mild conditions, we show that, apart from an event with exponentially small probability, this number is linear in the distance between the extremities of the geodesic.
Fichier principal
Vignette du fichier
Geodesics in FPP cross any pattern - HALV v3 - 03.03.23.pdf (582.69 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03630139 , version 1 (04-04-2022)
hal-03630139 , version 2 (18-07-2022)
hal-03630139 , version 3 (03-03-2023)

Identifiers

Cite

Antonin Jacquet. Geodesics in first-passage percolation cross any pattern. 2023. ⟨hal-03630139v3⟩
165 View
48 Download

Altmetric

Share

Gmail Facebook X LinkedIn More