Optimal Smoothing and Gaussian Processes with noisy data under constraints - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Optimal Smoothing and Gaussian Processes with noisy data under constraints

Résumé

In this paper, we extend the correspondence between Bayesian estimation and optimal smoothing in a Reproducing Kernel Hilbert Space (RKHS) adding a convex constraint on the solution. Through a sequence of approximating Hilbertian spaces and a discretized model, we prove that the Maximum A Posteriori (MAP) of the posterior distribution is exactly the optimal constrained smoothing function in the RKHS. This paper can be read as a generalization of the paper [11] of Kimeldorf-Wahba where it is proved that the optimal smoothing solution is the mean of the posterior distribution. This is also a generalization of the paper [4] where the case of constrained optimal interpolation is treated. Here we relax the interpolation by introducing noise effect in the data. A numerical example is given to illustrate the theoretical result of this paper.
Fichier principal
Vignette du fichier
Grammont-Maatouk-bay-30-mars-2022.pdf (492.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03625227 , version 1 (30-03-2022)

Identifiants

  • HAL Id : hal-03625227 , version 1

Citer

Laurence Grammont, Xavier Bay, Hassan Maatouk. Optimal Smoothing and Gaussian Processes with noisy data under constraints. 2022. ⟨hal-03625227⟩
158 Consultations
169 Téléchargements

Partager

More