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Abstract In this paper, we extend the correspondence between Bayesian esti-
mation and optimal smoothing in a Reproducing Kernel Hilbert Space (RKHS)
adding a convex constraint on the solution. Through a sequence of approximat-
ing Hilbertian spaces and a discretized model, we prove that the Maximum A
Posteriori (MAP) of the posterior distribution is exactly the optimal constrained
smoothing function in the RKHS. This paper can be read as a generalization of
the paper [11] of Kimeldorf-Wahba where it is proved that the optimal smoothing
solution is the mean of the posterior distribution. This is also a generalization of
the paper [4] where the case of constrained optimal interpolation is treated. Here
we relax the interpolation by introducing noise effect in the data. A numerical
example is given to illustrate the theoretical result of this paper.

Keywords Correspondence · Smoothing · Inequality constraints · Reproducing
Kernel Hilbert Space · Bayesian estimation

1 Introduction

Consider X a nonempty set of R and E a Banach space of functions from X to R.
Given data (xi, yi) ∈ X × R, the smoothing problem is to find a function û mini-
mizing

‖u‖2H +
1

σ2

n∑
i=1

(u(xi)− yi)2 (1)

on an Hilbert subspace H of E whose injection in E is continuous.
As Kimeldorf and Wahba explained it in [11], the term ‖u‖2H is the smoothness
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criterion for the solution and
1

σ2

n∑
i=1

(u(xi)− yi)2 measures the disparity of u with

the data. û is a compromise between smoothness and fidelity to the data. In [11],

the disparity of the data is measured by
n∑

i=1

n∑
j=1

(u(xi) − yi)bij(u(xj) − yj). We

choose bij =
1

σ2
δij with no loss of generality, to facilitate subsequent reading of

the paper. In [11], the authors consider ‖u‖2H :=

∫ +∞

−∞
(Lu)2(t)dt, where L is a

linear differential operator. In that case, under conditions, the solution û is an
L-spline.

In this paper, H is any Reproducing Kernel Hilbert Space equipped with its
associated norm. The notion of Reproducing Kernel Hilbert Space (RKHS) is
the material with which one has built a bridge from the deterministic world of
optimization to the probabilistic world of estimation. Aronszajn [1] published
the theory of reproducing kernel in 1950 and Parzen[12] published Statistical
inference on time series by Hilbert space methods in 1959. Later Schwartz [13]
extended its formalism to topological spaces. Through its covariance function,
K(x, x′) = cov(U(x), U(x′)), a Gaussian process (GP) U is represented by the
Hilbert space spanned by the kernel K.

The aim of Kimeldorf and Wahba in [11] is to highlight the correspondence
between the smoothing by spline and Bayesian estimation. For that purpose, they
consider a stochastic model in which the selection of the smoothing criterion cor-
responds to the specification of a prior distribution on U which is a centered GP
with covariance function K(x, x′). The disparity of the data corresponds to noisy
observations in the uncertainty framework. At points x1, . . . , xn the random vari-
ables

Yi = U(xi) + Ei, (2)

are observed, where E = (Ei)i is a centered Gaussian vector N (0, σ2I), where
I is the (n× n) identity matrix and σ2 is the noise variance.
They prove that û solution of the minimization of (1) is the Bayesian estimation

û(x) = E[U(x)|Y1 = y1, . . . , Yn = yn], (3)

where E denotes expectation. In other terms, it means that we look for u in the
RKHS H associated to the centered GP (U(x))x∈X whose covariance is K.

In both framework, one can prove that the solution of the smoothing problem
(1) or Bayesian estimation (3) is

û(x) = y
(
K+ σ2I

)−1
k(x)>, (4)

where k(x) = (K (x1, x) , . . . ,K (xn, x)), K is the matrix (K (xi, xj))1≤i,j≤n and
y = (y1, . . . , yn).
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Now, consider that u is known to satisfy some additional constraints given
by u ∈ C where C is a closed convex set. In the present paper, we consider the
constrained smoothing problem of finding a function û, in H and C, minimizing

‖u‖2H +
1

σ2

n∑
i=1

(u(xi)− yi)2, (5)

over H ∩ C. In [10], Theorem 3.1, Micchelli and Utreras proved that the solution
exists and is unique under certain conditions. They also give the expression of
the solution involving the projection on the convex set C, denoted by PC , and a
nonlinear algebraic system expressed with PC and approximated usually by some
Newton type methods (see [6]). As Andersson and Elfving wrote it in their paper
[2], to transform this result into a numerical algorithm, it is necessary to compute
the orthogonal projection PC and the difficulty lies in that calculation. Andersson
and Elfving investigated the structure of the projection operator PC for a partic-
ular convex set C representing monotonicity constraints.

The aim of the present paper is to rewrite the constrained smoothing problem
(5) with a stochastic model so that the solution can be interpreted as a Bayesian
estimation. The difficulty is that the equivalent of the constrained optimal smooth-
ing solution is a truncated GP so that its distribution can not be expressed as a
density probability. We found out that we can overcome the difficulty through a
discretization of the constrained smoothing problem whose solution ûN tends to
û. The integer N is the discretization parameter. Then we define the equivalent
finite-dimensional approximation UN of the GP U and we prove that the approx-
imate solution ûN can be interpreted as a Bayesian estimation. This estimation
is the MAP (Maximum A Posteriori) of the posterior distribution of UN and not
the mean like in the smoothing problem without constrained of [11].

In [4], the problem was to minimize a smoothness criterion under constraints,
interpolating strictly the observations. It was proved the MAP of the posterior
distribution tends uniformly to the optimal constrained interpolation function.
Here, relaxing the interpolation of observations through a noise effect, we obtain
the same result but its proof is completely different. It is much simpler. The main
theoretical difficulty of the interpolation case treated in [4] is that the interpo-
lation equalities are incorporated in the definition of the approximation spaces.
Surprisingly, the proof of this paper relies on classical optimization arguments.
The only think to care about is the construction of the finite-dimensional func-
tional to minimize over the right finite-dimensional Reproducing Kernel Hilbert
Space. More over, as it is less restrictive for the sample spaces than strict interpo-
lation, it carries cheaper computations.

The paper is organized as follows. Section 2 is devoted to the description of the
deterministic problem and Section 3 to its discretization. The proof of the conver-
gence of the discretized problem to the constrained optimal smoothing solution is
done in Section 4. In Section 5, we prove the correspondence between Constrained
Optimal Smoothing and Bayesian estimation on stochastic processes. Section 6
is devoted to the numerical illustration of the theoretical result. In Section 7, we
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quote practical algorithms induced by our result in the stochastic processes com-
munity. In them, assumption (H3) is not fulfilled. The proof of our convergence
result, without this assumption, is done in the appendix.

2 Framework of Constrained Optimal Smoothing

To simplify the paper, we suppose that X = [0, 1] and E = C([0, 1],R) is the linear
space of real valued continuous functions on [0, 1] equipped with the supremum
norm. Let H be a RKHS of E associated to the symmetric positive definite function
K. Then, H is an Hilbertian subspace of E since

‖h‖E = sup
x∈X
|(h,K(., x))H | ≤ c‖h‖H , (6)

where c = supx∈X K(x, x)1/2 < +∞. Let (xi, yi)1≤i≤n be the given data. Let us
define the function J : H −→ R by

J(u) := ‖u‖2H +
1

σ2

n∑
i=1

(u(xi)− yi)2. (7)

The Constrained Optimal Smoothing (5) can be rewritten as

min
u∈H∩C

J(u) (P )

where C is a closed convex set of E such that

H ∩ C 6= ∅. (H1)

It is easy to see that J is Fréchet differentiable and lim
‖v‖H 7→+∞

J(v) = +∞. More-

over J is strongly convex: for all u, v ∈ H and t ∈ [0, 1],

J(tu+ (1− t)v) ≤ tJ(u) + (1− t)J(v)− t(1− t)‖u− v‖2H .

The problem (P ) has a unique solution, denoted by û.

3 Discretization of Constrained Optimal Smoothing

We propose a discretized optimization problem (PN ) of (P ) associated with ∆N

a subdivision of [0, 1]

∆N : 0 = t0 < t1 < . . . < tN = 1, (8)

such that δN = max {|ti+1 − ti|, i = 0, . . . , N − 1} tends to zero as N tends to
infinity. We assume

∆N ⊂ ∆N+1 (H2)

and the data points xi belong to the partition for N large enough

{x1, . . . , xn} ⊂ ∆N . (H3)
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Let HN be the classical subspace of piecewise linear continuous functions associ-
ated to ∆N . A basis of HN is the so-called hat functions denoted by (ϕ0, . . . , ϕN ).
Next, we define πN to be the classical piecewise linear interpolation projection
defined from E onto HN by

∀f ∈ E, πN (f) =
N∑

j=0

f(tj)ϕj .

We assume that
πN (C) ⊂ C. (H4)

According to a classical approximation result

πN (f) −→
N→+∞

f in E. (9)

Let us define the linear evaluation operator IN : E 7→ RN+1 on the nodes ti and
In : E 7→ Rn on the data points xi:

∀f ∈ E, IN (f) := (f(t0), . . . , f(tN ))> ;

∀f ∈ E, In(f) := (f(x1), . . . , f(xn))> .

To lighten the notations, cf denotes IN (f). Let us define the matrix of K on the
nodes as follows:

ΓN = (K(ti, tj))0≤i,j≤N . (10)

We suppose
ΓN is invertible. (H5)

As H is a RKHS associated to the kernel K, we can define a new scalar product
on HN : for all uN , vN ∈ HN

(uN , vN )HN
:= c>uN

Γ−1
N cvN (11)

which induces a norm on HN : ∀uN ∈ HN

‖uN‖2HN
= c>uN

Γ−1
N cuN . (12)

Let us define the linear operator ρN : HN → H defined by

∀vN ∈ HN , ρN (vN ) :=
N∑
i=0

λiK(., ti), (13)

where Λ = (λ0, . . . , λN )>, solves

ΓNΛ = cvN .

Let us notice that ρN has been defined so that ρN ◦πN is the orthogonal projection
from H onto H1,N where

H1,N = Span {K(., tj), j = 0, . . . , N} . (14)

The following proposition highlights the nature of the finite-dimensional space
HN :
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Proposition 1 HN is a RKHS with kernel KN given by

∀x′, x ∈ [0, 1], KN (x′, x) =
N∑

i,j=0

K(ti, tj)ϕj(x)ϕi(x
′). (15)

For any hN ∈ HN ,
‖hN‖E ≤ d‖hN‖HN

, (16)

where d is a constant independent of N .

Proof Clearly, HN is a finite-dimensional Hilbert space. Let x be in [0, 1]. We have

KN (., x) =
N∑
i=0

λi,xϕi ∈ HN ,

where λi,x =
N∑

j=0

K(ti, tj)ϕj(x) = (ΓNϕ(x))i, with

ϕ(x) := (ϕ0(x), . . . , ϕN (x))>. (17)

Let h :=
N∑
i=0

αiϕi = α>ϕ(x) ∈ HN , α := (α0, . . . , αN )>. We obtain

(h,KN (., x))HN
= α>Γ−1

N (ΓNϕ(x)) = α>ϕ(x) = h(x),

which is the reproducing property in HN . For x ∈ X, we have

|h(x)| = |(h,KN (., x))HN
| ≤ ‖h‖HN

×
√
KN (x, x),

where KN (x, x) =
∑N

i,j=0K(ti, tj)φi(x)φj(x). Since
∑N

i,j=0 φi(x)φj(x) = 1, we
obtain

0 ≤ sup
x∈X

KN (x, x) ≤M = max
x,x′∈X

|K(x, x′)|.

As ‖hN‖E = ‖hN‖∞, the proof of the lemma is completed. �

In the following proposition, one proves that the sequence of projections πN is
stable.
It is straightforward that for all f in E,

‖πN (f)‖2HN
= c>f Γ

−1
N cf .

Proposition 2 (Stability of πN) πN is stable, i.e.

∀h ∈ H, ‖πN (h)‖HN
≤ ‖h‖H . (18)

Moreover H is characterized by

H =

{
h ∈ E : sup

N
‖πN (h)‖HN

< +∞
}

(19)

and, for all h ∈ H, by
‖f‖2H = lim

N→+∞
‖πN (f)‖2HN

. (20)
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Proof Consider the usual orthogonal decomposition in the RKHS H: H = H0,N

⊥
⊕

H1,N , with

H0,N = {h ∈ H : h(tj) = 0, j = 0, . . . , N} ,
H1,N = Span {K(., tj), j = 0, . . . , N} .

For all h ∈ H, there exists a unique h0 ∈ H0,N and h1 ∈ H1,N such that h =
h0 + h1. Thus,

‖h1‖2H ≤ ‖h‖2H .

Additionally, every h1 ∈ H1,N can be expressed as h1(.) =
∑N

j=0 αjK(., tj). From
the reproducing property (K(., tj),K(., ti))H = K(ti, tj), we get

‖h1‖2H = (h1, h1)H =
N∑

i,j=0

αiαjK(ti, tj) = α>ΓNα.

As h1(ti) =
∑N

j=0 αjK(ti, tj) for i = 0, . . . , N , we have α = Γ−1
N ch1

and

‖h1‖2H = c>h1
Γ−1
N ΓNΓ

−1
N ch1

= c>h1
Γ−1
N ch1

.

Since h0 ∈ H0,N , ch1
= ch and ‖h1‖2H = c>h Γ

−1
N ch = ‖πN (h)‖2HN

, which completes
the proof (18). �
The characterization (19) of H and the property (20) has been proposed by Parzen
in [12]. In [4], Theorem 3.1 p 1587, Bay, Grammont and Maatouk give a proof easy
to understand in the framework of this paper.

Proposition 3 (Isometric property of ρN) For all vN ∈ HN , we have

‖ρN (vN )‖2H = c>vN
Γ−1
N cvN . (21)

The operator ρN is an isometry from HN into H, i.e.

∀vN ∈ HN , ‖ρN (vN )‖2H = ‖vN‖2HN
. (22)

For all h ∈ H,
‖ρN (πN (h))− h‖H →

N→+∞
0. (23)

Proof We have

‖ρN (vN )‖2H = (ρN (vN ), ρN (vN ))H =

N∑
i=0

N∑
j=0

αjαi (K(., ti)K(., tj))H .

Since (K(., ti),K(., tj))H = K(ti, tj), we obtain

‖ρN (vN )‖2H =
N∑
i=0

N∑
j=0

αjαiK(tN,i, tN,j) = α>ΓNα.

As α = Γ−1
N chN

and ΓN is symmetric, we obtain (21). We have vN = c>vN
ϕ(x).

According to the definition of the inner product in HN , we have

‖vN‖2HN
= (vN , vN )HN

= c>vN
Γ−1
N cvN .



8 Laurence Grammont et al.

Using (21), we obtain ‖ρN (vN )‖2H = ‖vN‖2HN
. We have

‖ρN (πN (h))− h‖H = (ρN (πN (h))− h, ρN (πN (h))− h)H

= ‖ρN (πN (h))‖2H + ‖h‖2H − 2(h, ρN (πN (h)).

Thanks to (5), and according to (13) with Λ = Γ−1
N ch

‖ρN (πN (h))− h‖H = ‖πN (h)‖2HN
+ ‖h‖2H − 2(h,

N∑
i=0

λiK(., ti))

= ‖πN (h)‖2HN
+ ‖h‖2H − 2

N∑
i=0

λih(ti)

= c>h Γ
−1
N ch + ‖h‖2H − 2c>h Γ

−1
N ch

= ‖h‖2H − c>h Γ−1
N ch

= ‖h‖2H − ‖πN (h)‖2HN
.

And (23) comes from (20).

Now, we can formulate the approximation problem : let us define the function
JN : HN → R+: ∀vN ∈ HN ,

JN (vN ) := ‖vN‖2HN
+

1

σ2
‖In(vN )− y>‖2n (24)

where y = (y1, . . . , yn) and ‖.‖n the Euclidean norm in Rn.

Proposition 4 For all uN and vN in HN , we have

JN (tuN+(1−t)vN ) = tJN (uN )+(1−t)JN (vN )−t(1−t)
(
‖uN − vN‖2HN

+
1

σ2
‖In(uN )− In(uN )‖2n

)
.

(25)
So that JN is strongly convex :

JN (tuN + (1− t)vN ) ≤ tJN (uN ) + (1− t)JN (vN )− t(1− t)‖uN − vN‖2HN
. (26)

Moreover, JN is Fréchet differentiable and

lim
‖vN‖HN

7→+∞
JN (vN ) = +∞.

Additionally,
JN (vN ) = J(ρN (vN )). (27)

Proof Inequality (25) is straightforward.
It is easy to notice that IN (ρN (vN )) = IN (vN ), so that, as (H3) is satisfied, then

In(ρN (vN )) = In(vN )

so that, thanks to (5)

J(ρN (vN )) = ‖ρN (vN )‖2H +
1

σ2
‖In(ρN (vN ))− y>‖2n

= ‖vN‖2HN
+

1

σ2
‖In(vN )− y>‖2n

= JN (vN ).

�
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The constraints space is simply defined as

CN = HN ∩ C. (28)

Then the discretized problem is defined by

min
uN∈CN

JN (uN ). (PN )

Theorem 1 Under the assumptions (H1) to (H5), (PN ) has a unique solution
ûN .

Proof Let g ∈ H ∩ C, then, thanks to hypothesis (H4), πN (g) ∈ CN = HN ∩ C.
So that CN is a nonempty closed convex of HN . According to the properties of
JN (Proposition 4), we have the conclusion. �

4 Convergence result

The aim of this paragraph is to prove that, if ûN is the solution of (PN ) and û
the solution of (P ), then in E,

lim
N→+∞

ûN = û.

We will prove two intermediate results leading to the convergence result.

Proposition 5 Under (H1) (H2) and (H3)

lim
N→+∞

JN (πN (û)) = J(û); (29)

lim
N→+∞

JN (ûN ) = J(û). (30)

Proof Let us set

hN := ρN (ûN ) ∈ H.

Using (27), as πN (û) ∈ HN ∩ C, we have

J(hN ) = J(ρN (ûN )) = JN (ûN ) ≤ JN (πN (û)) ≤ J(û). (31)

Let us prove the last inequality:

JN (πN (û)) = ‖πN (û)‖HN
+

1

σ2
‖In(πN (û))− y‖2n.

Thanks to (H3), In(πN (û)) = In(û) so that, thanks to (18),

JN (πN (û)) ≤ ‖ û‖H +
1

σ2
‖In(û)− y‖2n = J(û).

As ‖hN‖H ≤ J(hN ) ≤ J(û), then the sequence (hN )N∈N is bounded in H so that,
by weak compactness in Hilbert space, there exists a sub-sequence (hNk)k∈N and
h∗ ∈ H such that

hNk ⇀
k→+∞

h∗ ∈ H, (weak convergence). (32)
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As H is a RKHS with kernel K, for all ti ∈ ∆N ,K(., ti) ∈ H and

(hNk ,K(., ti))H = hNk(ti) ⇀
k→+∞

(h∗,K(., ti))H = h∗(ti).

Therefore for all N ≥ 1, πN (hNk) →
k→+∞

πN (h∗) in the finite-dimensional space

HN . According to assumption (H2), as far asNk ≥ N , IN (hNk) = IN (ρNk
(ûNk

)) =
IN (ûNk

) and

πN (hNk) = πN (ρNk
(ûNk

)) = πN (ûNk
),

so that

πN (ûNk
) →
k→+∞

πN (h∗) in HN .

As HN is an Hilbertian subspace of E (Inequality (16) of Proposition 1.),

πN (ûNk
) →
k→+∞

πN (h∗) in E.

Under (H4), πN (ûNk
) ∈ C and C is closed in E, so that for all N ,

πN (h∗) ∈ C.

C is closed in E and πN (h∗) →
N→+∞

h∗ in E, then

h∗ ∈ C and J(û) ≤ J(h∗).

Then, as J is convex and lower semi continuous and hNk ⇀
k→+∞

h∗ ∈ H, using

(31),

J(û) ≤ J(h∗) ≤ lim
k
J(hNk) = lim

k
JNk

(ûNk
) ≤ lim

k
JNk

(ûNk
) ≤ J(û)

so that

JNk
(ûNk

) →
k→+∞

J(û).

(31) implies that

J(û) ≤ J(h∗) ≤ lim
k
J(hNk) = lim

k
JNk

(ûNk
) ≤ lim

k
JNk

(πNk
(û)) ≤ lim

k
JNk

(πNk
(û)) ≤ J(û)

so that

JNk
(πNk

û) →
k→+∞

J(û).

As the sequences (JN (ûN ))N∈N and (JN (πN û))N∈N are in the compact set [0, J(û)],
then the results hold. �

Proposition 6 We have the following result

lim
N→+∞

‖πN (û)− ûN‖HN
= 0. (33)
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Proof As JN is strongly convex (26) and differentiable, then

JN (πN (û))− JN (ûN ) ≥ (J ′N (ûN ), πN (û)− ûN )HN
+ ‖πN (û)− ûN‖2HN

,

where J ′N denotes the derivative of JN . As πN (û) ∈ HN ∩C and ûN solves (PN ),

(J ′N (ûN ), πN (û)− ûN )HN
≥ 0,

so that
‖πN (û)− ûN‖2HN

≤ JN (πN (û))− JN (ûN ).

(33) comes from the application of Proposition 5.�

Theorem 2 Under (H1), (H2), (H3) (H4) and (H5)

ûN −→
N→+∞

û in E.

Proof
‖ûN − û‖E ≤ ‖ûN − πN (û)‖E + ‖πN (û)− û‖E .

We know from approximation theory in the Banach space E that

‖ πN (û)− û‖E −→
N→+∞

0. (34)

As HN is an Hilbertian subspace of E (see (16)),

‖ πN (û)− û‖E ≤ c‖ πN (û)− û‖HN
.

Proposition 6 gives the result. �

5 Stochastic Correspondence of Constrained Optimal Smoothing

The overall goal of the paper is to find a correspondence between the solution û
of (P ) and the posterior distribution {U(x) | U ∈ C, Yi = yi}, (U(x))x∈[0,1] being
the GP associated to the covariance function K, the kernel of the RKHS H. The
observations are written as

Yi = U(xi) + Ei, 1 ≤ i ≤ n,

with E = (Ei)i is a centered Gaussian vector N (0, σ2I).

As we defined a finite-dimensional approximation space HN of H, it is quite
natural to construct a finite-dimensional GP UN to approach U . Using the subdi-
vision (8), we approximate the GP U by the following finite-dimensional GP (see
[9] for more details):

UN (x) :=
N∑

j=0

U(tj)ϕj(x), x ∈ X. (35)

Note that ξ := (U(t0), . . . , U(tN ))> is a zero-mean Gaussian vector with covariance
matrix ΓN = (K(ti, tj))0≤i,j≤N , where K is the covariance function of U .
In the following proposition, we prove that the GP UN is associated with the
Hilbertian space HN defined in Section 3.



12 Laurence Grammont et al.

Proposition 7 The process UN defined by (35) is a centered GP with covariance
function :

∀x′, x ∈ [0, 1], KN (x, x′) =
N∑

i,j=0

K(ti, tj)ϕj(x)ϕi(x
′) = ϕ(x)>ΓNϕ(x′), (36)

where ϕ = (ϕ0, . . . , ϕN )>. If (H5) is satisfied, then the RKHS associated to UN

with the reproducing kernel KN is

HN := Span{ϕj , j = 0, . . . , N}

with the scalar product (11).

Proof Obvious.

Theorem 3 The posterior likelihood function of {UN | UN ∈ C, Yi = yi} is of the
form

LN
pos(u) = k−1

N 1u∈C∩HN
exp

(
−1

2
JN (u)

)
, (37)

where kN is a normalizing constant. Then, the MAP estimator v̂N as the mode of
the posterior distribution {UN | UN ∈ C, Yi = yi} is well defined and is equal to
ûN solution of (PN ).

Proof First, remark that the sample paths of UN are inHN by construction. Hence,
it makes sense to define the density of UN with respect to the uniform reference
measure λN on HN . The density is defined up to a multiplicative constant and to
give it an explicit expression, we consider the following linear isomorphism :

i : c ∈ RN+1 7−→ u :=
N∑

j=0

cjϕj ∈ HN .

We can define the measure λN on HN as the image measure λN := i(dc), where
dc = dc0 × . . . × dcN is the volume measure in RN+1. So, if B ∈ B(HN ) is a
Borelian subset of HN , we have

λN (B) =

∫
RN

1i−1(B)(c)dc1 × . . .× dcN .

To calculate the probability density function of the GP UN =
∑N

j=0 U(tj)ϕj , we
write

P (UN ∈ B) = P
(
ξ ∈ i−1(B)

)
.

Using the fact that ξ = (U(t0), . . . , U(tN ))> is a zero-mean Gaussian vector
N (0, ΓN ), we have

P (UN ∈ B) =

∫
RN

1i−1(B)(c)
1

√
2π

N |ΓN |1/2
exp

(
−1

2
c>Γ−1

N c

)
dc

=

∫
RN

1B(i(c))
1

√
2π

N |ΓN |1/2
exp

(
−1

2
‖i(c)‖2N

)
dc.
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By the transfer formula, we get

P (UN ∈ B) =

∫
HN

1B(u)
1

√
2π

N |ΓN |1/2
exp

(
−1

2
‖u‖2N

)
dλN (u).

Hence, the density of UN with respect to λN is the function

f{UN} : u ∈ HN 7−→
1

√
2π

N |ΓN |1/2
exp

(
−1

2
‖u‖2N

)
.

Now let us find the density of the conditional distribution {UN | Yi = yi}.

As Yi = UN (xi) +Ei, where E = (Ei)i is a centered Gaussian vector N (0, σ2I),
the density of {(Y1, . . . , Yn) | UN = u} is given by

f{(Y1,...,Yn) | UN=u} : (y1, . . . , yn) 7−→ 1√
2π

n exp

(
− 1

2σ2

n∑
i=1

(yi − u(xi))
2

)
.

Let us apply the Bayes principle: the density of the distribution {UN | Yi = yi} is
given by

f{UN | Yi=yi}(u) =
f{(Y1,...,Yn) | UN=u}(y1, . . . , yn)× f{UN}(u)

f{(Y1,...,Yn)}(y1, . . . , yn)
.

We consider f{(Y1,...,Yn)}(y1, . . . , yn) as a constant of normalization k. Then

f{UN | Yi=yi}(u) = k−1 1√
2π

n
1

√
2π

N |ΓN |1/2
exp

(
− 1

2σ2

n∑
i=1

(yi − u(xi))
2 − 1

2
‖u‖2N

)
.

Setting kN,n = k−1 1√
2π

n
1

√
2π

N |ΓN |1/2
,

f{UN | Yi=yi}(u) = kN,n exp

(
−1

2
JN (u)

)
. (38)

Let us introduce the inequality constraints described by the set C.
If B ∈ B(HN ),

P (UN ∈ B | UN ∈ C, Yi = yi) = PYi=yi
(UN ∈ B | UN ∈ C) =

PYi=yi
(UN ∈ B ∩ C)

PYi=yi
(UN ∈ C)

,

so that

P (UN ∈ B | UN ∈ C, Yi = yi) =
1

PYi=yi
(UN ∈ C)

∫
HN

1B∩C(u)f{UN | Yi=yi}(u)dλN (u)

is equivalent to

P (UN ∈ B | UN ∈ C, Yi = yi) =
kN,n

PYi=yi
(UN ∈ C)

∫
HN∩C

1B(u) exp

(
−1

2
JN (u)

)
dλN (u).
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In the Bayesian framework, as far as PYi=yi
(UN ∈ C) 6= 0, the density of the pos-

terior conditional distribution {UN | UN ∈ C, Yi = yi} is the following truncated
probability density function with respect to λN :

f{UN∈B | UN∈C,Yi=yi}(u) = c 1{u∈HN∩C} exp

(
−1

2
JN (u)

)
. (39)

The density f{UN∈B | UN∈C,Yi=yi} is also called the posterior likelihood function

denoted by LN
pos. By definition, the MAP estimator ûN is the solution of the

following optimization problem

arg maxLN
pos(u) = arg min

(
−2 logLN

pos(u)
)
.

From expression (39), the MAP estimate v̂N is ûN solution of (PN )

6 Numerical illustration

The aim of this section is to illustrate the correspondence established in previ-
ous sections between the MAP estimator and the optimal constrained smoothing
function solution of problem (P ). We consider the cases where the real function f
respects boundedness or monotonicity constraints. The associated convex sets are
denoted respectively CB and CM and are equal to :

CB =
{
f ∈ C0 ([0, 1]) : −∞ ≤ a ≤ f(x) ≤ b ≤ +∞, x ∈ [0, 1]

}
CM =

{
f ∈ C0 ([0, 1]) : f(x) ≤ f(x′),∀x ≤ x′

}
.

0.0 0.2 0.4 0.6 0.8 1.0

−
3

0
−

1
0

0
1

0
2

0

unconstrained mean

mean a posteriori

maximum a posteriori

0.0 0.2 0.4 0.6 0.8 1.0

−
3

0
−

1
0

1
0

unconstrained mean

mean a posteriori

maximum a posteriori

Fig. 1: Unconstrained and constrained mean together with the maximum a poste-
riori (MAP) estimator using the constrained model. The lower and upper bounds
are equal to −20 and 20 (Left) and equal to −30 and 25 (Right). The black points
represent the observations where the noise variance σ2 = 1.52.

In Figure 1, the constrained data are of size n = 7 (black points). The noise
variance is fixed at σ2 = 1.52. The Squared Exponential (or Gaussian) covariance
function is used

K(x, x′) := ν2 exp

(
− (x− x′)2

2θ2

)
,
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where the hyper-parameters (θ, ν) are fixed at (0.12, 10). In the left panel of Fig-
ure 1, we choose N = 100 and generate 100 sample paths (gray solide lines) taken
from the finite-dimensional approximation of GPs (35) conditionally to bounded-
ness constraints and noisy data, where the lower and upper bounds are respectively
-20 and 20. The sample paths of the conditional GP (gray solid lines) respect the
boundedness constraints in the entire domain unlike the unconstrained mean. In
the right panel of Figure 1, we just relax the boundedness constraints such that
the unconstrained mean respects it. The lower and upper bounds become −30 and
25. In that case, the unconstrained mean coincides with the MAP estimator but
not with the posterior mean (i.e., the mean of the paths). Hence, in the constrained
case, the mean of the posterior distribution does not correspond to the optimal
constrained smoothing function.

0.0 0.2 0.4 0.6 0.8 1.0

−
4
0

0
2
0

4
0

unconstrained mean

mean a posteriori

maximum a posteriori

Fig. 2: 100 sample paths taken from the GP (gray solid line) respecting bounded-
ness constraints between −45 and 40. The unconstrained mean, the mean and the
maximum a posteriori coincide as expected

In Figure 2, we also relax the boundedness constraints (lower and upper bounds
are equal −45 and 40 respectively) such that they do not have an impact on the
model. In that case, the unconstrained mean, the mean and the maximum of the
posterior distribution coincide as expected.

This numerical example shows that the Maximum A Posteriori estimator is
smoother and much more likely than the posterior mean. This is coherent with
the theoretical result of this paper since the MAP is the solution of a regularization
problem in the RKHS associated to the covariance kernel of the process.

In Figure 3, the monotonicity constraint is considered. We choose N = 100 and
generate fifty sample paths (gray solid lines) taken from the finite-dimensional
approximation of GPs (35) conditionally to monotonicity constraints and noisy

data. The observations are generated from the monotone function x 7→ ex
2

, where
the noise variance is fixed at σ2 = 0.22. The monotone function is supposed to be
evaluated at (0.05, 0.1, 0.15, 0.75) on the left panel and at (0.05, 0.1, 0.15, 0.75, 1)
on the right panel. The Matérn 5/2 covariance function has been used

K(x, x′) = ν2
(

1 +

√
5(|x− x′|

θ
+

5(x− x′)2

3θ2

)
exp

(
−
√

5|x− x′|
θ

)
,
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Fig. 3: Unconstrained and constrained mean together with the maximum a posteri-
ori (MAP) estimator using the constrained model. The unconstrained mean (blue
dashed line) respects monotonicity constraints (right panel), contrarily to the left
panel. The Matérn 5/2 covariance function has been used. The noise variance is
fixed at σ2 = 0.22

where the hyper-parameters (θ, ν) are fixed at 0.6 and 1 respectively. In the left
panel of Figure 3, the GP sample paths (gray lines) respect monotonicity con-
straints in the entire domain contrarily to the unconstrained mean (blue dashed
line). In the right panel of this figure, we just add one observation at x = 1. In
that case, the unconstrained mean respects monotonicity constraints in the entire
domain. We remark that it coincides with the MAP and not with the mean of the
posterior distribution. Again, in the monotonicy case, the posterior mean (mean
of the sample paths) does not correspond to the optimal constrained smoothing
function as expected.

7 Conclusion and applications

In this paper, we considered the constrained optimal smoothing problem. We ap-
proach it by the usual piecewise linear projection to obtain an approximate solu-
tion. We proved the convergence of these approximations to the optimal solution.
If we rewrite the problem in a GP model, we realized that the obtained approx-
imate solution is also the Maximum A Posteriori of the posterior distribution of
the approximate GP. We find the same Bayesian estimation as in the case of strict
interpolation treated in [4], but the proof is much easier.

These results are theoretical but they can lead to practical applications. In ap-
plications, the constraints are generally positivity, monotonicity or convexity. Nu-
merical illustration are provided with boundedness and monotonicity constraints.
Accounting for these type of inequality constraints in GP leads to smaller pre-
diction error and to more realistic uncertainties. The main benefit of our finite-
dimensional approximation approach is that it guarantees that the constraints are
satisfied everywhere (see [9]). It can be quite easily extended to multidimensional
situations. In [7], the constrained GP emulator is implemented, relaxing the in-
terpolation of observations through noise effect. They show, through numerical
experiments, that these emulators are faster than in the case of interpolation.
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Nevertheless, these models are appropriate to small dimensional case (up to di-
mension 5). In [3], the authors overcome this limitation with the introduction of
the MaxMod algorithm, performing at the same time dimension reduction and
efficient knot allocation. With simulated and real data, this algorithm remains
efficient in high dimension (at least dimension 20). In [3], the data points xi are
not in the partition ∆N . Our results are also valid in that case. Its proof is done
in the appendix here below.

8 Appendix

If assumption (H3) is not fulfilled, then ρN (vN ) and vN are not the same at the
data points, so that J(ρN (vN )) 6= JN (vN ). Hence Proposition 4, except (27) and
Theorem 1 are valid. However Proposition 5 needs to be proved when (H3) is not
fulfilled. The proof is just a bit more technical.
As the norm on E is the infinity norm and πN is stable, according to (6) and (16)

|πN (û)(xi)| ≤ ‖πN (û)‖E ≤ d‖πN (û)‖HN
≤ d‖û‖H

|û(xi)| ≤ ‖û‖E ≤ c‖û‖H .

Hence

JN (πN (û)) = ‖πN (û)‖2HN
+

1

σ2

n∑
i=1

(πN (û)(xi)− yi)2

≤ ‖û‖2H +
1

σ2

n∑
i=1

(πN (û)(xi)− yi)2

≤ J(û) +
1

σ2

n∑
i=1

[
(πN (û)(xi)− yi)2 − (û(xi)− yi)2

]
≤ J(û) +

1

σ2

n∑
i=1

[πN (û)(xi)− û(xi)] [û(xi) + πN (û)(xi)− 2yi)]

JN (πN (û)) ≤ J(û) +
n ((c+ d)‖ û‖E + 2 max |yi|)

σ2︸ ︷︷ ︸
c1

‖πN (û)− û‖E .

Thus, setting ηN = ‖πN (û)− û‖E , acording to (34), we have ηN → 0 as N → +∞.

JN (πN (û)) ≤ J(û) + c1ηN ,

where the constant c1 is independent of N . By definition of ûN , JN (ûN ) ≤
JN (πN (û)) so that

JN (ûN ) ≤ J(û) + c1ηN .

We have

|ρN (ûN )(xi)| ≤ ‖ρN (ûN )‖E ≤ c‖ρN (ûN )‖H = c‖ûN‖HN
≤ cJN (ûN ) ≤ cJ(û) + cc1ηN

|ûN (xi)| ≤ ‖ûN‖E ≤ d‖ûN‖HN
≤ dJN (ûN ) ≤ dJ(û) + dc1ηN .
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Let c2 be such that, forall N ,

(c+ d)(J(û) + c1ηN ) ≤ c2.

We have, according to the isometric property of ρN ,

J(ρN (ûN )) = ‖ρN (ûN )‖2H +
1

σ2

n∑
i=1

(ρN (ûN )(xi)− yi)2

= ‖ ûN‖2HN
+

1

σ2

n∑
i=1

(ρN (ûN )(xi)− yi)2

= JN (ûN )− 1

σ2

n∑
i=1

((ûN )(xi)− yi)2 +
1

σ2

n∑
i=1

(ρN (ûN (xi)− yi)2

= JN (ûN ) +
1

σ2

n∑
i=1

[
(ρN (ûN )(xi)− yi)2 − (ûN (xi)− yi)2

]
= JN (ûN ) +

1

σ2

n∑
i=1

[ρN (ûN )(xi) + ûN (xi)− 2yi)] [ρN (ûN )(xi)− ûN (xi)]

≤ JN (ûN ) +
c2 + 2 max |yi|

σ2

n∑
i=1

[ρN (ûN )(xi)− ûN (xi)] .

Thanks to the reproducing properties of H and HN and to the isometric prop-
erty of ρN :

|ρN (ûN )(xi)− ûN (xi)| = (ρN (ûN ),K(., xi))H − (ûN ,KN (., xi))HN
= (ρN (ûN ),K(., xi))H − (ρN (ûN ), ρN (KN (., xi)))H

= (ρN (ûN ),K(., xi)− ρN (KN (., xi)))H

≤ ‖ρN (ûN )‖H‖K(., xi)− ρN (KN (., xi))‖H
≤ (J(û) + c1ηN ) max

i
‖K(., xi)− ρN (KN (., xi))‖H .

Lemma 1 We have

sup
x∈X
‖ρN (KN (., x))−K(., x)‖H −→

N→+∞
0.

Proof Thanks to the isometric property of ρN , we have

‖ρN (KN (., x))−K(., x)‖2H = ‖ρN (KN (., x)) ‖2H + ‖K(., x)‖2H − 2 (ρN (KN (., x)) ,K(., x))H

= ‖KN (., x)‖2HN
+ ‖K(., x)‖2H − 2

N∑
j=0

ϕj(x)K(x, tj)

= KN (x, x) +K(x, x)− 2
N∑

j=0

ϕj(x)K(x, tj).

By uniform continuity of K(., .) on the compact set X ×X, we deduce that both
KN (x, x) =

∑N
i,j=0K(ti, tj)ϕi(x)ϕj(x) and

∑N
j=0 ϕj(x)K(x, tj) are uniformly

convergent to the function K(x, x), which completes the proof of the lemma.
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Let us set

εN = max
i
‖K(., xi)− ρN (KN (., xi))‖H .

According to the lemma 1,

εN → 0 as N → +∞

and

J(ρN (ûN )) ≤ JN (ûN ) + c3εN

with

c3 =
nc2 + 2nmax yi

σ2
.

Without assumption (H3), setting hN = ρN (ûN ) (31) is replaced by

J(hN ) ≤ JN (ûN ) + c3εN ≤ JN (πN (û)) + c3εN ≤ J(û) + c1ηN + c3εN , (40)

where εN → 0 and ηN → 0 as N → +∞. Then, the proof is almost the same
than in Section 4: (40) is used instead of (31) and the compact set is [0, J(û) +
supN (c1ηN + c3εN )].
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