Detecting inference attacks involving sensor data in a multi-database context: Issues & challenges - Archive ouverte HAL
Article Dans Une Revue Internet Technology Letters Année : 2022

Detecting inference attacks involving sensor data in a multi-database context: Issues & challenges

Résumé

Nowadays applications produce and manage data of individual among which some may be sensitive and must be protected. Moreover, with the advent of smart applications, sensor data are produced by IoT devices in a huge quantity and sent to servers in the vicinity to be stored and processed. Meanwhile, newly discovered inference channels involving sensor data gives insights on personal data and raises new threats on individuals privacy. They escape the vigilance of traditional inference detection systems devoted to protecting personal data stored locally in a database. In this paper, we motivate the need of a distributed inference detection system acting in a general multi-database context and we highlight the issues that such a system would face.
Fichier principal
Vignette du fichier
Internet Technology Letters - 2022 - Lachat - Detecting inference attacks involving sensor data in a multi‐database context.pdf (892.36 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03623026 , version 1 (19-04-2022)
hal-03623026 , version 2 (23-09-2022)

Identifiants

Citer

Paul Lachat, Nadia Bennani, Veronika Rehn-Sonigo, Lionel Brunie, Harald Kosch. Detecting inference attacks involving sensor data in a multi-database context: Issues & challenges. Internet Technology Letters, 2022, ⟨10.1002/itl2.387⟩. ⟨hal-03623026v2⟩
229 Consultations
285 Téléchargements

Altmetric

Partager

More