On quasi-polynomials counting planar tight maps - Archive ouverte HAL
Article Dans Une Revue Combinatorial Theory Année : 2024

On quasi-polynomials counting planar tight maps

Résumé

A tight map is a map with some of its vertices marked, such that every vertex of degree 1 is marked. We give an explicit formula for the number $N_{0,n}(d_1,…,d_n)$ of planar tight maps with $n$ labeled faces of prescribed degrees $d_1,…,d_n$, where a marked vertex is seen as a face of degree 0. It is a quasi-polynomial in $(d_1,…,d_n)$, as shown previously by Norbury. Our derivation is bijective and based on the slice decomposition of planar maps. In the non-bipartite case, we also rely on enumeration results for two-type forests. We discuss the connection with the enumeration of non necessarily tight maps. In particular, we provide a generalization of Tutte's classical slicings formula to all non-bipartite maps.
Fichier principal
Vignette du fichier
polytightmaps.pdf (1.35 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03622398 , version 1 (29-03-2022)
hal-03622398 , version 2 (05-07-2024)

Licence

Identifiants

Citer

Jérémie Bouttier, Emmanuel Guitter, Grégory Miermont. On quasi-polynomials counting planar tight maps. Combinatorial Theory, 2024, 4 (1), pp.#12. ⟨10.5070/C64163849⟩. ⟨hal-03622398v2⟩
130 Consultations
60 Téléchargements

Altmetric

Partager

More