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Abstract. A tight map is a map with some of its vertices marked, such that every vertex of
degree 1 is marked. We give an explicit formula for the number N0,n(d1, . . . , dn) of planar
tight maps with n labeled faces of prescribed degrees d1, . . . , dn, where a marked vertex is
seen as a face of degree 0. It is a quasi-polynomial in (d1, . . . , dn), as shown previously by
Norbury. Our derivation is bijective and based on the slice decomposition of planar maps. In
the non-bipartite case, we also rely on enumeration results for two-type forests. We discuss
the connection with the enumeration of non necessarily tight maps. In particular, we provide
a generalization of Tutte’s classical slicings formula to all non-bipartite maps.
Keywords. Planar maps, bijective enumeration, slice decomposition.
Mathematics Subject Classifications. 05A15, 05A19.

1. Introduction

1.1. Tight maps

The main purpose of this paper is to study the enumeration problem for a class of maps, called
tight maps.

Definition 1.1. A tight map is a connected map with some of its vertices marked, such that every
vertex of degree 1 is marked. In a tight map, the faces as well as the marked vertices are called
boundaries.
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Figure 1.1: On the left, a tight map with 9 boundaries: six faces f1, f2, f3, f4, f5, f6 with re-
spective degrees 12, 8, 5, 4, 3, 2, and three marked vertices v7, v8, v9, shown in white. On the
right: a rooted tight map, whose opening operation gives the tight map on the left. As this figure
demonstrates, a vertex incident to the root in a rooted tight map can be of degree 1 without being
necessarily marked. These maps can be also seen as pointed (respectively pointed rooted) tight
maps, for example by distinguishing the marked vertex v9.

Even though this definition makes sense for maps on arbitrary surfaces, we will restrict in
this paper to the planar case. We refer to [Sch15] and [BGM22] for the standard definitions and
terminology about maps.

Usually, we will endow a tight map with some extra structure, in particular by labeling its
faces and some or all of its marked vertices, or distinguishing one marked vertex. For instance,
we will call pointed tight map a tight map with one distinguished marked vertex. We will adopt
a slightly unusual notion of rooted tight map compared to the well-established notion of rooting
of a map: in particular, the root will be an unoriented edge. If e is a distinguished edge in a map
m, there is a natural opening operation O(m, e) consisting in cutting along the edge, thereby
creating a face of degree 2. Ifm has marked or labeled elements (vertices or faces), thenO(m, e)
naturally inherits these elements. We say that a map m with some of its vertices marked and a
distinguished edge e is a rooted tight map if O(m, e) is a tight map. Note that m may not be a
tight map itself, as the distinguished edge may be incident to an unmarked vertex of degree 1.
Finally, a pointed rooted tight map is a rooted tight map with one distinguished marked vertex.
See Figure 1.1 for examples of tight maps.

We define the length of a boundary in a tight map as being equal to its degree for a face, and
to zero for a marked vertex. In other words, we interpret the marked vertices as boundaries of
length 0.

The terminology of tight maps comes from [BGM22]. Let us discuss it in some detail. In
a general map m, drawn on a surface S, and with some faces and vertices marked, let us call
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Figure 1.2: Blowing a boundary-vertex into a face of degree 0 with one puncture.

the marked elements the boundaries, and the unmarked elements the internal faces and vertices.
We let S ′ be the space obtained from S by removing one point (i.e. creating a puncture) inside
each of the boundaries of m. A boundary of m is called tight if its contour path has minimal
possible length among all paths in the map that are freely homotopic to it in S ′. When the map
has marked vertices, then all such vertices are automatically tight boundaries, and the previous
minimality condition on the contours of the boundary-faces must be understood in a slightly
modified map obtained by blowing every marked vertex of degree k into a k-cycle with edges of
“length 0”, hence creating a new face in the map, which we view as having degree 0, with one
puncture. See Figure 1.2 for an example.

This being said, it is straightforward to see that a map is tight according to Definition 1.1, if
and only if it is a map with no internal faces (i.e. all its faces are marked as boundaries), whose
boundaries are all tight. Indeed, starting from a tight map, we see that all its boundaries are
necessarily tight: in the modified map with every marked vertex blown into a degree-0 face, the
contour of a given face is in fact the unique non-backtracking path of edges in its free homotopy
class in the punctured surface S ′. Conversely, a map which is not tight contains an unmarked
vertex v of degree 1. The contour of the face f incident to v can be deformed into a strictly
shorter path by shortcutting the edge incident to v, meaning that f is not a tight boundary.

In fact, we view the results of the present paper as a first step towards a better (in particular,
bijective) understanding of the counting problem for general maps with tight boundaries and
possibly with internal faces. This problem was addressed in the case of planar maps with three
boundaries in [BGM22], and remains a challenge in more complex topologies.

1.2. Lattice count polynomials

For any choice of nonnegative integers d1, d2, . . . , dn not all equal to 0 and for any nonnegative
integer g, we let Ng,n(d1, d2, . . . , dn) be the number of tight maps of genus g, with n labeled
boundaries of respective lengths d1, d2, . . . , dn, and where each map is weighted by its inverse
number of automorphisms. In fact, the latter number is always 1 as soon as n ⩾ 3, while the
only tight maps with two boundaries having a non-trivial automorphism group are (genus 0)
cycles of length p ⩾ 2, with automorphism group Z/pZ (such maps are thus weighted by 1/p).
For n = 1, the only planar (g = 0) example of a tight map is the (marked) vertex-map, which
is excluded from the discussion since its only boundary has length 0, but in higher genera, there
are many tight maps with one face, and these can have a non-trivial automorphism group.
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The numbersNg,n(d1, . . . , dn) have been extensively studied in particular by Norbury and Do
[Nor10, Nor13, DN11]1, in the broader context of the study of invariants of spectral curves ap-
pearing in Eynard and Orantin’s topological recursion [EO07]. Norbury proved thatNg,n(d1, . . . ,
dn) is a quasi-polynomial in the variables d21, . . . , d2n, depending on their parities. This means
that for every k ∈ {0, 1, . . . , n}, there exists a polynomial N(k)

g,n(x1, . . . , xn) in the variables
x2
1, . . . , x

2
n, symmetric under permutations of the first k variables and of the last n−k variables,

such that, if the numbers d1, . . . , dk are odd and the numbers dk+1, . . . , dn are even, then

Ng,n(d1, . . . , dn) = N(k)
g,n(d1, . . . , dn) . (1.1)

For k odd, these polynomials are equal to 0. In fact, the first two papers mentioned above assume
that d1, . . . , dn are all non-zero, while the third paper considers the general case where some,
but not all di may vanish. Definition 2.7 in [DN11] is indeed equivalent to our definition of tight
maps, while Proposition 2.8 therein proves that the extension of the quasipolynomials to some
zero values do solve the enumeration problem of tight maps with marked vertices. Norbury
[Nor10] also proves that evaluating the polynomials at (0, 0, . . . , 0) gives interesting geometric
information, although the combinatorial meaning of this evaluation is not clear. Note that the
theory of enumeration of integer points in polytopes implies that Ng,n(d1, . . . , dn) is a piecewise
quasi-polynomial in d1, . . . , dn, see for instance the discussion around [Bud22b, Proposition 4]
(in the case b = 0). Therefore, it is surprising that Ng,n(d1, . . . , dn) is actually a genuine quasi-
polynomial, furthermore in the squared variables.

The approach taken in [Nor10, Nor13, DN11] is to prove the wanted properties using recur-
sions for these polynomials, called lattice count polynomials, that also allows one to effectively
compute them. These recursions are in turn consequences of combinatorial recursion relations
with a geometric flavor, similar to Tutte’s equations used for instance in [Tut62], and to the topo-
logical recursion originating in Eynard and Orantin’s work [EO07].

In this paper, focusing on the planar case g = 0, our main goal in to show how one can obtain
the above quasipolynomiality results by bijective techniques, which in passing yield new explicit
formulas for the lattice count polynomials. We will use two different strategies: the first one,
discussed in Section 3, is based on a substitution approach using as an input Tutte’s classical
slicings formula [Tut62]. This formula holds however only for planar maps which are bipartite
or quasi-bipartite, namely with a number of faces of odd degree equal to 0 or 2 respectively. As
a consequence, the substitution approach is limited to the enumeration of planar tight bipartite
and quasi-bipartite maps, corresponding to respectively k = 0 and k = 2 in (1.1). The second,
purely bijective, strategy is based on the so-called slice decomposition of maps introduced in
[BG12], and its extensions developed in [BG14, Bou19]. We will first discuss it in Section 4 in
the easier case of planar tight bipartite and quasi-bipartite maps, and then extend it in Section 5 to
the general case of planar tight maps with an arbitrary number k of faces of odd degree. Using
then the substitution approach backwards, our general expression for tight maps allows us to
extend Tutte’s slicings formula to non necessarily tight maps with an arbitrary number of faces
of odd degree.

1Here, we should warn the reader that these references use the notion of fatgraphs, which is different but equiv-
alent to the language of maps used in this paper.
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The paper is organized as follows. Section 2 provides a self-contained presentation of our
main results. Section 2.1 deals with the simpler case of bipartite and quasi-bipartite tight maps:
after introducing and studying in Section 2.1.1 the required basic univariate and multivariable
polynomials, we state our main theorems which connect these polynomials to the numbers of pla-
nar tight bipartite maps in Section 2.1.2 (Theorem 2.3) and of planar tight quasi-bipartite maps
in Section 2.1.3 (Theorem 2.8). We then state our enumeration result for general tight maps in
Section 2.2 (Theorem 2.12) after introducing the appropriate univariate and multivariate quasi-
polynomials. Section 3 discusses the connection with the enumeration of non necessarily tight
maps by the substitution approach: Section 3.1 is devoted to the derivation of Theorems 2.3 and
2.8 from Tutte’s slicings formula, and Section 3.2 uses this approach backwards to obtain from
Theorem 2.12 an extension of the slicings formula to maps with an arbitrary number of faces of
odd degree, see Theorem 3.2. We then discuss in Sections 4 and 5 the bijective approach based
on the slice decomposition of maps. Section 4 concentrates again on the simpler bipartite and
quasi-bipartite cases, discussing first tight maps with a single face (Section 4.1), tight maps with
two faces (Section 4.2), pointed rooted tight maps in connection with tight slices (Section 4.3)
and finally tight maps which are neither pointed nor rooted (Section 4.4) using the slice decom-
position of annular maps. All these bijective results are then extended to the non-bipartite or
quasi-bipartite case in Section 5, which requires the preliminary enumeration of so-called petal
trees (Section 5.1), petal necklaces (Section 5.2) and non-bipartite slices (Section 5.3). Our most
general enumeration result for planar tight maps with arbitrary prescribed boundary lengths is
given in Section 5.4 by Theorem 5.13, which presents a single formula encompassing Theo-
rems 2.3, 2.8 and 2.12. We gather our concluding remarks in Section 6, while a few appendices
detail the derivation of some technical results.

2. Main results

2.1. Polynomials counting planar tight bipartite or quasi-bipartite maps

In this section, we provide explicit expressions for the lattice count polynomials N(0)
0,n and N

(2)
0,n,

which correspond to planar tight bipartite and quasi-bipartite maps, respectively.

2.1.1 Definition and properties of the polynomials

Let us start by introducing families of polynomials which appear in the explicit expression of
N

(0)
0,n. Here, we concentrate on the very definitions of these polynomials and on their result-

ing algebraic properties. The connection with tight map enumeration will be discussed in Sec-
tion 2.1.2.
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Basic univariate polynomials. Our first basic polynomials are functions of a single variable
m and are defined as follows: for any integer k ⩾ 0, we set

pk(m) :=
1

(k!)2

k∏
i=1

(
m2 − i2

)
=

(
m− 1

k

)(
m+ k

k

)

qk(m) :=
1

(k!)2

k−1∏
i=0

(
m2 − i2

)
=

(
m

k

)(
m+ k − 1

k

) (2.1)

with the usual convention p0(m) = q0(m) = 1 for the empty product, and with
(
x
k

)
= x(x −

1) · · · (x− k + 1)/k! viewed as a polynomial in x.
Clearly, pk and qk are polynomials of degree k in the variable m2, and pk(m) and qk(m) are

integers if m is an integer. The two families of polynomials are linked by the relation

qk(m) = pk(m) + pk−1(m), k ⩾ 0 (2.2)

with the convention p−1 := 0. A combinatorial interpretation of this relation based on the
enumeration of tight maps with a single face will be given in Section 2.1.2. We also record the
identities

(k + 1)pk+1(m) = (m− k − 1)pk(m) +
m−1∑
j=1

(2j)pk(j) (2.3)

(k + 1)qk+1(m) = (m− k)qk(m) +
m−1∑
j=1

(2j)qk(j) (2.4)

which are valid for m a positive integer, and which may be checked by induction.

Multivariate polynomials. The above univariate polynomials may be extended to multivariate
polynomials, functions of n variables m1,m2, . . . ,mn as follows: for any integer k ⩾ 0 and any
integer n ⩾ 1, we set

pk(m1,m2, . . . ,mn) :=
∑

k1,k2,...,kn⩾0
k1+k2+···+kn=k

pk1(m1)qk2(m2) · · · qkn(mn),

qk(m1,m2, . . . ,mn) :=
∑

k1,k2,...,kn⩾0
k1+k2+···+kn=k

qk1(m1)qk2(m2) · · · qkn(mn).
(2.5)

(In the right-hand side of the first line, all factors except the first one are qki’s.)
Clearly, pk and qk are polynomials of degree k in the variables m2

1,m
2
2, . . . ,m

2
n. Note that

the notation is consistent for n = 1 with (2.1). From the identity pk(1) = δk,0, we get the
identification:

pk(1,m1,m2, . . . ,mn) = qk(m1,m2, . . . ,mn) (2.6)

and, by (2.2), we find that qk = pk + pk−1 for any number of variables.
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For bookkeeping purposes, let us record the explicit expressions of pk and qk for k = 1, 2, 3:

p1(m1, . . . ,mn) =

(
n∑

i=1

m2
i

)
− 1,

p2(m1, . . . ,mn) =
1

4

(
n∑

i=1

m4
i

)
+
∑
i<j

m2
im

2
j −

5

4

(
n∑

i=1

m2
i

)
+ 1,

p3(m1, . . . ,mn) =
1

36

(
n∑

i=1

m6
i

)
+

1

4

(∑
i ̸=j

m4
im

2
j

)
+
∑
i<j<h

m2
im

2
jm

2
h

− 7

18

(
n∑

i=1

m4
i

)
− 3

2

(∑
i<j

m2
im

2
j

)
+

49

36

(
n∑

i=1

m2
i

)
− 1 ,

q1(m1, . . . ,mn) =
n∑

i=1

m2
i ,

q2(m1, . . . ,mn) =
1

4

(
n∑

i=1

m4
i

)
+
∑
i<j

m2
im

2
j −

1

4

(
n∑

i=1

m2
i

)
,

q3(m1, . . . ,mn) =
1

36

(
n∑

i=1

m6
i

)
+

1

4

(∑
i ̸=j

m4
im

2
j

)
+
∑
i<j<h

m2
im

2
jm

2
h

− 5

36

(
n∑

i=1

m4
i

)
− 1

2

(∑
i<j

m2
im

2
j

)
+

1

9

(
n∑

i=1

m2
i

)
.

(2.7)

Proposition 2.1. For any integer k ⩾ 0, pk and qk are symmetric functions. In other words, for
any integer n ⩾ 1, pk(m1,m2, . . . ,mn) and qk(m1,m2, . . . ,mn) are symmetric polynomials in
m1,m2, . . . ,mn which satisfy the consistency relation

pk(m1,m2, . . . ,mn, 0) = pk(m1,m2, . . . ,mn),

qk(m1,m2, . . . ,mn, 0) = qk(m1,m2, . . . ,mn).
(2.8)

Proof. The symmetry of qk(m1,m2, . . . ,mn) is apparent from its very definition in (2.5). As
for pk(m1,m2, . . . ,mn), its symmetry is also made apparent from the following alternative and
manifestly symmetric expression:

pk(m1,m2, . . . ,mn) =
∑

k0,k1,k2,...,kn⩾0
k0+k1+k2+···+kn=k

(
n− 1

k0

)
pk1(m1)pk2(m2) · · · pkn(mn). (2.9)

To get this latter expression, we use again the relation (2.2) to write, in the expression (2.5) for
pk(m1,m2, . . . ,mn), each qki for i = 2 to n as the sum of pki and pki−1 and distribute the two
terms in the product so as to get a sum of terms of the form pk′1(m1)pk′2(m2) · · · pk′n(mn) with
summation variables k′

1 = k1 and k′
i = ki or ki − 1 for i ⩾ 2. The number of terms in the

sum having exactly k0 indices i for which k′
i = ki − 1 is

(
n−1
k0

)
and, for such terms, the sum rule
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k1 + k2 + · · ·+ kn = n in (2.5) becomes k0 + k′
1 + k′

2 + · · ·+ k′
n = n. This leads to (2.9) upon

renaming the summation variable k′
i as ki.

As for the consistency relation (2.8), it is a direct consequence of the identity qk(0) = δk,0
(here and in the following, we will always implicitly assume that k is a non-negative integer).

Finally, let us state some recursion relations obeyed by the pk’s, which we call the dilaton and
string equations as we shall see later that they correspond to the recursions obtained in [Nor13]
in the bipartite case.

Proposition 2.2 (Dilaton and string equations). We have the dilaton equation

pk(m1, . . . ,mn, 1)− pk(m1, . . . ,mn, 0) = pk−1(m1, . . . ,mn) (2.10)

and the string equation, valid for non-negative integer m1, . . . ,mn:

(k + 1)pk+1(m1, . . . ,mn) = (m1 + · · ·+mn − k − 1)pk(m1, . . . ,mn)+
n∑

i=1

mi−1∑
j=1

(2j)pk(m1, . . . ,mi−1, j,mi+1, . . . ,mn) (2.11)

Proof. From (2.6) and Proposition 2.1, the dilaton equation boils down to the relation qk =
pk + pk−1 noted above. The string equation is nothing but the multivariate extension of (2.3),
and is obtained by a linear combination of it and (2.4) (precisely, we take (2.3) at k = k1 and
m = m1 times qk2(m2) · · · qkn(mn) and add, for i = 2, . . . , n, the relation (2.4) at k = ki and
m = mi times pk1(m1) · · · qkn(mn) with the factor qki(mi) omitted).

2.1.2 Enumeration results in the bipartite case

We are now ready to state our first enumerative result:

Theorem 2.3. For n ⩾ 3 and for non-negative integers m1,m2, . . . ,mn not all equal to zero,
the number N0,n(2m1, 2m2, . . . , 2mn) of planar tight bipartite maps with n boundaries labeled
from 1 to n with respective lengths 2m1, 2m2, . . . , 2mn is given by the polynomial

N
(0)
0,n(2m1, 2m2, . . . , 2mn) = (n− 3)! pn−3(m1,m2, . . . ,mn). (2.12)

For n = 4, 5, 6, the expression for N(0)
0,n that we obtain from (2.7) is in agreement with the

polynomials given in [Bud22b, Table 1] for g = 0 and b = 0, as expected. Note that the constant
term of N

(0)
0,n, obtained by setting all the mi’s to zero, is equal to (n − 3)!pn−3(0, . . . , 0) =

(−1)n−3(n−3)!, and this quantity was interpreted in [Nor10] as the orbifold Euler characteristic
of the moduli space M0,n.

By combining Proposition 2.2 with Theorem 2.3, we recover the string and dilaton equations
found by Norbury in [Nor10] in the planar bipartite case. Note that, in this reference, the string
equation corresponds to the addition of a face of degree 2, while (2.11) for k = n − 3 may be
interpreted as the addition of a vertex. Norbury’s original equation can however be recovered by
combining it with the dilaton equation. Note finally that Proposition 2.2 holds more generally
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for any k. When k ⩾ n−3 we can naturally interpret it in terms of adding new marked vertices,
but the combinatorial meaning of the polynomial pk(m1, . . . ,mn) for k < n−3 is more elusive.

A first derivation of Equation (2.12) will be presented in Section 3 below by showing that,
up to some appropriate transformation accounting for the tight nature of the maps, it is actually
equivalent to Tutte’s celebrated slicings enumeration formula [Tut62]. We shall then present in
Section 4 a direct bijective proof of Theorem 2.3 upon using some canonical slice decomposition
of the maps at hand [BG12, BG14, Bou19]. As it appears, it will be convenient for that purpose
to proceed gradually and first derive (2.12) for a number of specialized cases (Propositions 2.4,
2.5, 2.6 and 2.7 below) before addressing the result in all generality.

Maps with one face. Takingn = k+3 in (2.12) withm1 = m ̸= 0 andm2 = · · · = mk+3 = 0,
we get

N0,k+3(2m, 0, . . . , 0︸ ︷︷ ︸
k+2

) = k! pk(m, 0, . . . , 0︸ ︷︷ ︸
k+2

) = k! pk(m), k ⩾ 0 , (2.13)

which already appeared in [Nor13, Corollary 5.6]2. Upon dividing by k!, which amounts to
considering that all but two of the marked vertices are unlabeled, we obtain the following com-
binatorial interpretation of pk(m):

Proposition 2.4. For k ⩾ 0 and m ⩾ 1, pk(m) is the number of planar tight bipartite maps
with one face of degree 2m and k + 2 distinct marked vertices, two of them distinguished and
labeled, say as vertex 1 and vertex 2, and the remaining k unlabeled.

Note that a planar map with a single face of degree 2m is nothing but a plane tree with m edges.
It is tight if and only if all its leaves are marked.

Similarly, taking n = k+ 3 in (2.12) with m1 = m and m2 = 1 and m3 = · · · = mk+3 = 0,
we now get

N0,k+3(2m, 2, 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! pk(m, 1, 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! qk(m, 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! qk(m), (2.14)

where we used (2.6) (and the symmetry in exchanging the variables) to switch from pk to qk. Di-
viding by k! and viewing the face of degree 2 as a split root edge, as discussed in the introduction,
we obtain a combinatorial interpretation of qk(m):

Proposition 2.5. For k ⩾ 0 and m ⩾ 1, qk(m) is the number of pointed rooted planar tight
bipartite maps with one face of degree 2m and k additional unlabeled marked vertices (distinct
from each other and from the pointed vertex).

Proofs of Propositions 2.4 and 2.5 will be presented in Section 4.1 by a direct enumeration
of the trees at hand. From the above interpretations of pk(m) and qk(m), we may now under-
stand the identity (2.2), for integer values of m, in a combinatorial way using the map language.
Indeed, for each tree enumerated by qk(m), we may transfer the marking of its root edge into a

2Incidentally, we note that our main results (Theorems 2.3, 2.8 and 2.12) answer the question raised in the
paragraph just before this corollary about finding a general formula for N0,n.
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marking of that of its endpoints further away from the pointed vertex. Let us for clarity label
the newly marked vertex as vertex 2 and the pointed vertex as vertex 1. Note that vertices 1 and
2 are necessarily distinct by construction, but that the vertex 2 may very well coincide with one
of the k additional marked vertices in the map enumerated by qk(m). The marking transforma-
tion is clearly reversible, the root edge being recovered as the only edge incident to vertex 2 that
belongs to the branch (that is, the unique simple path) from vertex 2 to vertex 1. We may thus
interpret qk(m) as counting plane trees with m edges, and with two distinct marked vertices 1
and 2 and k other marked vertices distinct from each other and from the vertex 1. This yields a
map enumerated by pk(m) when none of the k marked vertices coincide with the vertex 2—note
that this may happen even if the vertex 2 is a leaf since, as an endpoint of the root edge, it needs
not being marked in the map enumerated by qk(m). Otherwise, it yields a map enumerated by
pk−1(m) by ignoring the “redundant” additional marking of vertex 2. This yields the desired
relation (2.2).

Maps with two faces. Taking n = k+3 in (2.12) withm1,m2 ⩾ 1 andm3 = · · · = mk+3 = 0,
we get

N0,k+3(2m1, 2m2, 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! pk(m1,m2, 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! pk(m1,m2). (2.15)

Upon dividing by k! we get a combinatorial interpretation of pk(m1,m2):

Proposition 2.6. For k ⩾ 0 and m1,m2 ⩾ 1, pk(m1,m2) is the number of planar tight bipartite
maps with two faces of respective degrees 2m1, 2m2 and k + 1 distinct marked vertices, one of
them distinguished and labeled, say as vertex 1, and the remaining k unlabeled.

A direct bijective proof of this proposition will be presented in Section 4.2. More generally,
and although we will not use it in our bijective proof in Section 4, we note the relation, valid for
integers m1,m2,m3 not all equal to 0

N0,k+3(2m1, 2m2, 2m3, 0, . . . , 0︸ ︷︷ ︸
k

) = k! pk(m1,m2,m3) (2.16)

so that pk(m1,m2,m3) counts planar tight bipartite maps with three labeled boundaries with
lengths 2m1, 2m2, 2m3 and k unlabeled marked vertices. It is relatively straightforward to adapt
the bijective proof of Proposition 2.6 to prove (2.16) directly, we leave it as an exercise to the
reader.

Pointed rooted maps. Taking (2.12) with n → n + 2 and specializing to mn+1 = 2 and
mn+2 = 0, we get:

Proposition 2.7. For n ⩾ 1, the number of pointed rooted planar tight bipartite maps with n
labeled boundaries of respective lengths 2m1, . . . , 2mn (in addition to the marked vertex and to
the root edge) is given by

N
(0)
0,n+2, (2m1, 2m2, . . . , 2mn, 2, 0) = (n− 1)! qn−1(m1,m2, . . . ,mn). (2.17)
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Proof. This is a direct application of formula (2.12), together with the identity pn−1(m1,m2,
. . . ,mn, 1, 0) = qn−1(m1,m2, . . . ,mn) from (2.6).

The expression (2.17) will be proved bijectively in Section 4.3 by a direct decomposition of
the maps into slices.

2.1.3 Enumeration results in the quasi-bipartite case

Recall that a planar quasi-bipartite map is a planar map whose all faces but two have even degree.
To give the explicit expression of the corresponding lattice count polynomial N(2)

0,n, we need to
introduce the following new family of univariate polynomials: for any integer k ⩾ 0, we set

p̃k(m) :=
1

(k!)2

k∏
i=1

(
m2 −

(
i− 1

2

)2
)

=

(
m− 1

2

k

)(
m+ k − 1

2

k

)
(2.18)

with the convention p̃0(m) = 1. Note that p̃k is again a polynomial of degree k in m2 and that
p̃k(m) is an integer if m is a half-integer. It satisfies the following counterpart of (2.3)

(k + 1)p̃k+1(m) =
(
m− k − 1

2

)
p̃k(m) +

∑
0<j<m

(2j)p̃k(j) (2.19)

where it is understood that m and j are now half-integers.

The multivariate extension of p̃k is then defined for any integer k ⩾ 0 and any integer n ⩾ 2
as

p̃k(m1,m2;m3, . . . ,mn) :=
∑

k1,k2,...,kn⩾0
k1+k2+···+kn=k

p̃k1(m1)p̃k2(m2)qk3(m3) · · · qkn(mn). (2.20)

Again, we may append an arbitrary number of 0’s to the arguments of p̃k without changing its
value. Note that p̃k is in general not symmetric in all its variables, but only in m1 and m2 on
the one hand, and in m3, . . . ,mn on the other hand. Note also that p̃k(m, 1/2) = p̃k(m). The
quasi-bipartite analog of Theorem 2.3 is then:

Theorem 2.8. For n ⩾ 3, for m1,m2 ∈ Z⩾0 + 1
2

and m3, . . . ,mn ∈ Z⩾0, the number
N0,n(2m1, 2m2, 2m3, . . . , 2mn) of planar tight quasi-bipartite maps with n boundaries labeled
from 1 to n with respective lengths 2m1, 2m2, 2m3, . . . , 2mn is given by

N
(2)
0,n(2m1, 2m2, 2m3, . . . , 2mn) = (n− 3)! p̃n−3(m1,m2;m3, . . . ,mn). (2.21)

In particular, for n = k + 3 and m3 = · · · = mk+3 = 0, we get, for m1,m2 half-integers:

N0,k+3(2m1, 2m2, 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! p̃k(m1,m2; 0, . . . , 0︸ ︷︷ ︸
k+1

) = k! p̃k(m1,m2). (2.22)

Upon dividing by k!, we obtain a combinatorial interpretation of p̃k(m1,m2):
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Proposition 2.9. For k ⩾ 0 and m1,m2 ∈ Z⩾0 +
1
2
, p̃k(m1,m2) is the number of planar tight

quasi-bipartite maps with two faces of odd degrees 2m1, 2m2 and k+1 distinct marked vertices,
one of them distinguished and labeled, say as vertex 1, and the remaining k unlabeled.

Settingm2 = 1/2, we obtain a combinatorial interpretation of the univariate polynomial p̃k(m) =
p̃k(m, 1/2), which will be given a direct bijective derivation in Section 4.1:

Proposition 2.10. For k ⩾ 0 and m ∈ Z⩾0 +
1
2
, p̃k(m) is the number of planar tight quasi-

bipartite maps with one face of odd degree 2m, one face of degree one, and k+1 distinct marked
vertices, one of them distinguished and labeled, say as vertex 1, and the remaining k unlabeled.

The polynomials p̃k obey the dilaton equation

p̃k(m1,m2; . . . ,mn, 1)− p̃k(m1,m2; . . . ,mn, 0) = p̃k−1(m1,m2; . . . ,mn) (2.23)

and the string equation (for mi’s as in Theorem 2.8)

(k + 1)p̃k+1(m1,m2; . . . ,mn) = (m1 + · · ·+mn − k − 1)p̃k(m1,m2; . . . ,mn)+
n∑

i=1

∑
0<j<m

(2j)p̃k(m1, . . . ,mi−1, j,mi+1, . . . ,mn) (2.24)

where we sum over half-integer values of j for i = 1 and 2 and over integer values of j for i ⩾ 3.
The proof is similar to that of Proposition 2.2 and uses now (2.19). Again, this corresponds to
Norbury’s dilaton and string equations in the planar quasi-bipartite case.
Remark 2.11. We have the relation p̃k(1/2, 1/2;m1, . . . ,mn) = qk(m1, . . . ,mn) which im-
plies that N0,n+2(2m1, 2m2, 2m3, . . . , 2mn, 1, 1) = N0,n+2(2m1, 2m2, 2m3, . . . , 2mn, 2, 0) for
m1, . . . ,mn integers. The latter equality can be explained via a “slit-slide-sew” bijection in the
spirit of [Bet20].

2.2. Quasi-polynomials counting planar tight maps with more odd faces

In this section, we provide explicit expressions for the lattice count polynomials N(k)
0,n, enumer-

ating planar tight maps with k boundaries of odd lengths, and n− k boundaries of even lengths,
for an arbitrary value of k ⩾ 3.

To this end, similarly to the bipartite and quasi-bipartite cases discussed in the preceding
section, we first need to introduce a two-parameter family of univariate polynomials which gen-
eralizes those introduced above: for k a non-negative integer and e ∈ Z, we define

pk,e(m) :=
1

(k!)2

k∏
i=1

(
m2 −

(
i− e

2

)2)
=

(
m+ e

2
− 1

k

)(
m− e

2
+ k

k

)
. (2.25)

We recover the polynomials pk, p̃k, and qk of Section 2.1 for e = 0, 1, 2, respectively. We will
provide combinatorial interpretations of these polynomials in Section 5.
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Next, let r, s be non-negative integers and ϵ ∈ Z be fixed. For m ∈ Z/2, we let

π(ϵ)
r,s(m) :=

{(
r+s
s

)
pr+s,s+1+ϵ(m) if m− s+1+ϵ

2
∈ Z,

0 otherwise.
(2.26)

For every choice of r, s, ϵ, this defines a quasi-polynomial in the variable 2m. For the purposes
of stating the main theorem of this section (Theorem 2.12), only the cases ϵ ∈ {0, 1} will be of
interest. Note that for m = 0 we have

π(ϵ)
r,s(0) =

{
δr,0δs,0 if ϵ = 1,
0 if ϵ = 0.

(2.27)

We may now state the main theorem of this section. In (2.29) below and later, for ϵ ∈ {0, 1},
we will write ϵ̄ := 1− ϵ to lighten the notation.

Theorem 2.12. For n ⩾ 3, for m1,m2, . . . ,mn ∈ Z⩾0/2, with at least three of the mi being
half-integers, the number N0,n(2m1, 2m2, . . . , 2mn) of planar tight maps with n boundaries
labeled from 1 to n with respective lengths 2m1, 2m2, . . . , 2mn is given by the symmetric quasi-
polynomial

N0,n(2m1, 2m2, . . . , 2mn) =∑
(ϵ1,...,ϵn
r1,...,rn
s1,...,sn

)
∈In

(
n∑

i=1

ri

)
!

(
n∑

i=1

ϵisi

)(
n∑

i=1

si − 1

)
!

n∏
i=1

π(ϵi)
ri,si

(mi), (2.28)

where In is the (finite) subset of {0, 1}n × Zn
⩾0 × Zn

⩾0 defined by

In :=


 ϵ1, . . . , ϵn

r1, . . . , rn
s1, . . . , sn

 :

n∑
i=1

ϵi =
n∑

i=1

ri + 1

n∑
i=1

ϵ̄i =
n∑

i=1

si + 2
,

n∑
i=1

si ⩾ 1

 . (2.29)

Remark 2.13. We note that the right-hand side of (2.28) is equal to 0 when the number k of faces
of odd degree is equal to 0 or 2, so that the formula does not hold in these cases, which have been
respectively dealt with above in Theorems 2.3 and 2.8. Theorem 2.12 yields a non-trivial result
only when k ⩾ 4 is an even number, since a map necessarily has an even number of faces of odd
degrees. As a sanity check, it is not difficult to see that the right-hand side of (2.28) vanishes
when k is odd. Indeed, assume without loss of generality that 2m1, . . . , 2mk are odd numbers,
and that 2mk+1, . . . , 2mn are even. By (2.26) and (2.27), the product term in the sum (2.28) is
non-zero only if si + ϵi is even for 1 ⩽ i ⩽ k, and odd for k + 1 ⩽ i ⩽ n. On the other hand,
the constraints in the definition of the summation index implies that

∑n
i=1(si + ϵi) + 2 = n,

which after reduction modulo 2, shows that n − k and n have the same parity, so that k is
necessarily even. A fully unified formula, encompassing Theorems 2.3, 2.8 and 2.12 is given in
Theorem 5.13 below.
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Figure 2.1: A tight petal tree with 5 petals (displayed with yellow marks) and 7 marked vertices
(shown in white).

The proof of Theorem 2.12 will follow an architecture similar to the bijective proof of Theo-
rems 2.3 and 2.8, building from elementary examples of maps with explicit enumeration formu-
las, to construct general ones. In particular, note that (2.28) reduces to π

(1)
r,s (m) if we specialize it

to n = r+ s with m1 = m, m2 = · · · = ms+3 = 1/2 and ms+4 = · · · = mr+s = 0. However, it
is not a priori obvious to obtain an interpretation of π(0)

r,s (m) by specializing formula (2.28). For
this reason, we will need to investigate in some depth these quasi-polynomials and relate them
to the combinatorial notion of petal trees. This will be the object of Section 5.1, but let us record
right away the definition of this notion so as to state one important result, Proposition 2.14, which
will be used at the end of Section 3.

We call petal a face of degree 1. A petal tree is a planar map having an exterior face of
arbitrary degree, and such that every other face is a petal. A tight petal tree is just a petal tree
with marked vertices, which is tight as a map. See Figure 2.1 for an illustration.

Proposition 2.14. For r, s nonnegative integers, m ∈ Z>0/2, and ϵ ∈ {−1, 0, 1}, the number of
tight petal trees with an exterior face of degree 2m, s+1+ϵ petals, 1+ϵ of which distinguished,
and r + 1− ϵ marked vertices, 1− ϵ of which distinguished, is equal to π

(ϵ)
r,s(m).

Remark 2.15. Proposition 2.14, which will be proved in Section 5.1, holds for m > 0. It can
be extended to m = 0, provided we restrict the value of ϵ to the set {0, 1}. Indeed, in this case,
(2.27) is consistent with Proposition 2.14 upon understanding the exterior face of degree 0 as a
distinguished marked vertex. For ϵ = 0 or 1, the only possible map with such a marked vertex,
s+1+ ϵ petals (and no other face) and r+1− ϵ other marked vertices is made of a single loop
connecting the distinguished marked vertex and separating two petals. It has s+ 1 + ϵ = 2 and
r + 1 − ϵ = 0, hence ϵ = 1 and r = s = 0 (note that the distinction of the two petals does not
create any degeneracy).
Remark 2.16. The situation above is quite similar to the case m = 1/2, for which we obtain

π(ϵ)
r,s

(
1

2

)
=


0 if ϵ = −1,
δr,0δs,0 if ϵ = 0,
0 if ϵ = 1.

(2.30)
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Figure 3.1: The tight core (thick red edges) of a planar bipartite map with two faces and one
marked vertex (shown in white). The rest of the map consists of rooted plane trees (possibly
empty) attached in the corners of the tight core.

This agrees with Proposition 2.14 since the only possible map with an exterior face of degree 1,
s+1+ϵ petals and r+1−ϵ marked vertices is made of a single loop connecting a unique vertex
and separating the exterior face from a unique petal. It has s + 1 + ϵ = 1 and r + 1 − ϵ ⩽ 1,
hence ϵ = 0, s = 0 and r = 0 (note that the unique vertex is therefore marked).

3. Connection with the enumeration of non necessarily tight maps

3.1. Equivalence with Tutte’s slicings formula in the (quasi-)bipartite case

One of the earliest results in map enumeration is Tutte’s slicings formula [Tut62] which, in our
current terminology, asserts that the number M(ℓ1, . . . , ℓn) of planar (non necessarily tight)
bipartite maps with n ⩾ 3 labeled faces of prescribed even degrees 2ℓ1, . . . , 2ℓn is given by

M(ℓ1, . . . , ℓn) = (ℓ1 + · · ·+ ℓn − 1)n−3

n∏
i=1

(
2ℓi − 1

ℓi

)
, (3.1)

where (ℓ)k := ℓ(ℓ−1) · · · (ℓ−k+1) denotes the falling factorial. Note that the faces are assumed
unrooted and that the formula extends to the case where some, but not all, of the ℓi vanish, with
the convention

(−1
0

)
= 1, upon again understanding that a face of degree 0 is a marked vertex

(planar maps with three or more labeled faces or vertices have no symmetries).
In this section, we explain how Tutte’s slicings formula is related to Theorem 2.3 giving a

formula for the number of planar tight bipartite maps with n boundaries of prescribed lengths.
As we shall see, the two formulas can be deduced from one another.

The key observation, already made in [Bud22b, Section 4], is that an arbitrary (non neces-
sarily tight) map, possibly with marked vertices, can be bijectively decomposed into a tight map
(which we call the tight core) and a collection of rooted plane trees (without marked vertices)
attached to the corners of the tight core. See Figure 3.1 for an illustration. Precisely, the tight
core has the same number of faces and marked vertices as the arbitrary map, and a face of degree
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2ℓ in the arbitrary map yields a face of degree 2m in the tight core, for some m ⩽ ℓ, together
with a plane forest made of 2m trees having ℓ − m edges in total. The number of such plane
forests is equal to

Aℓ,m :=
2m

2ℓ

(
2ℓ

ℓ−m

)
, (3.2)

see for instance [FS09, ▷ I.38], with conventionally A0,0 = 1 and Aℓ,m = 0 for m > ℓ. As a
consequence, we have

M(ℓ1, . . . , ℓn) =

ℓ1∑
m1=0

· · ·
ℓn∑

mn=0

Aℓ1,m1 · · ·Aℓn,mnN0,n(2m1, . . . , 2mn) (3.3)

where N0,n is the number of planar tight bipartite maps with n boundaries of lengths 2m1, . . . ,
2mn, as defined in Section 1.2. Note that the matrix (Aℓ,m)ℓ,m⩾0 is unitriangular, hence the
formula (3.3) can be inverted as

N0,n(2m1, . . . , 2mn) =

m1∑
ℓ1=0

· · ·
mn∑
ℓn=0

Bm1,ℓ1 · · ·Bmn,ℓnM(ℓ1, . . . , ℓn) (3.4)

where B is the inverse of A. This inverse is given explicitly by Bm,ℓ = (−1)m−ℓ
(
m+ℓ−1
m−ℓ

)
but we

will not use its expression in the following.
Now, let us substitute Tutte’s slicings formula (3.1) into (3.4). By the Chu-Vandermonde

identity, we may expand the falling factorial as

(ℓ1 + · · ·+ ℓn − 1)n−3 = (n− 3)!
∑

k1,k2,...,kn⩾0
k1+k2+···+kn=n−3

(
ℓ1 − 1

k1

)(
ℓ2
k2

)
· · ·
(
ℓn
kn

)
, (3.5)

which is nothing but an equality between polynomials in ℓ1, . . . , ℓn. This yields

N0,n(2m1, . . . , 2mn) = (n− 3)!
∑

k1,k2,...,kn⩾0
k1+k2+···+kn=n−3

p̂k1(m1)q̂k2(mn) · · · q̂kn(mn) (3.6)

where p̂k(m) :=
∑m

ℓ=0 Bm,ℓ

(
ℓ−1
k

)(
2ℓ−1
ℓ

)
and q̂k(m) :=

∑m
ℓ=0Bm,ℓ

(
ℓ
k

)(
2ℓ−1
ℓ

)
. We recover The-

orem 2.3, with the multivariate polynomial pn−3(m1,m2, . . . ,mn) defined via (2.5), provided
that p̂k(m) and q̂k(m) are respectively equal to the univariate polynomials pk(m) and qk(m)
defined in (2.1). This is ensured by the following:

Lemma 3.1. The univariate polynomials pk(m) and qk(m) defined in (2.1) satisfy

ℓ∑
m=0

Aℓ,mpk(m) =

(
ℓ− 1

k

)(
2ℓ− 1

ℓ

)
,

ℓ∑
m=0

Aℓ,mqk(m) =

(
ℓ

k

)(
2ℓ− 1

ℓ

)
. (3.7)

Proof. These hypergeometric identities can be proved using algorithmic methods, see [PWZ96]
and references therein.
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Alternatively, a bijective proof for ℓ ⩾ 1 follows from Propositions 2.4 and 2.5, themselves
proved bijectively in Section 4.1. More precisely, the first identity is obtained by counting in
two different ways plane trees with ℓ edges and k + 2 distinct marked vertices, two of them dis-
tinguished and labeled. Namely, the left-hand side is obtained via the tight core decomposition
and Proposition 2.4, while the right-hand side is obtained by a direct enumeration:

(
2ℓ−1
ℓ

)
is the

number of plane trees with ℓ edges and two distinguished labeled vertices, and
(
ℓ−1
k

)
is the num-

ber of ways to choose the k other marked vertices. The second identity is obtained similarly by
counting in two different ways plane trees with ℓ edges, one of them marked, and k + 1 distinct
marked vertices, one of them distinguished.

Note that, doing the above reasoning backwards, it is conversely possible to recover Tutte’s
slicings formula from Theorem 2.3, using (3.3). We now briefly discuss the quasi-bipartite
case: let ℓ1, ℓ2 be positive half-integers, and ℓ3, . . . , ℓn be non-negative integers, n ⩾ 3. Then,
by [Tut62, Section 6], the number M(ℓ1, . . . , ℓn) of planar quasi-bipartite maps with n labeled
boundaries of prescribed lengths 2ℓ1, . . . , 2ℓn reads

M(ℓ1, . . . , ℓn) = (ℓ1 + · · ·+ ℓn − 1)n−3

(
2ℓ1 − 1

ℓ1 − 1
2

)(
2ℓ2 − 1

ℓ2 − 1
2

) n∏
i=3

(
2ℓi − 1

ℓi

)
. (3.8)

The tight core decomposition works as before and we find that (3.3) still holds, upon understand-
ing that the sums over m1 and m2 should be now taken over half-integer values, Aℓ,m being still
defined by (3.2) for ℓ,m half-integers. By a slight variant of the reasoning above, we may deduce
Theorem 2.8 with the multivariate polynomial p̃k(m1,m2;m3, . . . ,mn) being given by (2.20).
Namely, we modify the expansion (3.5) of the falling factorial by replacing ℓ1 − 1 and ℓ2 in the
right-hand side by ℓ1 − 1

2
and ℓ2 − 1

2
, respectively, and we make use of the identity∑

m∈{ 1
2
, 3
2
,...,ℓ}

Aℓ,mp̃k(m) =

(
ℓ− 1

2

k

)(
2ℓ− 1

ℓ− 1
2

)
(3.9)

valid for ℓ a positive half-integer. Again, this identity can be proved either via algorithmic meth-
ods, or via a bijective argument: it is obtained by counting in two different ways planar maps
with one face of odd degree 2ℓ, one face of degree one and k + 1 distinct marked vertices, one
of them distinguished. The left-hand side is obtained by the tight-core decomposition together
with Proposition 2.10 (which will be derived bijectively in Section 4.1). As for the right-hand
side, note that, by collapsing the face of degree one, such maps correspond to rooted plane trees
with ℓ− 1

2
edges:

(
2ℓ−1
ℓ−1/2

)
is the number of such trees with one distinguished vertex, and

(
ℓ−1/2

k

)
is the number of ways to choose the k other marked vertices.

3.2. A non-bipartite slicings formula

By arguing similarly, we may use Theorem 2.12 to obtain a generalization of Tutte’s slicings
formula counting planar maps with a prescribed degree sequence. The relevant identity to use,
valid for ℓ− s+1+ϵ

2
∈ Z and ϵ ∈ {0, 1}, is∑

m∈Z⩾0/2

Aℓ,mπ
(ϵ)
r,s(m) =

(
2ℓ− 1

ℓ− s+1+ϵ
2

, ℓ− r − s+1−ϵ
2

, r , s

)
, (3.10)
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where in the left-hand side, we observe by (2.26) that only the terms for which ℓ − m ∈ Z⩾0

contribute, and in the right-hand side, we use a multinomial coefficient notation. To understand
this formula, recall from Proposition 2.14 that π(ϵ)

r,s(m) counts tight petal trees, i.e. tight maps
with an exterior face of degree 2m, s + 1 + ϵ petals, 1 + ϵ of which are distinguished, and
r+1− ϵ marked vertices, 1− ϵ of which are distinguished. By applying the tight core decompo-
sition, the left-hand side of (3.10) expresses the number of petal trees which are not necessarily
tight, with an exterior face of degree 2ℓ, and with the same number of (distinguished) petals
and (distinguished) marked vertices as described in the preceding sentence. Checking that this
number equals the right-hand side of (3.10) is a straightforward exercise based on the methods
used in Section 5.1 to prove Proposition 2.14, and is simpler due to the absence of the tightness
condition.

Formula (3.3) remains unchanged if ℓ1, . . . , ℓn are allowed to take half-integer values, except
that the corresponding sums should then run over half-integer mi’s as well. Substituting in (3.3)
the formula of Theorem 2.12 for N0,n(2m1, . . . , 2mn), we obtain the following:

Theorem 3.2 (A census of non-bipartite slicings). The number M(ℓ1, . . . , ℓn) of planar maps
with n labeled faces of degrees 2ℓ1, . . . , 2ℓn, at least four of which are odd, is given by

M(ℓ1, . . . , ℓn) =
∑

(ϵ1,...,ϵn
r1,...,rn
s1,...,sn

)
∈In

(
n∑

i=1

ri

)
!

(
n∑

i=1

ϵisi

)(
n∑

i=1

si − 1

)
!

×
n∏

i=1

(
2ℓi − 1

ℓi − si+1+ϵi
2

, ℓi − ri − si+1−ϵi
2

, ri, si

)
, (3.11)

where In is as in (2.29), and where it is understood that the multinomial coefficient vanishes
whenever ℓi − si+1+ϵi

2
is not an integer. The formula makes sense when some ℓi vanish, upon

understanding that a face of degree 0 is in fact a vertex.

Example 3.3. For ℓ1, . . . , ℓ4 ∈ Z⩾0+
1
2
, performing the sum in (3.11) yields a number of planar

maps with four labeled faces of odd degrees 2ℓ1, . . . , 2ℓ4 equal to

M(ℓ1, . . . , ℓ4) = (ℓ1 + · · ·+ ℓ4 − 2)
4∏

i=1

(
2ℓi − 1

ℓi − 1
2

)
. (3.12)

In particular, we find M
(
3
2
, 1
2
, 1
2
, 1
2

)
= 2 which, after rooting each face, gives a number of

slicings equal to 6 consistently with [Tut62, Section 6].

To our knowledge, this extension of Tutte’s slicings formula for general non-bipartite planar
maps with prescribed degrees is new. Note that (3.11) does not hold when the number of faces
of odd degree is zero or two, see the discussion in Remark 2.13 in the tight setting. Even though
we obtain Theorem 3.2 as a consequence of Theorem 2.12, the former could be proved directly
by the approach of Section 5, forgetting about the tightness constraint.
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Figure 4.1: The coding of planar tight maps with one face with degree 2m (here m = 11)
by dressed words with letters U , D◦ and D•. Left: in the context of Proposition 2.4, such a
map has k + 2 (here k = 7) marked vertices (represented as white, as in Figure 1.1), two of
them distinguished as vertex 1 and 2 (represented by a bigger red circle). The associated word,
indicated under the map, starts with a D◦. Right: in the context of Proposition 2.5, the map has
k + 1 marked vertices, one of them distinguished as vertex 1, and a root edge (represented in
thick red). The associated word ends with aU . We indicated under each word its visualization as
a lattice path, where the vertex markings have been transferred to descending steps (as indicated
by circles). We also indicated the starting oriented edge e for the contour word of each map.

4. Bijective proofs in the bipartite and quasi-bipartite cases

4.1. Case of maps with one face

In this section, we first present a combinatorial proof of Propositions 2.4 and 2.5 by a direct
enumeration of the planar tight bipartite maps with one face considered in these propositions.
Our approach is inspired from the bijective interpretation of Narayana numbers given in [DZ80,
Section 3.2].

More precisely, we wish to enumerate planar bipartite maps with one face of degree 2m,
which are nothing but plane trees with m edges (m ⩾ 1), endowed with a distinguished marked
vertex labeled 1, and either a second distinguished marked vertex labeled 2 in the context of
Proposition 2.4 or with a marked edge (the root edge) in the context of Proposition 2.5. These two
situations will be referred to respectively as “case (p)” and “case (q)” in the following, to remind
the reader that they concern the combinatorial interpretation of pk(m) and qk(m) respectively.
The trees are finally decorated by the choice of k additional unlabeled marked vertices (k ⩾ 0),
with the constraint that all the leaves of the tree are marked vertices (either labeled or unlabeled),
except possibly the endpoints of the root edge in the case (q) if it happens that such an endpoint
is a leaf.
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Our proof is based on the classical coding of plane trees by their contour word, here in
terms of the letters U (up) and D (down). The following discussion is illustrated on Figure 4.1.
Ignoring the k unlabeled vertex markings for now, the coding that we use here is adapted to trees
with both a marked vertex 1 and a marked oriented edge e whose choice in cases (p) and (q) will
be discussed below. For any such tree, the contour word is obtained as follows: we start from the
right of e and visit all the edge sides counterclockwise around the tree. We then record a letter U
if we move away from vertex 1 on the tree, and a letter D otherwise. After one turn around the
tree, we get a word of 2m letters containing m occurrences of U and m occurrences of D, since
the two sides of any given edge give rise to exactly one U and one D. Viewing the successive
U ’s and D’s as successive up and down steps, the coding may alternatively be represented as a
lattice path of length 2m starting and ending at the same height (a so-called bridge in the lattice
path terminology) and whose nodes correspond to the successive visited corners around the tree.
In this representation, the corners at vertex 1 are associated with the nodes with minimal height.
Setting the minimal height to 0, the height of a node is nothing but the graph distance to vertex
1 of the vertex incident to the associated corner. The above coding by words/paths is clearly
bijective.

To use this coding in the context of Propositions 2.4 and 2.5 where the trees already have a
distinguished vertex 1, we need a canonical prescription for the choice of the oriented edge e at
which we start the contour. In case (p) where the tree is endowed with a second distinguished
vertex 2, we take for e the first edge of the branch between vertex 2 and vertex 1, oriented towards
1. Clearly the knowledge of e and that of the vertex 2 are equivalent, but we note that, by
construction, the associated word necessarily starts with a D in case (p).

In case (q), we first orient the root edge away from vertex 1 and take for e the edge following
it along the counterclockwise contour around the tree. The edge e is therefore incident to the
endpoint of the root edge further away from vertex 1 and we orient it away from that vertex3.
Clearly the knowledge of e and that of the root edge are equivalent, but we note that, by con-
struction, the last visited edge side in the contour is that of the root edge itself, going away from
vertex 1, hence the associated coding word necessarily ends with a U in case (q).

It remains to introduce the k additional vertex markings. The markings may be recorded in
the coding word as follows: every vertex v distinct from vertex 1 may be associated bijectively
with a letter D of the coding word. Indeed v is bijectively associated with the edge e(v) incident
to v that belongs to the branch between v and the vertex 1 and exactly one of the two sides of e(v)
is coded by the letter D. If v is a marked vertex, we transfer its marking to the associated letter
D, which we denote by D◦ to record the marking. If v is not a marked vertex, the associated
letter D will be denoted by D•, so that the letter D eventually appears in two flavors D◦ and D•,
leading to dressed words made of the three letters U , D◦ and D•. In case (p), we also transfer
the marking of vertex 2, so that the first letter (which we know is originally a D) is now a D◦.
The numbers of U , D◦ and D• letters are therefore, respectively, m, k+1 and m−k− 1 in case
(p) and m, k and m− k in case (q).

Apart from possibly vertex 2 (which is marked anyway) in case (p) or possibly an endpoint
of the root edge (which needs not being marked) in case (q), any leaf in the tree corresponds

3Note that it may happen that the edge e be identical to the root edge itself, but with the opposite orientation, in
which case the first letter of the word is a D. In all other cases the first letter is a U .
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to a sequence UD in the associated word. Requiring that all leaves be marked boils down to
demanding that any D following a U be marked, i.e. the sequence UD• is not allowed in the
dressed words.

Altogether, a word coding for a tree in case (p) has the canonical form

D◦D
a1
• U b1D◦D

a2
• U b2 · · ·D◦D

ak+1
• U bk+1 (4.1)

where the ai and bi are nonnegative integers such that a1 + a2 + · · · + ak+1 = m − k − 1 and
b1+b2+· · ·+bk+1 = m. In other words, the ai and bi form weak compositions ofm−k−1 andm,
respectively, into k+1 summands. There are respectively

(
m−1
k

)
and

(
m+k
k

)
such compositions,

hence the number of trees in case (p) is
(
m−1
k

)(
m+k
k

)
= pk(m) as wanted.

Similarly, a word coding for a tree in case (q) has the canonical form

Da1
• U b1D◦D

a2
• U b2D◦ · · ·Dak

• U bkD◦D
ak+1
• U bk+1U (4.2)

where the ai and bi form weak compositions of m − k and m − 1, respectively, into k + 1
summands4. There are respectively

(
m
k

)
and

(
m+k−1

k

)
such compositions, hence the number of

trees in case (q) is
(
m
k

)(
m+k−1

k

)
= qk(m) as wanted.

This ends the combinatorial proof of Propositions 2.4 and 2.5.

Quasi-bipartite case. The proof of Proposition 2.10 is obtained along similar lines, see Fig-
ure 4.2 for an example. Indeed, we may transform bijectively a planar map with one face of odd
degree 2m (m ∈ Z⩾0 + 3/2), one face of degree 1 and a distinguished vertex 1 into a plane tree
with m− 1/2 edges with both a marked vertex 1 and a marked oriented edge e. This is done by
considering the unique vertex incident to the loop formed by the degree 1 face, by marking its
incident edge e lying immediately to the left of that loop, with e oriented away from the vertex
and finally erasing the loop. We can now use our coding of such pointed rooted trees by words
with 2m− 1 letters. Taking the markings into account gives rise to a dressed word with exactly
k occurrences of D◦, m− 1/2− k occurrences of D• and m− 1/2 occurrences of U , with no
occurrence of the sequence UD•, hence with canonical form

Da1
• U b1D◦D

a2
• U b2 · · ·D◦D

ak+1
• U bk+1 (4.3)

where the ai and bi are nonnegative integers such that a1 + a2 + · · · + ak+1 = m − k − 1/2
and b1 + b2 + · · · + bk+1 = m− 1/2. In other words, the ai and bi form weak compositions of
m−k−1/2 and m−1/2, respectively, into k+1 summands. There are respectively

(
m−1/2

k

)
and(

m+k−1/2
k

)
such compositions, hence the number of maps at hand is

(
m−1/2

k

)(
m+k−1/2

k

)
= p̃k(m)

as announced. This holds for m ⩾ 3/2. For m = 1/2, the value p̃k(1/2) = δk,0 is consistent
with the fact that there is a unique planar map with two (distinguished) faces of degree 1 and
one marked vertex labeled 1, which is its unique vertex so that the map cannot host any other
marked vertices when k > 0.

4Note that the case a1 = b1 = 0 corresponds to a word starting with a D◦ which, cyclically, comes after the
last letter U . This situation corresponds to the case where the endpoint of the root edge further away from vertex 1
is a leaf and is marked. The case a1 > 0 corresponds to the case where this vertex is a leaf and is unmarked and,
finally, the case a1 = 0, b1 > 0 corresponds to the case where this vertex is not a leaf.
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1

e

D•UD◦D•UUD◦D•UD◦UUUUD◦D•UD◦D◦UUD◦

Figure 4.2: The coding of planar tight maps with one face with odd degree 2m (here m = 23/2)
and one face of degree 1 by dressed words with letters U , D◦ and D•. As in Proposition 2.10
the map has k + 1 (here k = 7) marked vertices, one of them distinguished as vertex 1. We
indicated under the map the associated word, of length 2m− 1, and its visualization as a lattice
path. We also indicated on the map the starting oriented edge e for the contour word.

4.2. Case of maps with two faces

Let us now provide a bijective proof of Proposition 2.6. To this end, we will first need to reinter-
pret slightly the objects counted by pk(m), qk(m) that were discussed in the preceding section.

Definition 4.1. For given integers a ⩾ 1 and b ⩾ 0, an (a, b)-forest is a tight map with exactly
two faces f, f∗, such that:

• f∗ is a simple face5 of degree a+ b and one distinguished incident vertex v∗,

• the a vertices following and including v∗ in counterclockwise order around f∗ are not
marked.

We call the a vertices referred to above as the unmarkable vertices, and the other b vertices
are called the markable vertices. In the illustrating figures, starting with Figure 4.3, the latter will
be represented by white squares, while the former will be represented by crosses. Equivalently,
by removing the a + b edges incident to f∗, we may view an (a, b)-forest as a linearly ordered
collection of a+ b rooted plane trees starting from the one rooted at v∗, whose leaves (non-root
vertices of degree 1) are all marked, and such that the roots of the first a trees are unmarked
while those of the remaining b trees may be marked or not.

The size of an (a, b)-forest is the degree of the face f . If we view it as a collection of trees
as above, then this size is equal to 2e + a + b where e is the total number of edges in the trees
composing the forest.

5We say that a face is simple if its contour is a simple cycle, i.e. does not visit a same vertex several times.
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v∗v∗

f∗ f∗f

f

Figure 4.3: Left: an example of a (4, 2)-forest, with 9 marked vertices and size 28. The marked
vertices are represented as white, as in Figure 1.1. Note that none of the first 4 vertices arriving
in counterclockwise order after v∗ are marked, while the following 2 comprise one marked and
one unmarked vertex. Right: a schematic, generic representation of a (4, 2)-forest, where the
grey blobs represent tree components (that may be reduced to a single root vertex) and white
squares represent markable roots, while crosses represent unmarkable roots.

We now describe two simple bijections, illustrated on Figure 4.4, linking the numbers pk(m)
and qk(m) to the forests discussed above. First, recall from Proposition 2.4 the interpretation of
pk(m) as counting tight bipartite planar maps with one face f of degree 2m and k + 2 distinct
marked vertices, of which exactly two are labeled as 1 and 2. There is a natural operation con-
sisting in cutting open the branch γ linking the distinguished vertices, into a simple face f∗ of
degree 2d, where d ⩾ 1 is the graph distance between these vertices. In doing so, we duplicate
the vertices lying on the path γ, except its extremities, into “left and right” copies (upon orienting
γ from vertex 1 to vertex 2), and in case some of these vertices are marked, we always decide
to transfer the mark to the left copy. The vertex initially distinguished and labeled as 1 is then
renamed as v∗ and seen as unmarked, while we remove the mark and label on the vertex initially
labeled 2. The result is then a (d + 1, d − 1)-forest. Conversely, given a (d + 1, d − 1)-forest
for some d ⩾ 1, we can glue together the r-th edge of f∗ in counterclockwise order starting
from v∗ with the opposite (2d − r + 1)-th one, for r ∈ {1, 2, . . . , d}, relabel v∗ as vertex 1 and
the diametrally opposite vertex of f∗, lying at distance d from v∗, as vertex 2, and finally, after
gluing the vertices in pairs along the contour of f∗, transferring to the newly created vertices the
marks carried by all markable vertices. By construction, every markable vertex is matched to an
unmarkable vertex, and this operation is the inverse of the cutting procedure described above.
Finally, these operations preserve the number k of marked (unlabeled) vertices, and are size-
preserving in the sense that the degree 2m of the unique face of the map to be cut corresponds
to the size of the resulting forest.

Similarly, recall from Proposition 2.5 that qk(m) enumerates rooted tight bipartite planar
maps with one face f of degree 2m and k + 1 distinct marked vertices, exactly one of them
being distinguished and labeled as vertex 1. Let v be the vertex incident to the root edge of such
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pk(m) qk(m)

1 1

2

1

f∗
f∗

v∗ v∗

v

Figure 4.4: The cutting operation turning tight maps with one face into forests. On the left, tight
maps counted by pk(m) are cut into (d + 1, d − 1) forests, and on the right, rooted tight maps
counted by qk(m) become (d, d)-forests.

a map, and which is further away from vertex 1. Again, we cut open along the branch from
vertex 1 to v, with length d ⩾ 1 say, creating a simple face f∗ of degree 2d. We transfer the
marks along this path to the left copies of the vertices created in the cutting operation, and if v
happens to be marked, we keep this mark. Finally, we remove the mark on vertex 1 and rename
it as v∗. This results in a (d, d)-forest, since now the vertex diametrically opposite to v∗ in f∗ is
a markable vertex. This operation is clearly invertible by a similar gluing operation as above,
and it preserves the number of marked unlabeled vertices as well as the degree of f . We may
conclude with the following statement.

Proposition 4.2. For integers m ⩾ 1 and k ⩾ 0, the number pk(m) (resp. qk(m)) is the cardi-
nality of the set of (d+1, d−1)-forests (resp. (d, d)-forests) with size 2m and k marked unlabeled
vertices, where d can take any value in Z>0.

Our bijective proof of Proposition 2.6 will consist in showing that a tight map with two
faces f1, f2 of respective degrees 2m1, 2m2, and with k unlabeled marked vertices and one extra
distinguished marked vertex with label 1 can be decomposed uniquely and bijectively into a pair
of tight maps consisting in

• a (d1 + 1, d1 − 1)-forest with k1 marked vertices

• a (d2, d2)-forest with k2 marked vertices

where d1, d2 ⩾ 1 and k1 + k2 = k. By Proposition 4.2 and the definition (2.5) of pk(m1,m2),
this immediately implies Proposition 2.6.

Given an (a, b)-forest and an integer c such that 1 ⩽ c ⩽ min(a− 1, b), the c-partial gluing
of the forest is the map obtained by gluing the r-th edge following v∗ in counterclockwise order
around f∗ with the opposite (a + b + 1 − r)-th one, for r ∈ {1, 2, . . . , c}, and transferring any
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f∗

v∗

f∗∗

v∗∗

1

Figure 4.5: The 2-partial gluing of a (5, 3)-forest yielding a (2, 2)∗-forest.

mark on the markable vertices to the resulting glued vertices. The vertex inherited from v∗ in
the new map is distinguished and labeled as vertex 1, while the last vertex to be glued, lying
at distance c from v∗, is distinguished and called v∗∗. Since c ⩽ min(a − 1, b), some edges
remain unglued, and the resulting map still has two faces which we call f, f∗∗, where f∗∗ is the
“remnant” of f∗, of degree a + b − 2c, and we do not change the name for the exterior face
since it has the same contour information as the original face. Moreover, the assumption that
c ⩽ min(a− 1, b) implies that every markable vertex is glued to an unmarkable vertex.

The obtained map is then an (a′, b′)∗-forest with a′ = a− c−1 and b′ = b− c+1, according
to the following definition, similar to Definition 4.1:

Definition 4.3. For integers a ⩾ 0 and b ⩾ 1, an (a, b)∗-forest is a tight map with exactly two
faces f, f∗∗, such that:

• f∗∗ is a simple face of degree a+ b,

• there is an extra distinguished vertex labeled 1 incident to the face f , and we let v∗∗ be the
vertex incident to f∗∗ that is closest to 1,

• the a vertices following and excluding v∗∗ in counterclockwise order around f∗∗ are not
marked.

The partial gluing operation is clearly invertible, by cutting along the simple path of length
c from v∗∗ to the distinguished labeled vertex 1. See Figure 4.5 for an illustration.

Proof of Proposition 2.6. Let m1,m2, d1, d2 be positive integers, and k1, k2 be non-negative
integers. Suppose we are given a (d1+1, d1−1) forest f1 with size 2m1 and k1 marked vertices,
and a (d2, d2) forest f2 with size 2m2 and k2 marked vertices. We let v∗,1, v∗,2 be the distinguished
vertices in these maps. As explained above, we wish to use these pieces to build a planar tight
map with two faces of degrees 2m1, 2m2, with k = k1+ k2 marked unlabeled vertices, and with
one extra distinguished vertex. There are three possible situations, illustrated in Figure 4.6.
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Suppose first that d1 = d2 = d. Then we can glue together the two simple boundaries of
f1 and f2, in such a way that v∗,1 and v∗,2 are glued together into a single distinguished vertex
labeled 1. The next d unmarkable vertices after v∗,1 (resp. the last d− 1 markable vertices) of f1
are then glued to the last d markable vertices (resp. the d−1 unmarkable vertices following v∗,2)
of f2. The result is a tight map with two faces of degrees 2m1, 2m2, and with k1 + k2 marked
unlabeled vertices as well as a distinguished marked vertex labeled 1 lying on the boundary of
both faces.

Suppose next that d1 > d2. In this case, we first perform the (d1 − d2)-partial gluing of f1,
resulting in a (d2, d2)

∗-forest (with distinguished vertex called v∗∗,1), which we glue along the
simple face of f2 by identifying v∗∗,1 and v∗,2. Note that each of the d2 markable vertices on
either side of the gluing is matched with an unmarkable vertex on the other side. The resulting
map has a distinguished labeled vertex incident to f1 but not to f2.

Finally, the case d2 > d1 is similar, except that we now perform the (d2 − d1)-partial gluing
of f2 first, resulting in a (d1 − 1, d1 + 1)∗-forest, whose d1 + 1 markable vertices and d1 − 1
unmarkable vertices are matched with the d1 + 1 unmarkable vertices and d1 − 1 markable
vertices of f1. The resulting map has a distinguished labeled vertex incident to f2 but not to f1.

The above construction can clearly be inverted by the following cutting operation. Start from
a tight map m with two faces f1, f2, k marked vertices and one extra distinguished vertex labeled
1. We observe that such a map is unicyclic, and therefore contains a unique simple cycle γ, of
length 2d ⩾ 2 say. We cut along this cycle, separating f1 and f2. Formally, this means that we
associate with m the two maps m1,m2 respectively obtained by removing all edges and vertices
that are incident to f2 but not f1 on the one hand, and f1 but not f2 on the other hand. Note that
for i ∈ {1, 2}, mi is made of the initial face fi and has an “exterior” simple face f∗,i which is the
remnant of the face f3−i. All marked vertices of m that are not on γ are naturally transferred to
either m1 or m2, and we need a convention to transfer the marked vertices lying on γ.

To this end, we distinguish the cases as above depending on whether the vertex labeled 1
is incident to both f1, f2, to f1 but not f2, or to f2 but not f1. In the first case, the cutting
operation splits the labeled vertex 1 into two copies v∗,1, v∗,2, respectively belonging to m1 and
m2, that we declare unmarkable. The d vertices following v∗,1 in counterclockwise order around
f∗,1 are declared unmarkable, as well as the d − 1 vertices following v∗,2 in counterclockwise
order around f∗,2, and all other vertices incident to f∗,1 and f∗,2 are declared markable. In this
way, every vertex of γ has been split into a a markable/unmarkable pair in m1 and m2. We
then transfer the marks that were located on the vertices γ to the unique associated markable
duplicate. This gives the wanted pair (f1, f2) = (m1,m2) of (d + 1, d − 1)- and (d, d)-forests,
of sizes 2m1 and 2m2, which receive k1 and k2 marked unlabeled vertices with k1 + k2 = k.

In the second case, we let v∗∗ be the vertex incident to f2 that is closest to the distinguished
vertex 1. When cutting along the cycle γ, this vertex is separated into two copies, one called
v∗∗,1 is incident to f∗,1 and is declared markable, as well as the d−1 vertices preceding it around
f∗,1, the other called v∗,2 is incident to f2,∗ and is declared unmarkable, as well as the d − 1
vertices following it around f∗,2. The map m2 =: f2 is then a (d, d)-forest, while we further
cut m1 along the simple path of length d′ ⩾ 1 from v∗∗,1 to the distinguished vertex 1, hence
creating a (d + d′ + 1, d + d′ − 1)-forest f1, attributing the marked vertices in the natural way
(this operation is the reverse of the d′-partial gluing of the resulting forest).
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The situation in the third case is similar, with a slightly different convention for the markable
and unmarkable vertices, as illustrated in Figure 4.6.

Quasi-bipartite case. We now consider the quasi-bipartite case where one assumes that
m1,m2 ∈ Z⩾0 + 1/2, that is, 2m1 and 2m2 are odd integers, and aim at proving Proposition
2.9. A discussion parallel to the above applies, except that the separating cycle between the two
faces of a tight map with faces of degrees 2m1 and 2m2 will have an odd length, say 2d− 1 for
some d ⩾ 1.

In this situation, unfolding the above argument mutatis mutandis, there is now a canonical de-
composition of a planar tight map with two faces of degrees 2m1, 2m2, with k marked unlabeled
vertices and one extra distinguished vertex labeled 1 into a pair formed of a (d1, d1 − 1)-forest
and a (d2, d2 − 1)-forest, for some d1, d2 ⩾ 1, respectively with sizes 2m1 and 2m2 and with k1
and k2 marked vertices, where k1+ k2 = k. The situation is therefore more symmetric since the
glued forests are of the same nature and have the same numbers of markable vertices.

By performing the (di−1)-partial gluing of the (di, di−1)-forest of size 2mi with ki marked
vertices, we see that such objects are in bijection with tight maps with one face of degree 2mi, one
face of degree 1, and ki marked vertices, which are precisely counted by p̃ki(mi), as discussed in
Section 4.1. Together with the above, this shows that p̃k(m1,m2) indeed enumerates the wanted
quasi-bipartite planar tight maps with two faces, as stated in Proposition 2.9.

4.3. Case of pointed rooted maps via slices

We now aim at proving Proposition 2.7, interpreting (n−1)! qn−1(m1,m2, . . . ,mn) as the num-
ber of pointed rooted planar tight bipartite maps with n labeled boundaries of respective lengths
2m1, . . . , 2mn, where m1, . . . ,mn are integers not all equal to zero. To this end, we will need
the slice decomposition developed in [BG12, BG14]. Here, we follow closely the presentation
of [Bou19, Section 2.2] and adapt it to the tight setting.

A slice is a planar map with one distinguished exterior face, whose contour carries three dis-
tinguished (but not necessarily distinct) corners A, B and C appearing in this counterclockwise
order around the map, that split the contour in three parts:

• the contour segment AB, called the left boundary6, which is a geodesic path,

• the contour segment AC, called the right boundary, which is the unique geodesic path
between its two endpoints, and intersects the left boundary only at A,

• the contour segment BC, called the base.

The length of the base (i.e. the number of edges on the corresponding contour segment, counted
with multiplicity) is called the width of the slice. The length of the left boundary is called the
depth, and the depth minus the length of the right boundary is called the tilt. The corner A is
called the apex.

6Note that, in the accepted denominations “left boundary” and “right boundary”, the term “boundary” has a
meaning different from that in the rest of the paper.
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Figure 4.6: Decomposition of a tight map with two faces f1, f2, k marked unlabeled vertices
and one extra distinguished labeled vertex, into two forests. The top left, top right, and bottom
pictures represent respectively the situations where the distinguished labeled vertex belongs to
the common boundary of f1 and f2, is incident to f1 but not f2, and is incident to f2 but not
f1. We denote by 2d the length of the cycle separating f1 and f2. In the first case, the map is
decomposed into a (d + 1, d − 1) forest glued to a (d, d) forest. In the second case, the map is
decomposed into the (d1 − d)-partial gluing of a (d1 +1, d1 − 1)-forest with a (d, d)-forest, and
in the third case, it is instead a (d + 1, d − 1)-forest glued to the (d2 − d)-partial gluing of a
(d2, d2)-forest. Note that, on this picture, the counterclockwise order along the face f∗,2, which
is the “exterior” simple face of m2, appears to be clockwise, since f∗,2 is the unbounded face in
the plane embedding.
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Figure 4.7: The different types of tight elementary slices, with marked vertices shown in white.
Left: the trivial slice. Center: the empty slice, in its unmarked and marked versions. Right: a
non-empty tight elementary slice

A slice of width 1 is called elementary. The tilt of an elementary slice is necessarily in
{1, 0,−1}. By the uniqueness property of the right boundary, there is a unique elementary slice
of tilt −1, called the trivial slice, which consists of a single edge with extremities A = B and
C. The trivial slice differs from the empty slice consisting in a single edge with extremities B
and A = C, which has tilt +1. If we restrict our attention to bipartite maps, as is the case in this
section, there are no slices with tilt 0.

Finally, a tight slice is a slice, elementary or not, that carries some marked vertices, in such
a way that

• all vertices of degree 1 distinct from those incident to A,B and C are marked,

• the right boundary carries no marked vertices.

Note that the vertex incident to B may possibly be marked, but not those incident to A and
C, even if those vertices have degree one. In particular, the empty slice comes with two tight
versions, depending on whether the vertex incident to B is marked or not, and we will call the
marked version the marked empty slice, which will play an important role later on. See Figure
4.7 for an illustration of the different types of tight elementary slices.

Pointed rooted maps and elementary slices. There is a simple one-to-one correspondence
between pointed rooted planar bipartite maps on the one hand7, and non-empty, bipartite ele-
mentary slices of tilt 1 on the other hand. Starting from a pointed rooted bipartite map m with
root e and distinguished vertex v, we can perform the opening operation O(m, e) that opens the

7Here, as for tight maps, we use the slightly unusual convention that a rooted map is a map with a distinguished,
non oriented edge.
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edge e into an exterior face of degree 2. We let b and c be the two corners incident to this new
face, where c is closest from v. We then cut open the map along the leftmost geodesic8 γ from c
to v, hence enlarging the exterior face. The resulting map is an elementary bipartite slice of tilt
1, if we let B be the corner inherited from b, A be the unique corner of the exterior face incident
to v, and C be the corner immediately following B as we walk with the exterior face on the right
(so that C is one of the two duplicates of c created after cutting). The fact that the right boundary
AC is the unique geodesic between these two extremities comes from the fact that γ was chosen
to be leftmost, and the slice is non-empty because it has at least one inner face, inherited from
the map we started with. Conversely, starting from a non-empty elementary bipartite slice of
tilt 1, we may glue “isometrically” together the left and right boundaries starting from the apex.
This results in a bipartite map pointed at the vertex v incident to the apex, and with a face of
degree 2 whose contour is made of the base and of the first edge of the left boundary incident
to B, which are necessarily distinct since the slice is non-empty. We may finally glue these two
edges together into a single edge e, at which we root the resulting map.

These two operations are inverse of one another. They specialize to a correspondence be-
tween pointed rooted planar tight bipartite maps and non-empty tight bipartite slices of tilt 1,
if we take the convention that the marks of marked vertices in m that belong to the leftmost
geodesic γ considered above should systematically be transferred to the left boundary of the
slice.

Decomposing a slice into a path decorated with elementary slices. Next, we discuss the
decomposition of a bipartite slice s of width w ∈ Z>0 and tilt t ∈ Z into a collection of ele-
mentary slices. We list the corners of the base as c0 = B, c1, . . . , cw = C, walking with the
exterior face on the right. We let ℓi = d(c0, A) − d(ci, A) for i ∈ {0, 1, . . . , w}, where d is
the graph distance in s, and the distance between two corners is defined as the distance between
their incident vertices. In particular, ℓw = t is the tilt of s, and L = (ℓ0, ℓ1, . . . , ℓw) is a walk
on Z with increments ℓi − ℓi−1 ∈ {−1,+1}, that we will systematically identify with the lattice
path made of the union of segments [(i− 1, ℓi−1), (i, ℓi)], 1 ⩽ i ⩽ n in the plane.

For every i ∈ {0, 1, . . . , w}, we let γi be the leftmost geodesic from ci to the apex A. In
particular, γ0 and γw are respectively the left and right boundary of s. For i ∈ {1, 2, . . . , w},
we let v′i be the first vertex common to γi−1 and γi. Then the map s′i delimited by these two
geodesics is an elementary bipartite slice with base ci−1ci, with apex A′

i incident to v′i, and with
tilt ti = ℓi − ℓi−1. If ti = −1, in which case we say that i is a down step, then s′i is trivial, while
if ti = +1, in which case we call i an up step, then s′i is non-trivial. It may however be the empty
slice, precisely when the geodesic γi−1 starts by following the base edge from ci−1 to ci.

With a bipartite slice s with width w and tilt t, we have associated a lattice path L from (0, 0)
to (w, t) with increments ±1, where each of the (w+ t)/2 up steps i is decorated with a bipartite
elementary slice s′i of tilt 1, while all the (w − t)/2 down steps are decorated with the trivial
slice, so that these last decorations are in fact irrelevant and can be omitted.

We can invert this decomposition: given a lattice path from (0, 0) to (w, t) whose up steps i
are decorated with bipartite elementary slices s′i of tilt 1 (and where s′i is the trivial slice if i is a
down step), we may associate a slice of width w in the following way. For every down step i, we

8See for instance [Bou19, Figure 2.1] for a careful definition of the leftmost geodesic from a corner to a vertex.
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identify the segment si = [(i− 1, ℓi−1), (i, ℓi)] of the lattice path with the associated trivial slice
s′i, hence color it in red as in Figure 4.7. Next, for every up step i, we consider an embedding
of s′i in the plane in which the base edge is the segment si, and so that the left boundary (resp.
the right boundary) is represented as a curve, monotone in its two coordinates, that starts from
(i−1, ℓi−1) (resp. (i, ℓi)), is entirely contained in [i−1, i]× [ℓi−1,∞) (resp. [i−1, i]× [ℓi,∞)),
and such that its r-th vertex, starting from the base, has its ordinate equal to ℓi−1 + r − 1 (resp.
ℓi + r − 1). By convention, the edges of the left boundaries of the slices s′i are declared blue,
while the edges of the right boundaries are declared red. Note that if s′i is an empty slice, then
the above operation simply consists in coloring the segment si in blue. Then, every red element
(either an edge lying on the right boundary of some slice, or the segment associated with a down
step of the lattice path), lying in some square [i− 1, i]× [ℓ− 1, ℓ], attempts to be matched to the
first available blue edge in some square [j − 1, j] × [ℓ − 1, ℓ] for some j > i, and all matched
edges are glued together. After this gluing is performed, we obtain a bipartite slice of width w
and tilt t, where the unmatched edges, i.e. the blue edges which are not preceded by red edges at
the same ordinate, and the red edges that are not followed by a blue edge at the same ordinate,
form respectively the left and right boundaries.

Let us now discuss how this decomposition behaves with respect to the tightness constraint.
We first observe that it associates with a tight bipartite slice s of width w ⩾ 1 and tilt t a lattice
path L from (0, 0) to (w, t) with ±1 steps decorated with tight elementary bipartite slices. The
only ambiguity that should be lifted is how we transfer the marks of marked vertices that belong
to the union of leftmost geodesics γi defined above to exactly one of their duplicates. We choose
the duplicate that belongs to the left boundary of the slice s′i, where i is the maximal index
such that the marked vertex at hand belongs to γi−1. Note that such a maximal index i always
exists, since, by definition, tight slices carry no marked vertices on their right boundaries, and
that the duplicate of the vertex is different from the apex of s′i by maximality of i. With these
conventions, all the slices s′i, 1 ⩽ i ⩽ w, with transferred marks, are tight slices.

Moreover, there is an additional restriction on the family L, (s′i, 1 ⩽ i ⩽ w) that guarantees
that the original slice be tight, i.e. that it contains no undesired unmarked vertices of degree 1.
Observe that, in the above correspondence, the vertex incident to a corner ci, i ∈ {1, . . . , w−1}
of the base distinct from the extremities will have degree 1 precisely in the situation where i
is a down step and i + 1 is an up step decorated with the empty slice. Indeed, if the vertex vi
incident to ci has degree 1, then the vertices vi−1 and vi+1 incident to the corners ci−1 and ci+1 are
the same vertex, and therefore the geodesics γi and γi+1 delimit the empty slice, since γi meets
γi+1 after one single step. Conversely, in the gluing procedure, if a down step i is immediately
followed by an up step i+ 1, then the “red” segment [(i− 1, ℓi−1), (i, ℓi−1 − 1)] associated with
the down-step i will be matched to the first edge of the left boundary of the slice s′i+1. This will
result in a vertex of degree 1 precisely when this first edge is equal to the base edge, and the only
elementary slice of tilt 1 with this property is the empty slice. Consequently, in a tight slice,
every such up step i + 1 is decorated with a slice s′i that is either non-empty, or is the marked
empty slice, that is the empty slice with marked base vertex B.

By forgetting the redundant information of up steps that are decorated with unmarked empty
slices, that is, by letting (sj, 1 ⩽ j ⩽ k) be the sequence (s′i, 1 ⩽ i ⩽ w) whose trivial and
unmarked empty elements have been removed, we obtain the following result.
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Proposition 4.4. There is a one-to-one correspondence between tight bipartite slices of width w
and tilt t on the one hand, and pairs of the form (L, (sj, 1 ⩽ j ⩽ k)) on the other hand, where:

• L is a lattice path from (0, 0) to (w, t) with ±1 steps, that has k marked up steps, in such
a way that every up step immediately following a down step is marked,

• for 1 ⩽ j ⩽ k, sj is either the marked empty slice or a tight bipartite elementary slice
with at least one inner face.

Now observe that if s is a non-empty bipartite slice with tilt 1, then the base edge is incident
to an inner face. Calling 2m > 0 the degree of this face, and after removing the base edge, we
obtain a bipartite slice with width 2m − 1 and tilt 1. This simple operation preserves the tight
characters of the maps at hand, which implies the following:

Corollary 4.5. There is a one-to-one correspondence between non-trivial, non-empty tight bi-
partite elementary slices, whose inner face incident to the base edge has degree 2m > 0 on
the one hand, and pairs of the form (L, (sj, 1 ⩽ j ⩽ k)) on the other hand, where k is some
non-negative integer and:

• L is a lattice path from (0, 0) to (2m− 1, 1) with ±1 steps, that has k marked up steps, in
such a way that every up step immediately following a down step is marked,

• for 1 ⩽ j ⩽ k, sj is either the marked empty slice or a tight bipartite elementary slice
with at least one inner face.

Finally, by convention, we extend the above correspondence by associating with the marked
empty slice the pair ({(0, 0)},∅) consisting of the trivial lattice path of length zero, with no
marks.

By iterating the decomposition of this corollary, i.e. inductively replacing each non-empty
elementary slice in the above decomposition by a lattice path with some marked up steps, and
an ordered family of as many elementary slices, we obtain a plane tree (where the plane order
is induced by the order of the up steps to which the slices are connected). See Figure 4.9 for an
illustration. For integers m1, . . . ,mn not all equal to 0, let T (m1, . . . ,mn) be the family of pairs
(t, (Li)1⩽i⩽n) where:

• t is a rooted plane tree with vertices labeled by {1, 2, . . . , n}, and, denoting by ki the
number of children of the vertex labeled i in t,

• if mi > 0 then Li is a lattice path from (0, 0) to (2mi−1, 1) with ki marked up steps, such
that all up steps immediately following a down step are marked,

• if mi = 0 then Li is the trivial path {(0, 0)}, in which case necessarily ki = 0.

Corollary 4.6. For any non-negative integers m1, . . . ,mn not all equal to 0, the iterated slice
decomposition yields a one-to-one correspondence between pointed rooted planar tight maps
with n labeled boundaries of respective lengths 2m1, . . . , 2mn, and the set T (m1, . . . ,mn).
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Figure 4.8: Illustration of the decomposition of a non-empty elementary tight slice of tilt 1 into
a lattice path decorated with elementary slices. The middle picture shows the decomposition
along the leftmost geodesics started from the corners of the inner face incident to the base. The
right-hand side shows the result of the decomposition. Note that the trivial and empty slices
s′2, s

′
4 and s′5 may be discarded, at the price of transferring their color to the corresponding step

of the lattice path, while the two other slices are non-empty and therefore correspond to marked
up steps. Note also that the second up step, which is consecutive to the first down step, is marked,
as is required.

We are now in position to prove Proposition 2.7. Note that the number of lattice paths of
length 2m − 1 from 0 to 1 that has exactly k marked up steps, including all up steps immedi-
ately following down steps, is precisely the number qk(m). Indeed, they are exactly counted by
the words discussed in Section 4.1, with m − 1 letters U , m − k letters D• and k letters D◦,
with forbidden subword UD• (up to flipping upside down the lattice paths to better match the
interpretation of the letters U,D). In fact, this even holds for m = k = 0 since in this case
qk(0) = δk0, so we interpret q0(0) combinatorially as counting the unique marked empty slice.

We now proceed to enumerating the elements of the set T (m1, . . . ,mn). By [BM14, Section
5, Equation (18)], for a given n-uple (k1, . . . , kn) of non-negative integers, if k1+· · ·+kn = n−1
then there are exactly (n−1)! rooted labeled plane trees on the vertex set {1, 2, . . . , n} such that
vertex i has ki children for all i = 1, . . . , n, and there are no such tree otherwise. For any such
tree t, there are

∏n
i=1 qki(mi) possible choices of marked lattice paths Li, 1 ⩽ i ⩽ n such that
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Figure 4.9: Iterating the slice decomposition yields a plane tree whose vertices are decorated
by marked paths. On this picture, we do not represent the lattice paths, but encode them us-
ing a color code on polygons drawn around the vertices of t, where black/blue correspond to
marked/unmarked up steps and red to down steps. Note that some of the terminal nodes of t cor-
respond to non-trivial paths with no marked steps, while some others correspond to the trivial
path, represented as white dots, and are associated in turn to the marked vertices of the original
tight slice.

(t, (Li)1⩽i⩽n) belongs to T (m1, . . . ,mn). This finally explains the wanted formula

N0,n+2(2m1, . . . , 2m2, 2, 0) = (n− 1)!
∑

k1,...,kn⩾0
k1+···+kn=n−1

n∏
i=1

qki(mi)

= (n− 1)! qn−1(m1, . . . ,mn) ,

(4.4)

which concludes the proof.

4.4. General case

We will now prove Theorem 2.3 in all generality, as well as its quasi-bipartite analog, Theo-
rem 2.8. As the case of maps with one face was already treated in Section 4.1, it suffices to treat
the case where the first and second boundaries are faces, that is when m1,m2 > 0. To this end,
we will combine the ideas of Sections 4.2 and 4.3 via the following:

Proposition 4.7. Let m1,m2 be positive integers or half-integers and let m3, . . . ,mn be non-
negative integers (n ⩾ 3). Then, there is a bijection between the set of planar tight maps with n
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boundaries labeled from 1 to n with respective lengths 2m1, 2m2, . . . , 2mn, and the set of pairs
(m12, s) such that there exists k ∈ {0, . . . , n− 3} for which:

• m12 is a planar tight two-face map, with two faces of respective degrees 2m1 and 2m2,
and k + 1 distinct marked vertices, one of them distinguished,

• s = (s1, . . . , sk+1) is a (k + 1)-tuple of slices such that:

– for each j = 1, . . . , k + 1, sj is either the marked empty slice or a tight bipartite
elementary slice with at least one inner face, whose inner faces and marked vertices
are labeled by integers in {3, . . . , n},

– each i ∈ {3, . . . , n} appears in exactly one sj and labels an inner face of degree 2mi

for mi > 0, or a marked vertex for mi = 0,

– the label 3 appears in the first slice s1.

Before proving this proposition, let us see how it implies Theorems 2.3 and 2.8. We start
with the former: our purpose is to enumerate the pairs (m12, s) of the proposition when m1

and m2 are integers. For a fixed k ∈ {0, . . . , n − 3}, the number of possible maps m12 is
equal to pk(m1,m2) by Proposition 2.6, which we proved in Section 4.2. As for the number of
possible s, it is given by a slight variant of the reasoning in Section 4.3. Indeed, by recursively
decomposing each slice sj into a tree of lattice paths, we see that the set of possible (k+1)-tuples
s is in bijection with the set Fk+1(m3, . . . ,mn) defined as the set of pairs (f , (Li)3⩽i⩽n) where:

• f is a plane forest with k+1 connected components, i.e. a (k+1)-tuple of rooted plane trees,
whose vertices are labeled by {3, . . . , n}, the label 3 appearing in the first component,

• denoting by ki the number of children of the vertex labeled i in f :

– if mi > 0 then Li is a lattice path from (0, 0) to (2mi−1, 1) with ki marked up steps,
such that all up steps immediately following a down step are marked,

– if mi = 0 then Li is the trivial path {(0, 0)}, in which case necessarily ki = 0.

Note that F1(m3, . . . ,mn) is nothing but the set T (m3, . . . ,mn) as defined in Section 4.3. By
Proposition A.1 of Appendix A below, for a given n-uple (k3, . . . , kn), if k3+· · ·+kn = n−3−k
then there are exactly (n−3)! plane forests on the vertex set {3, . . . , n}with k+1 components, the
first of which contains the label 3, and such that vertex i has ki children for all i = 3, . . . , n, and
there are no such forests otherwise. For any such forest f , there are

∏n
i=3 qki(mi) possible choices

of marked lattice paths Li, 3 ⩽ i ⩽ n such that (f , (Li)3⩽i⩽n) belongs to Fk+1(m3, . . . ,mn).
This gives

Card (Fk+1(m3, . . . ,mn)) = (n− 3)!
∑

k3,...,kn⩾0
k3+···+kn=n−3−k

n∏
i=3

qki(mi)

= (n− 3)! qn−3−k(m3, . . . ,mn).

(4.5)
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Figure 4.10: Sketch of an annular map m (left) and of its universal cover m̃ (right). The external
face 1 and the central face 2 of m lift respectively to the lower face 1̃ and to the upper face 2̃ of
m̃, which have infinite degrees (marked corners are represented by arrows). All the other faces
form the grey region. The innermost minimal separating cycle γ lifts to a biinfinite geodesic γ̃.

Thus, multiplying by pk(m1,m2), summing over k and using (2.5), we get

N0,n(2m1, 2m2, 2m3 . . . , 2mn) = (n− 3)!
n−3∑
k=0

pk(m1,m2)qn−3−k(m3, . . . ,mn)

= (n− 3)! pn−3(m1,m2,m3, . . . ,mn)

(4.6)

as wanted. This concludes the proof of Theorem 2.3 assuming Proposition 4.7.
If we now assume that m1,m2 are half-integers, the only change we have to do in the above

reasoning is that, for a fixed k, the number of possible maps m12 is now equal to p̃k(m1,m2) by
Proposition 2.9 (also proved in Section 4.2). Thus, by (2.5) and (2.20), we now have

N0,n(2m1, 2m2, 2m3 . . . , 2mn) = (n− 3)!
n−3∑
k=0

p̃k(m1,m2)qn−3−k(m3, . . . ,mn)

= (n− 3)! p̃n−3(m1,m2;m3, . . . ,mn)

(4.7)

which establishes Theorem 2.8.
The remainder of this section is devoted to the proof of Proposition 4.7. It uses the slice de-

composition of annular maps which was introduced in [BG14, Section 9.3], see also [Bou19,
Section 2.2] for another exposition. Here we will give yet another, modernized, exposition
which, following [BGM22], makes use of the key notion of Busemann function.

Decomposing an annular map into a pair of paths decorated with elementary slices. Let
m be an annular map, that is a planar map with two distinguished faces labeled 1 and 2. For
now, we do not assume that m is a tight map, but we assume that every face other than 1 and
2 has even degree. Denoting by 2m1 and 2m2 the respective degrees of 1 and 2, m is either
bipartite when m1 and m2 are integers, or quasi-bipartite when they are half-integers.
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Let us choose a representation of m in the complex plane such that face 1 is the unbounded
face, and such that the origin (point of affix zero) lies in face 2. We then consider the preimage
m̃ of m by the mapping z 7→ exp(2iπz): it is an infinite map which we call the universal cover
of m (upon viewing 0 and ∞ as “punctures”). We refer to [BGM22] for a detailed discussion
of the properties of the universal cover of a map drawn on the triply-punctured sphere, it can be
adapted without difficulty to the simpler case considered here of a map drawn on the doubly-
punctured sphere. For our purposes, we simply note that the faces 1 and 2 lift in m̃ to unique
faces 1̃ and 2̃, which have infinite degrees, while all the other faces and vertices of m lift to
infinitely many preimages in m̃ with the same finite degree. In particular, m̃ is bipartite. See
Figure 4.10 for an illustration.

Let s denote the separating girth of m, that is the minimal length (number of edges) of a
closed path in m winding around the origin. We call such path a separating cycle and say that
it is minimal if it has length s. Let then γ be the innermost minimal separating cycle, which we
define as follows. Consider the interiors of all minimal separating cycles. It is straightforward
to check that their intersection is a simply connected region containing the origin, and that its
boundary oriented clockwise is still a minimal separating cycle: this is the innermost minimal
separating γ that we are looking for. We consider the path γ̃ = (γ̃(t))t∈Z obtained by following γ
counterclockwise infinitely many times and lifting this biinfinite path in m̃. The parametrization
of γ̃ depends on a choice of a vertex γ̃(0) whose projection belongs to γ, but we will see that
the outcome of our construction does not depend on it. By [CdVE10, Proposition 2.5], γ̃ is a
biinfinite geodesic in m̃, which by definition means that

d̃(γ̃(t), γ̃(t′)) = |t− t′| (4.8)

for any t, t′ ∈ Z, where d̃ denotes the graph distance in m̃. We now define the Busemann function
Bγ̃ from the vertex set Ṽ of m̃ to Z by

Bγ̃(v) := lim
t→∞

d̃(v, γ̃(t))− t, v ∈ Ṽ . (4.9)

By the triangle inequality, one easily checks that the limit indeed exists and is attained for t
large enough (for instance Bγ̃(γ̃(s)) = −s for every s in Z). Furthermore, for any two adjacent
vertices v, v′ we have Bγ̃(v) − Bγ̃(v

′) = ±1 (since m̃ is bipartite), and every vertex v has a
neighbor v′ for which this difference is +1 (i.e. Bγ̃ has no local minimum). Let us denote by
T the automorphism of m̃ corresponding to the translation z 7→ z + 1 of the complex plane
(it corresponds to making one turn counterclockwise around the origin in m): we then have
Bγ̃(Tv) = Bγ̃(v)− s as a consequence of the relation T γ̃(t) = γ̃(t+ s).

Now, let us denote by (ci)i∈Z and (c′i)i∈Z the successive corners incident to the faces 1̃ and
2̃, respectively, as we follow their contours walking with the face at hand to the right. This
depends on a choice for the corners c0 and c′0, whose influence will be discussed later. We have
Tci = ci+2m1 and Tc′i = c′i−2m2

for all i.
We then set, for any i ∈ Z, ℓi := Bγ̃(c0) − Bγ̃(ci) and ℓ′i := Bγ̃(c

′
0) − Bγ̃(c

′
i) (these

differences do not depend on the choice of γ̃(0), as claimed). Observe that the definition of ℓi is
analogous to that used in Section 4.3 for the decomposition of a slice into a path decorated with
elementary slices: the distance to the apex d(·, A) is just replaced by the Busemann function
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Figure 4.11: Sketch of the decomposition of the universal cover of an annular map into slices.
The leftmost infinite geodesics (shown in dotted lines) eventually merge with the biinfinite
geodesic γ̃ (shown in dashed lines). These geodesics delimit slices σi and σ′

i, i ∈ Z. In the
situation displayed here, the slices σ2, σ7, σ′

1, etc, are trivial slices (reduced to an edge).

Bγ̃(·). The sequences ℓ = (ℓi)i∈Z and ℓ′ = (ℓ′i)i∈Z form infinite lattice paths (with increments
±1) which are periodic: indeed, we have ℓi+2m1 = ℓi+s and ℓ′i+2m2

= ℓ′i−s for all i. Thus, these
sequences are entirely determined by their data in a fundamental domain: L := (ℓ0, ℓ1, . . . , ℓ2m1)
and L′ := (ℓ′0, ℓ

′
1, . . . , ℓ

′
2m2

) form lattice paths connecting (0, 0) to respectively (2m1, s) and
(2m2,−s).

With each corner ci, we associate the leftmost infinite geodesic γi = (γi(t))t⩾0 defined in-
ductively as follows. We let γi(0) be the vertex incident to ci and, assuming that γi(t) is known,
we let γi(t+ 1) be the leftmost vertex such that Bγ̃(γi(t+ 1)) = Bγ̃(γi(t))− 1, using the edge
γi(t− 1)γi(t) (or the corner ci for t = 0) as a reference. We define in the same way the leftmost
infinite geodesic γ′

i starting at c′i. We may check that each of these leftmost geodesics eventually
merges with γ̃ (for γ′

i, this uses the fact that we chose γ to be the innermost minimal separating
cycle).

Let σi (resp. σ′
i) be the map delimited by γi−1 and γi (resp. γ′

i−1 and γ′
i), which we stop at

their first common vertex vi (resp. v′i). It is an elementary bipartite slice with base ci−1ci (resp.
c′i−1c

′
i). As in Section 4.3, the slice is trivial whenever i corresponds to a down step of ℓ (resp.

ℓ′), and is non-trivial otherwise (but may be empty). By periodicity, we have σi = σi+2m1 and
σ′

i = σ′
i−2m2

(in the sense of equality as maps). Note that every finite face, edge and vertex of
m̃ belongs to exactly one slice σi or σ′

i deprived of its right boundary.
Let us finally discuss the roles of the reference corners c0 and c′0. Changing the reference

corner c0 amounts to translating the lattice path ℓ, and to reparametrizing the sequence σ =
(σi)i∈Z by a translation of i. In particular, both ℓ and σ are invariant if we change c0 into one
its translates T kc0, thus they only depend on the choice of a corner incident to face 1 in m.
Similarly, ℓ′ and σ′ = (σ′

i)i∈Z only depend on the choice of a corner incident to face 2 in m.
Let us now assume that the map m has a third distinguished element (face or vertex) labeled

3, which is indeed the case in the setting of Proposition 4.7. Then it is possible to choose corners
incident to faces 1 and 2 in a canonical way. Namely, we pick a preimage 3̃ of 3 in m̃: 3̃ belongs
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to precisely one slice σi or σ′
i deprived of its right boundary. If 3̃ belongs to a σi, then by

changing the reference corner c0 we can ensure that it belongs to σ1. Then, we choose c′0 in such
way that Bγ̃(c

′
0) = Bγ̃(c0): this is possible because the function Bγ̃(·) has ±1 increments along

the contour of 2̃ and decreases by s over a translation T , hence it is surjective. There might exist
several such c′0, in which case we pick the last one, so that Bγ̃(c

′
i) ̸= Bγ̃(c

′
0) for every i > 0. If

3̃ belongs to a σ′
i, we proceed in the same way upon exchanging the roles of c0 and c′0.

Lemma 4.8. The above construction is a bijection between:

• the set of maps m with two marked faces of degrees 2m1, 2m2 ∈ Z>0 and all other faces of
even degree, with a third distinguished face or vertex, and with separating girth s ∈ Z>0,

• the set of quadruples (L,L′,σ,σ′), where L and L′ are lattice paths connecting (0, 0) to
respectively (2m1, s) and (2m2,−s), whereσ andσ′ are sequences of elementary slices of
respective periods 2m1 and 2m2, such that for every i = 1, . . . , 2m1 (resp. i = 1, . . . , 2m2)
the tilt of σi and (resp. σ′

i) is equal to ℓi − ℓi−1 (resp. ℓ′i − ℓ′i−1), where either σ1 or σ′
1

carries a distinguished face or vertex, and where L′ (resp. L) does not return to height 0
if σ1 (resp. σ′

1) carries the distinguished element.

To prove this lemma, we now describe the inverse procedure which consists in assembling
an annular map m from a quadruple (L,L′,σ,σ′).

Assembling an annular map from a pair of paths decorated with elementary slices. Using
the lattice path L and the sequence of slices σ restricted to a period, we may use the inverse of
the decomposition described in Section 4.3 to obtain a slice Σ of width 2m1 and tilt s. We then
perform the operation described in [BG14, Section 7.1] and called wrapping in [Bou19, Section
2.2]. It consists in gluing “isometrically” the left and right boundaries of Σ together, but unlike
the gluing performed in Section 4.3 to obtain a pointed rooted map, we now start from the two
endpoints of the base of Σ which we identify together, and perform the gluing from there (see
the illustrations in the aforementioned references). As the tilt s is positive, the s edges of the
left boundary closest to the apex remain unglued. This produces an annular map m1 whose
two distinguished faces have respective degrees 2m1 and s, the latter resulting from the unglued
edges, the former resulting from the base, whose two identified endpoints yield a distinguished
corner denoted c.

Similarly, the lattice path L′ and the sequence of slices σ′ yield a slice Σ′ of width 2m2 and
tilt −s, whose wrapping produces an annular map m2 with two distinguished faces of respective
degrees 2m2 and s (since the tilt of Σ′ is negative, it is now the s edges closest to the apex on
the right boundary that form this latter face), the former having a distinguished corner denoted
c′.

The annular map m is then obtained by gluing the two annular maps m1 and m2 together
along the contours of their distinguished faces of degree s. The contour then becomes a sepa-
rating cycle γ, which can be shown to have minimal length. Note that there are a priori s ways
to glue m1 and m2 together, however only one way is compatible with the prescription that,
in the universal cover m̃ of m, the corners c and c′ admit respective lifts c0 and c′0 such that
Bγ̃(c0) = Bγ̃(c

′
0) where γ̃ is the infinite geodesic constructed by lifting γ.
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We may check that the assembling procedure is indeed the inverse of the decomposition de-
scribed above. The most subtle point is to show that any quadruple (L,L′,σ,σ′) is left invariant
if we assemble it then decompose the resulting annular map. This requires to check that the
boundaries of the slices become, in the annular map, precisely the leftmost geodesics that we
use in the decomposition. More details can be found in [BG14, Section 7].

Application to tight maps and end of the proof of Proposition 4.7. So far, all our discussion
holds without the assumption that m is tight. Adding this constraint amounts to two restric-
tions on the corresponding quadruple (L,L′,σ,σ′), which are similar to those encountered in
Section 4.3. First, every σi and σ′

i must be a tight elementary slice. Here, we use the natural
convention that the mark of a marked vertex is transferred to its copy in the unique slice deprived
of its right boundary that contains it (in particular, marked vertices lying on the separating cycle
γ have their marks transferred to σi’s and not to σ′

i’s). Second, the lattice paths ℓ and ℓ′ (which
are the periodic extensions of L and L′) must be such that every up step immediately following
a down step cannot be decorated with an unmarked empty slice.

To complete the proof of Proposition 4.7, we assume that m has n ⩾ 3 boundaries, labeled
1 to n. By the slice decomposition, the labels 3, . . . , n get distributed among the σi and σ′

i. Let
i1 ⩽ · · · ⩽ ij be the indices i between 1 and 2m1 such that σi is neither the unmarked empty
slice nor the trivial slice, i.e. contains at least one label. Let i′1 ⩽ · · · ⩽ i′j′ be similarly the
indices i between 1 and 2m2 such that σ′

i contains at least one label. We set k = j + j′ − 1 and
note that 0 ⩽ k ⩽ n−3 since there are n−2 labels in total to distribute among the slices. Recall
that, by the aforementioned prescription for choosing the reference corners, the label 3 is either
in σ1 or σ′

1. If it is in σ1, we set (s1, . . . , sk+1) := (σi1=1, . . . ,σij ,σ
′
i′1
, . . . ,σ′

i′
j′
). Otherwise,

we set (s1, . . . , sk+1) := (σ′
i′1=1, . . . ,σ

′
i′
j′
,σi1 , . . . ,σij). This defines the (k + 1)-tuple of slices

s of the proposition.
As for the two-face map m12, it is obtained as follows. Let ω and ω′ be the sequences

obtained from respectively σ and σ′ by replacing every slice different from the unmarked empty
slice and from the trivial slice with the marked empty slice. Then, m12 is the annular map
obtained by assembling the quadruple (L,L′,ω,ω′). It is by construction a tight two-face map
with k+1marked vertices, and we distinguish the marked vertex coming from the marked empty
slice which replaces the slice containing the label 3.

We check that the mapping m 7→ (m12, s) is a bijection by exhibiting the inverse bijection.
Let (m12, s) be a pair as in the proposition, and let (L,L′,ω,ω′) be the quadruple obtained
by decomposing the two-face map m12, its distinguished marked vertex playing the role of the
third distinguished element labeled 3 used in the construction of page 38. By construction the
sequences ω and ω′ consist only of empty or trivial slices, with a number k+1 of marked empty
slices. Replacing these marked empty slices with s1, . . . , sk+1, we obtain two sequences σ and
σ′ such that the assembling of the quadruple (L,L′,σ,σ′) gives the tight map m we are looking
for. This ends the proof of Proposition 4.7.
Remark 4.9. It might seem more direct to attempt to enumerate the quadruples (L,L′,σ,σ′).
But, since the paths L and L′ have a height variation depending on the separating girth s, this
leads to an expression involving a sum over s. The trick of “recombining” L and L′ into a
two-face map allows to circumvent this issue.
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5. Bijective proofs for non necessarily bipartite maps

In this section, we explain how the bijective approach of Section 4 may be extended so as to
enumerate planar tight maps which are not necessarily bipartite.

Recall from Section 2.2 that a petal is a face of degree one. The key idea to extend our
construction to the non bipartite case is to realize that petals play a role very similar to marked
vertices. Mimicking the organization of Section 4, we will first enumerate tight maps with a
single non-petal face in Section 5.1, then tight maps with just two non-petal faces in Section 5.2,
and finally tight maps with an arbitrary number of non-petal faces in Section 5.4. A prerequisite
to this latter enumeration will be that of tight non necessarily bipartite slices in Section 5.3.

Before we start our discussion, let us recall from Section 2.2 the definition of the polynomials

pk,e(m) :=
1

(k!)2

k∏
i=1

(
m2 −

(
i− e

2

)2)
=

(
m+ e

2
− 1

k

)(
m− e

2
+ k

k

)
(5.1)

for k ∈ Z⩾0. For m − e
2
∈ Z, we may interpret pk,e(m) as counting words of the form (4.1)

where the ai and bi are nonnegative integers such that a1 + a2 + · · · + ak+1 = m + e
2
− k − 1

and b1 + b2 + · · ·+ bk+1 = m− e
2

(i.e. the word has length 2m, k + 1 occurrences of D◦ and e
more D’s than U ’s). This interpretation holds a priori only for m ⩾ max

(
k + 1− e

2
, e
2

)
but this

domain may be extended to m ⩾ max
(
1− e

2
, e
2
− k
)

since pk,e(m) vanishes in the additional
domain.
Remark 5.1. Even though we will not use it in the sequel, let us mention that, by a variation of the
arguments of Section 4.1, we may show that, for m as above, pk,e(m) is the number of two-face
tight maps with one face of degree 2m, one simple face of degree |e| and k+1 marked vertices,
one of them distinguished, with the condition that for e < 0 no marked vertex is incident to the
face of degree e. Note that such maps are closely related with the notion of (a, b)∗-forests of
Definition 4.3: for e > 0, pk,e(m) counts (0, e)∗-forests with size 2m and k+ 1 marked vertices
including the distinguished vertex.

5.1. Petal trees

We recall that a petal tree is a planar map having an exterior face of arbitrary degree, and such
that every other face is a petal. A tight petal tree is just a petal tree with marked vertices, which
is tight as a map, see again Figure 2.1.

We also recall, for r, s ∈ Z⩾0, ϵ ∈ Z and m ∈ Z/2, the definition of the quasi-polynomial

π(ϵ)
r,s(m) :=

{(
r+s
s

)
pr+s,s+1+ϵ(m) if m− s+1+ϵ

2
∈ Z,

0 otherwise.
(5.2)

Our goal in this section is to prove Proposition 2.14, showing that, for m ∈ Z>0/2 and ϵ ∈
{−1, 0, 1}, π(ϵ)

r,s(m) enumerates tight petal trees with one exterior face of degree 2m, s + 1 + ϵ
petals (excluding the exterior face when m = 1/2), 1 + ϵ of which are distinguished, and r +
1− ϵ marked vertices, 1− ϵ of which are distinguished. The reason for the ϵ-dependence in the

41



statement is that we must distinguish two elements among marked vertices and petals. For this
reason, there are three situations to consider: we may distinguish two marked vertices (ϵ = −1),
two petals (ϵ = 1), or one of each type (ϵ = 0).

We note that, upon “labeling” the undistinguished elements, Proposition 2.14 is equivalent
to the more symmetric statement:

Proposition 5.2. For 0 ⩽ e ⩽ k + 2 and m ∈ Z>0/2, the number of tight petal trees with an
exterior face of degree 2m, with e petals and k+2− e marked vertices, all labeled, is given by:

N0,k+3(2m, 1, . . . , 1︸ ︷︷ ︸
e

, 0, . . . , 0︸ ︷︷ ︸
k+2−e

) =

{
k!pk,e(m) if m− e

2
∈ Z,

0 otherwise.
(5.3)

More precisely, Proposition 5.2 is recovered from Proposition 2.14 by setting k = r+ s and
e = s+1+ϵ (hence k+2−e = r+1−ϵ). The petal trees considered in Proposition 2.14 have s
(respectively r) non-distinguished petals (respectively marked vertices) which we may label in s!
(respectively r!) ways. Using s!r!

(
r+s
s

)
= (r+s)! = k!, we obtain (5.3) for 1+ϵ ⩽ e ⩽ k+1+ϵ,

hence for the whole range 0 ⩽ e ⩽ k + 2 by letting in ϵ vary in {−1, 0, 1}.

Proof of Proposition 2.14. Let us first discuss how we may code petal trees using words, or
equivalently lattice paths, as we did in Section 4.1 for ordinary trees. Note first that petal trees
have two types of edges: “tree-type” edges whose both sides are incident to the exterior face
and “petal-type” edges with one edge side incident to a petal and the other to the exterior face.
In particular, the tree-type edges have distinct endpoints and they form a plane tree (i.e. a map
with a single face), which we call the “wood” of the petal tree. Here the coding that we shall use
applies to rooted petal trees, i.e. petal trees where we distinguish a corner (the root corner) in
the exterior face (note that this also induces a rooting of the wood tree). Starting from this root
corner and following the contour of the exterior face going counterclockwise around the tree
(i.e. with the exterior face on the right), we record a letter U (respectively D) for each tree-type
edge visited while going away from (respectively towards) the root and a letter E for each visited
petal-type edge. The obtained three-letter word may alternatively be visualized as a lattice path
with three types of elementary steps: up, down and horizontal, associated respectively to the
letters U , D and E. This path is a Motzkin path of length equal to the degree 2m′ of the exterior
face, i.e. it goes from (0, 0) to (2m′, 0) and stays above the x-axis. Indeed, the ordinates of
the path are non-negative since they record graph distances to the root vertex incident to the
root corner. The number s′ of occurrences of the letter E in the coding word is nothing but the
number of petals, and is such that m′ − s′

2
, which is the number of U ’s (or equivalently of D’s),

is a nonnegative integer.
Let us now consider a rooted petal tree with marked vertices, where the root vertex is un-

marked, and such that all non-root leaves are marked. Every non-root vertex being bijectively
associated with its parent tree-type edge in the wood tree, hence with a letter D, we record the
markings as in Section 4.1 by replacing each D by a D◦ if the associated vertex is marked and
by a D• otherwise. We end up with a word made of four letters, U , D◦, D• and E, associated
with a “dressed” Motzkin path, with k′ occurrences of D◦ and m′ − s′

2
− k′ occurrences of D•
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Figure 5.1: Schematic picture of the decomposition of a lattice path of length 2m − 1, height
difference −ϵ, and minimal height −ℓ into a sequence of 2ℓ + 1 − ϵ Motzkin paths, where the
squares indicate that the underlying descending step may be marked (if associated with a D◦) or
not (if associated with a D•). For j = 1, 2, · · · , ℓ, the j-th Motzkin path is followed by the first
elementary down step reaching height −j. These ℓ Motzkin paths code for an ordered set F□ of
ℓ rooted petal trees whose root vertex are marked or not according to the nature of the following
elementary down step. For j = ℓ+2, ℓ+3, · · · , 2ℓ+1− ϵ, the j-th Motzkin path is preceded by
the last elementary up step reaching height j−1−2ℓ. Together with the (ℓ+1)-th Motzkin path,
these Motzkin paths code for an ordered set F× of ℓ+1− ϵ rooted petal trees whose root vertex
is unmarked. The ordered sets F□ and F× are drawn here with additional edges connecting the
successive roots of their petal tree components, represented schematically by grey blobs with a
black boundary, with a root vertex drawn as a square if markable and a cross if not.

if the petal tree has k′ marked vertices. As before, requiring that all non-root leaves be marked
simply amounts to forbidding the sequence UD• in the coding words.

Returning to the setting of Proposition 2.14 and assuming that m − s+1+ϵ
2

∈ Z, recall that
pr+s,s+1+ϵ(m) counts three-letter words of the form (4.1) with r + s + 1 occurrences of D◦,
m − r − s+1−ϵ

2
occurrences of D• and m − s+1+ϵ

2
occurrences of U , so that the height dif-

ference is −(s + 1 + ϵ). As already mentioned, the property holds for the extended range
m ⩾ max

(
1− s+1+ϵ

2
, 1− r − s+1−ϵ

2

)
, hence for all positive m in the current setting where

r, s ⩾ 0 and ϵ ∈ {−1, 0, 1}. We now transform the three-letter word into a four-letter word cod-
ing for a sequence of petal trees as follows: we first remove the first letterD◦, which leaves us with
r+ s occurrences of D◦, and pick s of them that we transform into E’s. This transformation can
be done in

(
r+s
s

)
ways, hence the obtained four-letter words are counted by

(
r+s
s

)
pr+s,s+1+ϵ(m).

By construction, these words have s occurrences of E, r occurrences of D◦, m − s+1+ϵ
2

occur-
rences of U and m− r − s+1−ϵ

2
occurrences of D•. These correspond to lattice paths of length

2m−1 and height difference −ϵ, say from (0, 0) to (2m−1,−ϵ), hence with minimal height −ℓ
for some ℓ ⩾ max(0, ϵ). Any such path is canonically decomposed into a sequence of 2ℓ+1− ϵ
dressed Motzkin paths (possibly of length 0), obtained by cutting out the first elementary down
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steps reaching height −j for j = 1, 2, . . . , ℓ and the last elementary up steps reaching height
−j′ + 1 for j′ = ℓ, ℓ− 1, . . . , ϵ + 1, see Figure 5.1. Each Motzkin path component codes for a
marked petal tree whose root vertex is unmarked, and we decide to mark it if this Motzkin path
is followed by a D◦ in the original path. By doing so, we both ensure that the total number of
marked vertices in the petal tree sequence is r and that the four-letter word can be recovered bi-
jectively from the petal tree sequence (since we know the nature D•, D◦ or U of all the removed
steps). Note that by construction, only the first ℓ petal trees may have their root vertex marked.
All in all,

(
r+s
s

)
pr+s,s+1+ϵ(m) enumerates pairs (F□,F×) made of a sequence F□ of ℓ petal trees

with marked vertices whose root vertex is markable, and a sequence F× of ℓ+ 1− ϵ petal trees
with marked vertices whose root vertex is unmarked, for some arbitrary integer ℓ ⩾ max(0, ϵ),
with a total of s petals, r marked vertices, and m − ℓ − s+1−ϵ

2
tree-type edges, and with all the

non-root leaves in the petal trees marked. As a final step, the pairs (F□,F×) are transformed
into the desired tight petal trees by attaching the roots of the ℓ (respectively ℓ + 1 − ϵ) petal
trees in the sequence F□ (respectively F×) by additional edges and gluing them along a spine
of length ℓ − ϵ as displayed in Figure 5.2. Note that a markable root vertex is always matched
to an unmarked one: the markings of root vertices may thus be transferred without ambiguity
after gluing, with no risk of double markings along the spine. Let us detail the three possibilities
ϵ = −1, 0, 1.

For ϵ = −1, the sequence F× has two more petal trees than F□ so that the root vertices of
its two extremal petal trees remain unmatched. We decide to mark these vertices and distinguish
them as vertices 1 and 2: the resulting object is a tight petal tree with s petals and r+ 2 marked
vertices, two of which distinguished. The construction is clearly reversible by cutting along the
branch between vertices 1 and 2, and holds for any ℓ ⩾ 0 (for ℓ = 0, vertices 1 and 2 are incident).
The degree of the exterior face is easily found equal to 2(m− ℓ− s+2

2
) + s+ 2(ℓ+ 1) = 2m as

wanted.
For ϵ = 0, the sequence F× has one more petal tree than F□ so that the root vertex of its

first petal tree remains unmatched. We decide to mark this vertex and to add an additional,
distinguished petal to mark the corner inbetween the last two glued petal trees at the end of the
spine: the resulting object is a tight petal tree with s + 1 petals, one of which distinguished,
and r+1 marked vertices, one of which distinguished. The construction is clearly reversible by
cutting along the branch between the distinguished marked vertex and the distinguished petal,
eventually removing this petal, and holds for any ℓ ⩾ 0 (for ℓ = 0, the distinguished vertex is
incident to the distinguished petal). The degree of the exterior face is 2(m−ℓ− s+1

2
)+s+1+2ℓ =

2m as wanted.
Finally, for ϵ = 1, the sequences F× and F□ have the same number ℓ ⩾ 1 of petal tree

components and their gluing is made reversible by adding a petal inbetween the glued petal
trees at each extremity of the spine, that we distinguish as petals 1 and 2: the resulting object
is a tight petal tree with s + 2 petals, two of which distinguished, and r marked vertices. The
construction is clearly reversible by cutting along the branch between petals 1 and 2, eventually
removing these petals, and holds for any ℓ ⩾ 1 (for ℓ = 1, the distinguished petals are incident
to the same vertex). The degree of the exterior face is 2(m− ℓ− s

2
) + s + 2 + 2(ℓ− 1) = 2m

as wanted. This ends the proof of Proposition 2.14.
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Figure 5.2: The gluing of a sequence F□ of ℓ petal trees with markable roots and a sequence
F× of ℓ + 1 − ϵ petal trees with unmarked roots into a tight petal tree with 1− ϵ distinguished
marked vertices (represented by circles) and 1 + ϵ distinguished petals (represented by small
empty loops), for ϵ = −1 (left), 0 (center) and 1 (right).

5.2. Petal necklaces

We now consider petal necklaces, namely planar maps having two distinguished faces of arbi-
trary degrees, and such that any other face is a petal. Again, a tight petal necklace is just a petal
necklace with marked vertices, which is tight as a map. We have the following enumeration
result:

Proposition 5.3. For r, s nonnegative integers not both zero and m1,m2 ∈ Z>0/2, let

Πr,s(m1,m2) := N0,r+s+2(2m1, 2m2, 0, . . . , 0︸ ︷︷ ︸
r

, 1, . . . , 1︸ ︷︷ ︸
s

) (5.4)

be the number of tight petal necklaces with two distinguished faces of degrees 2m1 and 2m2,
with r marked vertices and s petals, all labeled. Then, for r ⩾ 1 we have

Πr,s(m1,m2) = (r − 1)!s!
∑

r1,r2,s1,s2⩾0
r1+r2=r−1
s1+s2=s

(
π(−1)
r1,s1

(m1)π
(1)
r2,s2

(m2) + π(0)
r1,s1

(m1)π
(0)
r2,s2

(m2)
)

(5.5)

and, for s ⩾ 1,

Πr,s(m1,m2) = r!(s− 1)!
∑

r1,r2,s1,s2⩾0
r1+r2=r

s1+s2=s−1

(
π(0)
r1,s1

(m1)π
(1)
r2,s2

(m2) + π(1)
r1,s1

(m1)π
(0)
r2,s2

(m2)
)

(5.6)
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Figure 5.3: The partial and mutual gluings of the segments S1 (oriented from left to right) and
S2 (oriented from right to left) connecting the petal tree components of the sequences F1 and
F2 respectively, here for ℓ2 ⩽ ℓ1. The vertex identifications are indicated by arrows. Top: in
the case ϵ1 = −1, ϵ2 = +1, the partial gluing of S1 amounts to pulling in its (ℓ1 + 1)-th vertex,
creating a branch of length ℓ1 − ℓ2 + 1 in f1 with a distinguished vertex 1 at its end. Bottom: in
the case ϵ1 = 0, ϵ2 = +1, the partial gluing of S1 amounts to pulling in its ℓ1-th edge, creating
a branch of length ℓ1 − ℓ2 in f1 with a distinguished petal 1 at its end. In both cases, the mutual
gluing generates a loop of even length 2ℓ2.
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where π(ϵ)
r,s is the univariate quasi-polynomial defined in (2.26).

This proposition admits a “partially unlabeled” equivalent, which will be useful later on.

Proposition 5.4. Given r0, s0 ∈ Z⩾0 and m1,m2 ∈ Z>0/2, the number of tight petal necklaces
with two distinguished labeled faces of degrees 2m1, 2m2, one distinguished marked vertex, r0
other unlabeled marked vertices, and s0 unlabeled petals, is equal to

π(0)
r0,s0

(m1,m2) :=
∑

r1,r2,s1,s2⩾0
r1+r2=r0
s1+s2=s0

(
π(−1)
r1,s1

(m1)π
(1)
r2,s2

(m2) + π(0)
r1,s1

(m1)π
(0)
r2,s2

(m2)
)
, (5.7)

while the number of tight petal necklaces with two distinguished labeled faces of degrees 2m1, 2m2,
one distinguished petal, s0 other unlabeled petals, and r0 unlabeled marked vertices, is equal to

π(1)
r0,s0

(m1,m2) :=
∑

r1,r2,s1,s2⩾0
r1+r2=r0
s1+s2=s0

(
π(0)
r1,s1

(m1)π
(1)
r2,s2

(m2) + π(1)
r1,s1

(m1)π
(0)
r2,s2

(m2)
)
. (5.8)

Propositions 5.3 and 5.4 are indeed equivalent to one another, since the petal necklaces con-
sidered in the latter have three distinguished boundaries hence no symmetries. Namely, we pass
from (5.7) to (5.5) by taking r = r0+1 and s = s0, and from (5.8) to (5.6) by taking r = r0 and
s = s0 + 1. In both cases, we multiply by r0!s0! to label the unlabeled marked vertices/petals in
all possible ways. For later use we record the following:
Remark 5.5. Given a petal necklace m12 with a distinguished marked vertex/petal as considered
in Proposition 5.4, it is possible to label the marked vertices and petals in a canonical way from
1 to r0 + s0 + 1, with the label 1 assigned to the distinguished marked vertex/petal. The precise
labeling procedure is irrelevant, as long as it is deterministic9.

Proof of Proposition 5.4. Our proof is a direct generalization of that of Proposition 2.6 given in
Section 4.2. Still, rather than recoursing to (a, b)- and (a, b)∗-forests or generalizations thereof,
we will instead use the related notion of pairs of petal tree sequences10, as introduced in the proof
of Proposition 2.14. More precisely, we have seen there that, for r1, s1 nonnegative integers,
m1 ∈ Z>0/2, and ϵ1 = −1, 0, 1, the quantity π

(ϵ1)
r1,s1(m1) defined in (2.26) enumerates pairs

(F□,F×) of sequences of respectively ℓ1 and ℓ1 + 1 − ϵ1 rooted petal trees for some arbitrary
integer ℓ1 ⩾ max(0, ϵ1). The petal trees have a total of r1 marked vertices, with all their non-root
leaves marked, a total of s1 petals, and a total of m1 − ℓ1 − s1+1−ϵ1

2
tree-type edges. Finally,

9For instance, calling f1 and f2 the two distinguished faces, a possible algorithm consists in picking the vertex
v on the boundary between f1 and f2 lying on the same branch (possibly of length 0) in the petal necklace as the
distinguished marked vertex/petal. Following the contour of f1 clockwise, starting from the leftmost corner at v
in this face, and doing then the same for f2, we label the marked vertices and petals, including the distinguished
element, by successive integers from 1 to r0 + s0 + 1 at the first visit of such marked vertex (encountered via an
incident corner) or petal (encountered via a petal-type edge). We then perform a cyclic permutation of the labels
so that the distinguished element receives the label 1.

10There is indeed a clear correspondence between (a, b)-forests and collections of trees with a unmarkable roots
and b markable ones, and this could be generalized to our setting, with petal trees replacing trees.
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only the petal trees in F□ may have their root vertex marked. The enumeration statement above
holds even if m1 − s+1+ϵ1

2
is a half-integer, as the number of sequence pairs is trivially 0 in this

case, and so is π(ϵ1)
r1,s1(m1) by definition.

To construct a petal necklace, we first merge the two sequences F□ and F× into a single
sequence F1 of 2ℓ1 + 1 − ϵ1 petal trees, which we transform into a single connected object
by adding edges connecting the successive roots of the petal tree components and forming a
linear segment S1 of length 2ℓ1 − ϵ1 – see Figure 5.3 for a schematic representation. This first
connected object will code for the face of degree 2m1 of our necklace. The coding of the face
of degree 2m2 is performed via a second sequence F2, taken now in the set enumerated by
π
(ϵ2)
r2,s2(m2). The sequence F2 has the same properties, mutatis mutandis, as the sequence F1,

with now 2ℓ2 + 1 − ϵ2 petal trees, and a total of r2 marked vertices and s2 petals. Again F2 is
transformed into a connected object by adding a linear segment S2 of 2ℓ2 − ϵ2 edges connecting
its successive petal tree roots. To obtain the desired necklace, we will simply, by some “partial
gluing” process reminiscent of that for (a, b)-forests, squeeze the largest of the two segments S1

and S2 so as to get two segments of the same length min(2ℓ1 − ϵ1, 2ℓ2 − ϵ2) which can then
be glued together, head to tail, into a map with a spine that, after closing by some additional
edge, forms the cycle separating the two distinguished faces of the necklace. Let us discuss in
detail how we perform the partial and mutual gluing processes. An important property of both
processes is that we always identify a markable vertex to an unmarked one. By transferring the
possible marking of their markable copy, this guarantees that all the vertices obtained by gluing
are markable and marked or not without ambiguity (and without double markings).

Consider first the case where, say ϵ1 = −1 and ϵ2 = +1 so that S2 has length 2ℓ2 − 1, with
some ℓ2 ⩾ 1 and S1 has length 2ℓ1 +1 for some ℓ1 ⩾ 0. Assume first that ℓ2 ⩽ ℓ1: we may then
squeeze S1 by “pulling in” its (ℓ1+1)-th vertex, namely by gluing the (ℓ1+1− i)-th (markable)
vertex along S1 to the (ℓ1+1+ i)-th (unmarked) one for i = 1, . . . , ℓ1− ℓ2+1. This results in a
segment S ′

1 of the same length as S2, with ℓ2 markable vertices followed by ℓ2 unmarked ones,
together with a branch (attached to the ℓ2-th vertex of S ′

1) of length ℓ1−ℓ2+1 with all its vertices
markable but the last one, corresponding to the former (ℓ1 + 1)-th vertex along S1. This vertex
was unmarked and we decide to mark and distinguish it, say with the label 1. We finally glue the
two segments S ′

1 and S2, head to tail, into a linear spine that we close with an additional edge into
a cycle of length 2ℓ2 separating two faces f1 and f2 – see Figure 5.3-top. Again every markable
vertex of S2 is matched to an unmarked vertex of S ′

1 and vice versa, so that all the vertices along
the cycle are markable. It is easily checked that f1 and f2 have respective degrees 2m1 and 2m2

and we end up with a petal necklace with an additional marked vertex incident to f1 but not to f2.
For ℓ2 ⩾ ℓ1 + 2, a similar construction consisting now in squeezing the segment S2 by pulling
in its (ℓ2+1)-th vertex generates a necklace where the separating cycle has length 2(ℓ1+1) and
where the additional marked vertex 1 is incident to f2 but not to f1. Finally, if ℓ2 = ℓ1+1, S1 and
S2 have the same length and no squeezing is necessary: the faces f1 and f2 are then separated
by a cycle of length 2ℓ2 = 2(ℓ1 + 1) and the vertex 1 (obtained by gluing the (ℓ1 + 1)-th vertex
of S1 to the (ℓ2 + 1)-th vertex of S2) lies along this cycle, i.e. is incident to both faces. The
construction is clearly reversible by a cutting procedure along the separating cycle and along the
branch leading from this cycle to vertex 1. We deduce that π(−1)

r1,s1(m1)π
(1)
r2,s2(m2) counts petal

necklaces with s1 unlabeled petals and r1 unlabeled marked vertices in its distinguished face f1
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of degree 2m1, s2 unlabeled petals and r2 unlabeled marked vertices in its distinguished face f2
of degree 2m2, and with an additional marked vertex (distinct from all the others) distinguished
as vertex 1 and lying anywhere in the map (the map hence has a total of r1 + r2 +1 ⩾ 1 marked
vertices). The necklaces are easily seen to be tight, since the petal tree components have no
unmarked leaves and no unmarked leaf was created in the process. Still, as apparent from the
above discussion, a restriction applies to these necklaces since, by construction, the length of the
cycle separating their distinguished faces is always even. It is easily seen that the missing set of
necklaces is enumerated by π

(0)
r1,s1(m1)π

(0)
r2,s2(m2): indeed, repeating the above construction on

the corresponding pairs of petal tree sequences F1 (with 2ℓ1+1 petal trees) and F2 (with 2ℓ2+1
petal trees), we get necklaces whose separating cycle now has the odd length 2min(ℓ1, ℓ2) + 1
(for some arbitrary ℓ1, ℓ2 ⩾ 0), again with an additional marked vertex distinguished as vertex
1. We finally obtain (5.7) by summing over r1 and r2 with r1 + r2 = r0, and over s1 and s2 with
s1 + s2 = s0, to account for the dispatching of the marked vertices and petals among f1 and f2.

An alternative construction consists in starting from ϵ1 = 0 and ϵ2 = +1 so that S2 still
has length 2ℓ2 − 1, with some ℓ2 ⩾ 1 while S1 has length 2ℓ1 for some ℓ1 ⩾ 0. As before, we
assume first that ℓ2 ⩽ ℓ1: we may then squeeze S1, now by “pulling in” its ℓ1-th connecting edge,
namely by gluing the (ℓ1 + 1 − i)-th (markable) vertex along S1 to the (ℓ1 + i)-th (unmarked)
one for i = 1, . . . , ℓ1 − ℓ2 + 1. This results in a segment S ′

1 of the same length as S2, with
ℓ2 markable vertices followed by ℓ2 unmarked ones, together with a branch (attached to the ℓ2-
th vertex of S ′

1) of length ℓ1 − ℓ2 with all its vertices markable, having now a petal at its end
corresponding to the former ℓ1-th edge along S1. This newly created petal is adjacent to f1 but
not to f2 and we decide to distinguish it with the label 1. Gluing S ′

1 and S2 and closing, we end
up with a cycle of even length 2ℓ2 separating two faces f1 and f2, see the bottom of Figure 5.3.
For ℓ2 ⩾ ℓ1 +1, squeezing now the segment S2 by pulling in its ℓ2-th edge generates a necklace
with a separating cycle of odd length 2ℓ1 + 1 and where the additional petal is now adjacent to
f2. To get the missing necklaces, namely those with an odd separating cycle and a distinguished
petal adjacent to f1, and those with an even separating cycle and a distinguished petal adjacent
to f2, we have, as clear by symmetry, to supplement the above family of necklaces enumerated
by π

(0)
r1,s1(m1)π

(1)
r2,s2(m2) by that enumerated by π

(1)
r1,s1(m1)π

(0)
r2,s2(m2). We finally obtain (5.8) by

summing over r1 and r2 with r1 + r2 = r0, and over s1 and s2 with s1 + s2 = s0, to account for
the dispatching of the marked vertices and petals among f1 and f2.

Remark 5.6. The consistency of the two expressions (5.5) and (5.6) forΠr,s(m1,m2)when r, s ⩾
1 may be checked directly by setting s! = (s − 1)!(s1 + s2) in (5.5), r! = (r − 1)!(r1 + r2) in
(5.6), and upon using the identifications∑

r1,r2,s1,s2⩾0
r1+r2=r−1
s1+s2=s

s1π
(−1)
r1,s1

(m1)π
(1)
r2,s2

(m2) =
∑

r1,r2,s1,s2⩾0
r1+r2=r

s1+s2=s−1

r1π
(0)
r1,s1

(m1)π
(1)
r2,s2

(m2) (5.9)

∑
r1,r2,s1,s2⩾0
r1+r2=r−1
s1+s2=s

s2π
(−1)
r1,s1

(m1)π
(1)
r2,s2

(m2)
(∗)
=

∑
r1,r2,s1,s2⩾0
r1+r2=r−1
s1+s2=s

s2π
(1)
r1,s1

(m1)π
(−1)
r2,s2

(m2) (5.10)
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=
∑

r1,r2,s1,s2⩾0
r1+r2=r

s1+s2=s−1

r2π
(1)
r1,s1

(m1)π
(0)
r2,s2

(m2) (5.11)

∑
r1,r2,s1,s2⩾0
r1+r2=r−1
s1+s2=s

s1π
(0)
r1,s1

(m1)π
(0)
r2,s2

(m2) =
∑

r1,r2,s1,s2⩾0
r1+r2=r

s1+s2=s−1

r1π
(1)
r1,s1

(m1)π
(0)
r2,s2

(m2) (5.12)

∑
r1,r2,s1,s2⩾0
r1+r2=r−1
s1+s2=s

s2π
(0)
r1,s1

(m1)π
(0)
r2,s2

(m2) =
∑

r1,r2,s1,s2⩾0
r1+r2=r

s1+s2=s−1

r2π
(0)
r1,s1

(m1)π
(1)
r2,s2

(m2) . (5.13)

Here all equalities follow from the identity sπ
(ϵ)
r,s(m) = (r + 1)π

(1+ϵ)
r+1,s−1(m) for s ⩾ 1, apart

from that marked with a (∗) which follows from the identity π
(1)
r,s (m) = π

(−1)
r,s (m) + π

(−1)
r−1,s(m)

for any r ⩾ 0 (with the convention π
(−1)
−1,s(m) = 0), see (B.10)-(B.13) in Appendix B for similar

so-called transmutation relations.

5.3. Tight slices

As in the case of bipartite maps, a key ingredient in the derivation of a general formula for
the number of tight general non-bipartite maps is the enumeration of tight slices. Recall the
basic definitions pertaining to (tight) slices from Section 4.3, and note that we do not assume
anymore that the face degrees be even integers. In this general context, it is still true that the only
elementary slice of tilt −1 is the trivial slice, but a major difference is that the set of elementary
slices of tilt 0 is now non-empty.

As discussed in Section 4.3, a (tight) slice s with width w ⩾ 1 and tilt t can be decomposed
into a collection of w (tight) elementary slices. This discussion applies without change in our
general context: we cut the slice along the leftmost geodesics started from the consecutive cor-
ners c0, c1, . . . , cw incident to the base, and record the lattice path L = (ℓ0, ℓ1, . . . , ℓw) where
ℓi = d(c0, A)− d(ci, A), and A is the apex of s. The only difference is that the tilt ti = ℓi − ℓi−1

of the slice s′i with base ci−1ci can take any value {−1, 0, 1} rather than only {−1, 1}. As before,
the tightness condition requires that, for i ∈ {2, . . . , w}, if ti = +1 and ti−1 = −1, then the
slice s′i is either the marked empty slice, or a tight elementary slice with at least one inner face.
For i ∈ {1, . . . , w}, if ti = −1 then the slice s′i is necessarily trivial, while if ti = 0 then the
slice s′i automatically has at least one inner face of odd degree. We may forget the redundant
information of all down steps, as well as up steps decorated with unmarked empty slices, by let-
ting sj, 1 ⩽ j ⩽ k be the sequence (s′i, 1 ⩽ i ⩽ w) whose trivial and unmarked empty elements
have been removed. This gives:

Proposition 5.7. There is a one-to-one correspondence between tight slices of width w and tilt
t on the one hand, and pairs of the form (L, (sj, 1 ⩽ j ⩽ k)) on the other hand, where:

• L = (ℓ0, . . . , ℓw) is a lattice path from (0, 0) to (w, t) with increments in {−1, 0, 1}, that
has k marked steps 1 ⩽ i1 < i2 < · · · < ik ⩽ w with ℓij − ℓij−1 ∈ {0, 1}, in such a way
that every up step immediately following a down step is marked, and every horizontal step
is marked,
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• for 1 ⩽ j ⩽ k, sj is a tight elementary slice of tilt ℓij − ℓij−1, and in the case where this
tilt is 1, sj is either the marked empty slice, or has at least one inner face.

We obtain the following generalization of Corollary 4.5.

Corollary 5.8. For m ∈ Z>0/2, there is a one-to-one correspondence between non-empty tight
elementary slices of tilt ϵ ∈ {0, 1}, whose inner face incident to the base edge has degree 2m
on the one hand, and pairs of the form (L, (sj, 1 ⩽ j ⩽ k)) on the other hand, where k is a
non-negative integer, and:

• L = (ℓ0, . . . , ℓ2m−1) is a lattice path from (0, 0) to (2m−1, ϵ)with increments in {−1, 0, 1},
that has k marked steps 1 ⩽ i1 < i2 < · · · < ik ⩽ 2m − 1 with ℓij − ℓij−1 ∈ {0, 1},
in such a way that every up step immediately following a down step is marked, and every
horizontal step is marked,

• for 1 ⩽ j ⩽ k, sj is a tight elementary slice of tilt ℓij − ℓij−1, and in the case where this
tilt is 1, sj is either the marked empty slice, or has at least one inner face.

By iterating the decomposition of this corollary, we obtain an encoding of tight elementary
slices by plane trees, where every vertex may be associated with a slice of tilt in {0, 1}. Let
m1, . . . ,mn be integers or half integers, not all equal to 0, and ϵ ∈ {0, 1}. Let Tϵ(m1, . . . ,mn)
be the family of pairs (t, (Li)1⩽i⩽n), satisfying the following conditions.

• t is a rooted plane tree with n vertices labeled by {1, 2, . . . , n}.

• Each vertex receives a type in {0, 1}, and the root has type ϵ. We let ϵi ∈ {0, 1} be the
type of vertex i and (w

(i)
1 , . . . , w

(i)
ki
) be the types of the ki children of vertex i in t in planar

order.

• For i ∈ {1, 2, . . . , n} such that mi > 0, Li = (ℓ
(i)
0 , . . . , ℓ

(i)
2mi−1) is a lattice path from (0, 0)

to (2mi − 1, ϵi) with increments in {−1, 0, 1}, and with ki marked steps 1 ⩽ j1 < · · · <
jki ⩽ 2mi − 1, such that ℓ(i)jr

− ℓ
(i)
jr−1 = w

(i)
r for every r ∈ {1, . . . , ki}. In particular,

only up or horizontal steps may be marked. We further require that every up step of Li

immediately following a down step is marked, and every horizontal step of Li is marked.

• For i ∈ {1, 2, . . . , n} such that mi = 0, we have ϵi = 1, ki = 0 and Li is the trivial path
{(0, 0)}.

This leads to the following generalization of Corollary 4.6.

Corollary 5.9. For ϵ ∈ {0, 1} and every choice of integers or half-integers m1, . . . ,mn not
all equal to 0, the iterated slice decomposition yields a bijection between the set of elementary
tight slices with n labeled boundaries of respective lengths 2m1, . . . , 2mn with tilt ϵ and the set
Tϵ(m1, . . . ,mn).

51



It turns out that, in order to prove Theorem 2.12 in Section 5.4, we will need an extension
of this corollary associating sequences of slices with sequences of trees, namely forests. Still,
as a warm-up, let us first consider the enumeration of Tϵ(m1, . . . ,mn), which is done based on
that of two-type trees, obtained as a special case of Proposition A.3 of Appendix A. Note that
the types 1 and 0 considered in the present section correspond to types A and B respectively in
the notation of the appendix. We count the elements (t, (Li)1⩽i⩽n) of Tϵ(m1, . . . ,mn) by fixing
the types ϵ1, . . . , ϵn of the vertices 1, . . . , n of t (so that ϵi = w

(i)
0 in the notation of Appendix

A) with the constraint that the root vertex should have type ϵ, as well as the sequence of types
w

(i)
1 , . . . , w

(i)
ki

of the consecutive children (in planar order) of vertex i. These sequences must
satisfy the consistency conditions (A.1) and (A.2) of Appendix A, which in this context are
rewritten as

n∑
i=1

ϵi = ϵ+
n∑

i=1

ri and
n∑

i=1

ϵ̄i = ϵ̄+
n∑

i=1

si , (5.14)

where we let η̄ = 1 − η for η ∈ {0, 1}, and where ri =
∑ki

j=1 w
(i)
j and si =

∑ki
j=1 w̄

(i)
j are the

numbers of type-1 and type-0 children of vertex i. These consistency relations simply express
in two different ways the number of type 1 (resp. 0) vertices in the tree t. Note that the number
of type-0 (resp. type-1) vertices that are the children of type-1 (resp. type-0) vertices (those are
respectively the numbers bA and aB considered in Appendix A) is given by

n∑
i=1

ϵisi

(
resp.

n∑
i=1

ϵ̄iri

)
. (5.15)

Finally, by Proposition A.3 (in the notation therein, we have aO = ϵ and bO = ϵ̄, expressing the
fact that we are counting “forests” made of only one tree with root of type ϵ), we see that the
number of possible trees t contributing to Tϵ(m1, . . . ,mn), with types given by ϵ1, . . . , ϵn and
given a consistent type array (w

(i)
j )i=1...,n

j=1,...,ki
, is equal to(

ϵ
n∑

i=1

ϵisi + ϵ̄
n∑

i=1

ϵ̄iri

)(
n∑

i=1

ϵi − 1

)
!

(
n∑

i=1

ϵ̄i − 1

)
! (5.16)

where
∑n

i=1 ϵi and
∑n

i=1 ϵ̄i are the numbers of vertices of types 1 and 0 respectively. In the case
where either one of these numbers is equal to 0, in accordance with (A.6), we should replace the
whole formula by (n− 2)!.

It now remains to enumerate, for a given consistent array (w
(i)
j )i=1,...,n

j=1,...,ki
, and for a given tree t

as above, the number of possible lattice paths Li, 1 ⩽ i ⩽ n so that (t, (Li)1⩽i⩽n) is an element
of Tϵ(m1, . . . ,mn). As before, we let ri =

∑ki
j=1w

(i)
j and si =

∑ki
j=1 w̄

(i)
j = ki − ri. If mi = 0

then by definition of Tϵ(m1, . . . ,mn), this requires Li = {(0, 0)}, ri = si = 0 and ϵi = 1: by
(2.27), this is precisely counted by π

(ϵi)
ri,si(0) = δri,0δsi,0δϵi,1. If mi > 0, Li should be a lattice

path from (0, 0) to (2mi − 1, ϵi), with increments in {−1, 0, 1}, in which ki up or horizontal
steps are marked, say 1 ⩽ j1 < · · · < jki ⩽ 2mi−1, with increments at these steps respectively
given by w

(i)
1 , . . . , w

(i)
ki

, and in such a way that all horizontal steps are marked, as well as all the
up steps immediately following a down step. As explained in the proof of Proposition 2.14 (and
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up to changing the up steps into down steps and vice versa), the number of such paths is equal to
pri+si,si+1+ϵi(mi) if mi− si+1+ϵi

2
∈ Z, and to zero otherwise. In particular, this number depends

on the array (w
(i)
j )i=1,...,n

j=1,...,ki
only through the values of ri, si. Noting that for a given value of ri, si,

there are
(
ri+si
si

)
possible choices of (w(i)

j , 1 ⩽ j ⩽ ki) inducing these values, and recalling that
π
(ϵi)
ri,si =

(
ri+si
si

)
pri+si,si+1+ϵi(mi), we finally obtain the following result.

Proposition 5.10. For ϵ = 0, 1 and for every choice of integers or half-integers m1, . . . ,mn

not all equal to 0, the cardinality of Tϵ(m1, . . . ,mn), and hence the number of elementary tight
slices with n labeled boundaries of respective lengths 2m1, . . . , 2mn and tilt ϵ, is given by

Card (Tϵ(m1, . . . ,mn)) =∑
ϵ1,...,ϵn=0,1

r1,...,rn,s1,...,sn⩾0
ϵ1+···+ϵn=ϵ+r1+···+rn
ϵ̄1+···+ϵ̄n=ϵ̄+s1+···+sn

(
ϵ

n∑
i=1

ϵisi + ϵ̄

n∑
i=1

ϵ̄iri

)(
n∑

i=1

ϵi − 1

)
!

(
n∑

i=1

ϵ̄i − 1

)
!

n∏
i=1

π(ϵi)
ri,si

(mi) ,

(5.17)

where the first three factors in the sum should be replaced by (n − 2)! whenever the argument
in either of the two factorials equals −1.

This proposition has interesting consequences for certain evaluations of lattice count poly-
nomials. Proceeding similarly to Section 4.3, we may indeed associate bijectively tight maps
with elementary tight slices of tilt in {0, 1}. Precisely, starting from an elementary tight slice
of tilt 0, we may glue isometrically the left and right boundaries to obtain a tight map with one
marked petal (delimited by the base edge of the slice) and one marked vertex (given by the apex).
This construction can be inverted by cutting along the leftmost geodesic from the marked petal
to the pointed vertex. Similarly, starting from an elementary tight slice of tilt 1, we may glue
isometrically the left and right boundaries starting from the base11 to obtain a tight map with
two marked petals (one being delimited by the base edge of the slice, and the other one by the
edge of the left boundary incident to the apex). The inverse construction is more involved, but
is in fact a particular case of the slice decomposition of annular maps.

These bijections imply that for every m1, . . . ,mn ∈ Z⩾0/2 not all equal to zero, and for
ϵ ∈ {0, 1}, we have

N0,n(2m1, . . . , 2mn, 1, ϵ) = Card(Tϵ(m1, . . . ,mn)) . (5.18)

Finally, from the discussion of [BG12, Appendix A], we obtain the identity

N0,n(2m1, . . . , 2mn, 2, 0) = Card (T1(m1, . . . ,mn))

+
∑

{1}⊂I⊊{1,...,n}

Card (T0 ((mi)i∈I)) Card (T0 ((mi)i/∈I)) . (5.19)

11This means in particular that the two endpoints of the base are glued together. If we proceed as in Section 4.3
and glue the left and right boundaries of a slice of tilt 1 starting from the apex, we do obtain a pointed rooted tight
map, but this is not the most general such map, since by construction the two ends of the root edge (inherited from
the base) are at different distances from the distinguished vertex (inherited from the apex).
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5.4. General maps

We are now ready to get a general enumeration formula for planar tight maps. Our approach will
be parallel to that of Section 4.4, and we start by stating the following analog of Proposition 4.7:

Proposition 5.11. Letm1, . . . ,mn be non-negative integers or half-integers (n ⩾ 3) withm1,m2 >
0. Then, there is a bijection between the set of planar tight maps with n boundaries labeled from
1 to n with respective lengths 2m1, 2m2, . . . , 2mn, and the set of pairs (m12, s) such that there
exist r0, s0 ⩾ 0 with r0 + s0 ∈ {0, . . . , n− 3} for which the following holds.

• m12 is a tight petal necklace with two distinguished faces of degrees 2m1, 2m2, with one
extra distinguished element being either a marked vertex or a petal, and with r0 other
marked vertices and s0 other petals.

• s = (s1, . . . , sr0+s0+1) is a (r0 + s0 + 1)-tuple of slices such that:

– each sj (j = 1, . . . , r0 + s0 + 1) is a tight elementary slice of tilt 0 or 1 containing
at least one inner face or marked vertex,

– the inner faces and marked vertices of these slices are labeled by integers in {3, . . . , n},

– each i ∈ {3, . . . , n} appears in exactly one sj and labels an inner face of degree 2mi

for mi > 0, or a marked vertex for mi = 0,

– the label 3 appears in the first slice s1.

• m12 and s are compatible in the sense that, if we label the marked vertices and petals of
m12 in a canonical way from 1 to r0+s0+1 as in Remark 5.5, and for j = 1, . . . , r0+s0+1

we set w(0)
j = 1 (resp. w(0)

j = 0) if label j is on a marked vertex (resp. petal), then sj has
tilt w(0)

j . Note that r0 =
∑r0+s0+1

j=2 w
(0)
j .

The proof of this proposition follows exactly the same lines as that of Proposition 4.7 in
Section 4.4. In particular, Lemma 4.8 admits a direct non-bipartite extension in which the maps
m may have all their faces of arbitrary degrees, the lattice paths L,L′ may contain horizontal
steps, and consistently the sequences σ,σ′ may contain slices of tilt 0. Further details are left to
the reader. We deduce the following enumerative result:

Proposition 5.12. For n ⩾ 3 and for non-negative integers or half-integers m1, . . . ,mn with,
say, m1,m2 > 0, we have

N0,n(2m1, . . . , 2mn) =∑
ϵ3,...,ϵn=0,1

r1,...,rn,s1,...,sn⩾0∑n
i=3 ϵi=

∑n
i=1 ri+1∑n

i=3(1−ϵi)=
∑n

i=1 si

(
n∑

i=1

ri

)
!

(
ϵ3(s1 + s2) +

n∑
i=3

ϵisi

)(
n∑

i=1

si − 1

)
! (5.20)

×
(
π(−1)
r1,s1

(m1)π
(1)
r2,s2

(m2) + π(0)
r1,s1

(m1)π
(0)
r2,s2

(m2)
) n∏

i=3

π(ϵi)
ri,si

(mi)
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+
∑

ϵ3,...,ϵn=0,1
r1,...,rn,s1,...,sn⩾0∑n

i=3 ϵi=
∑n

i=1 ri∑n
i=3(1−ϵi)=

∑n
i=1 si+1

(
n∑

i=1

si

)
!

(
(1− ϵ3)(r1 + r2) +

n∑
i=3

(1− ϵi)ri

)(
n∑

i=1

ri − 1

)
!

×
(
π(0)
r1,s1

(m1)π
(1)
r2,s2

(m2) + π(1)
r1,s1

(m1)π
(0)
r2,s2

(m2)
) n∏

i=3

π(ϵi)
ri,si

(mi)

where π
(ϵ)
r,s is the univariate quasi-polynomial defined in (2.26) and where it is understood that

(ϵ3(s1+s2)+
∑n

i=3 ϵisi)(
∑n

i=1 si−1)! is equal to 1 if all the si are zero, and that ((1− ϵ3)(r1+
r2) +

∑n
i=3(1− ϵi)ri)(

∑n
i=1 ri − 1)! is equal to 1 if all the ri are zero.

Proof. We need to enumerate the compatible pairs (m12, s) of Proposition 5.11. Note first that,
given r0 and s0, the number of possible petal necklaces m12 is given by Proposition 5.4. Turning
now to the number of possible s compatible with a given petal necklace m12, it is given by a
direct extension of Corollary 5.9 as follows: by decomposing recursively each elementary tight
slice sj (with tilt w(0)

j ) into a tree of lattice paths, we see that the set of possible (r0 + s0 + 1)-
tuples s is in bijection with the set F

(w
(0)
1 ,...,w

(0)
r0+s0+1)

(m3, . . . ,mn) defined as the set of pairs
(f , (Li)1⩽i⩽n) satisfying the following conditions.

• f is a plane forest with r0 + s0 + 1 connected components, i.e. a (r0 + s0 + 1)-tuple of
rooted plane trees, and with a total of n − 2 vertices labeled by {3, . . . , n}, the label 3
appearing in the first component.

• Each vertex receives a type in {0, 1}, and the root vertex of the j-th tree component in the
forest has type w(0)

j . For i ∈ {3, . . . , n}, we let ϵi ∈ {0, 1} be the type of vertex i, ki be its
number of children, and (w(i)

1 , . . . , w
(i)
ki
) be the types of these children (numbered in planar

order in the rooted tree component at hand). We also set ri :=
∑ki

j=1 w
(i)
j the numbers of

those children which are of type 1 and si := ki − ri the numbers of those children which
are of type 0.

• For i ∈ {3, . . . , n}:

– if mi > 0, Li = (ℓ
(i)
0 , . . . , ℓ

(i)
2mi−1) is a lattice path from (0, 0) to (2mi − 1, ϵi) with

increments in {−1, 0, 1}, and with ki marked steps 1 ⩽ j1 < · · · < jki ⩽ 2mi − 1,
such that ℓ(i)jr

− ℓ
(i)
jr−1 = w

(i)
r for every r ∈ {1, . . . , ki}. In particular, only up or

horizontal steps may be marked, and we further require that every horizontal step of
Li is marked, as well as every up step immediately following a down step,

– if mi = 0, we have ϵi = 1, ki = ri = si = 0, and Li is the trivial path {(0, 0)}.

We may now obtain the number of elements ofF
(w

(0)
1 ,...,w

(0)
r0+s0+1)

(m3, . . . ,mn) from the results of
Appendix A for the enumeration of two-type forests, where the typesA andB therein correspond
to types 1 and 0 in the present setting. For fixed ϵi and ki, i = 3, . . . , n and for fixed (w(i)

j )i=3,...,n
j=1,...,ki

,

55



the number of forests f is non-zero only if the two consistency relations (A.1) and (A.2) are
satisfied, namely

n∑
i=3

ϵi = w
(0)
1 + r0 +

n∑
i=3

ri and
n∑

i=3

ϵ̄i = w̄
(0)
1 + s0 +

n∑
i=3

si (5.21)

where, as before, we use the shorthand notation η̄ := 1−η for η ∈ {0, 1}. Again, these identities
simply express in two different ways the number of vertices of type 1 (first identity) and of type 0
(second identity), corresponding respectively to the quantities denoted by a and b in Appendix A.
When these conditions are satisfied, we may use the constrained enumeration result (A.6), with
the correspondence aO = w

(0)
1 + r0, bO = w̄

(0)
1 + s0, aB =

∑n
i=3 ϵ̄iri and bA =

∑n
i=3 ϵisi: if the

vertex 3 is of type 1, i.e. ϵ3 = 1, the number of forests f is given by
(
s0 +

n∑
i=3

ϵisi

)(
r0 +

n∑
i=3

ri

)
!

(
s0 +

n∑
i=3

si − 1

)
! if w(0)

1 = 1,(
n∑

i=3

ϵ̄iri

)(
r0 +

n∑
i=3

ri − 1

)
!

(
s0 +

n∑
i=3

si

)
! if w(0)

1 = 0,
(5.22)

with, in the first line, the convention (s0+
∑n

i=3 ϵisi)×(s0+
∑n

i=3 si−1)! = 1 if s0+
∑n

i=3 si = 0,
i.e. when s0 and all the si’s for i ⩾ 3 are zero. Note that, in the second line, the quantity
r0 +

∑n
i=3 ri − 1 is always nonnegative since, from the first consistency relation, it is equal to∑n

i=4 ϵi. By symmetry, if the vertex 3 is of type 0, i.e. ϵ3 = 0, the number of forests f is given
by 

(
r0 +

n∑
i=3

ϵ̄iri

)(
s0 +

n∑
i=3

si

)
!

(
r0 +

n∑
i=3

ri − 1

)
! if w(0)

1 = 0,(
n∑

i=3

ϵisi

)(
s0 +

n∑
i=3

si − 1

)
!

(
r0 +

n∑
i=3

ri

)
! if w(0)

1 = 1,
(5.23)

with, in the first line, the convention (r0+
∑n

i=3 ϵ̄iri)×(r0+
∑n

i=3 ri−1)! = 1 if r0+
∑n

i=3 ri = 0,
i.e. when r0 and all the ri’s for i ⩾ 3 are zero. Again, in the second line, the quantity s0 +∑n

i=3 si − 1 is always nonnegative since, from the second consistency relation, it is equal to∑n
i=4 ϵ̄i. Both cases ϵ3 = 1 or 0 above may be summarized into the enumeration formulas

(
ϵ3s0 +

n∑
i=3

ϵisi

)(
s0 +

n∑
i=3

si − 1

)
!

(
r0 +

n∑
i=3

ri

)
! if w(0)

1 = 1,(
ϵ̄3r0 +

n∑
i=3

ϵ̄iri

)(
r0 +

n∑
i=3

ri − 1

)
!

(
s0 +

n∑
i=3

si

)
! if w(0)

1 = 0,
(5.24)

with the conventions that (ϵ3s0 +
∑n

i=3 ϵisi)(s0 +
∑n

i=3 si − 1)! = 1 if s0 and all the si’s for
i ⩾ 3 are zero and that (ϵ̄3r0 +

∑n
i=3 ϵ̄iri)(r0 +

∑n
i=3 ri − 1)! = 1 if r0 and all the ri’s for i ⩾ 3

are zero.
It remains to enumerate, for a given array (w

(i)
j )i=3,...,n

j=1,...,ki
satisfying the consistency relations

(5.21), and for a given two-type forest f as above, the number of families of lattice paths (Li)3⩽i⩽n

so that (f , (Li)3⩽i⩽n) is an element of F
(w

(0)
1 ,...,w

(0)
r0+s0+1)

(m3, . . . ,mn). Repeating the counting
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argument in the proof of Proposition 5.10, this number is simply equal to
∏n

i=3 π
(ϵi)
ri,si(mi). Com-

bining with (5.24), and recalling the consistency relations (5.21), we obtain in the case w(0)
1 = 1

Card
(
F

(w
(0)
1 =1,w

(0)
2 ,...,w

(0)
r0+s0+1)

(m3, . . . ,mn)
)
=

∑
ϵ3,...,ϵn=0,1

r3,...,rn,s3,...,sn⩾0∑n
i=3 ϵi=r0+

∑n
i=3 ri+1∑n

i=3 ϵ̄i=s0+
∑n

i=3 si

(
r0 +

n∑
i=3

ri

)
!

(
ϵ3s0 +

n∑
i=3

ϵisi

)(
s0 +

n∑
i=3

si − 1

)
!

n∏
i=3

π(ϵi)
ri,si

(mi) ,

(5.25)

and in the case w(0)
1 = 0

Card
(
F

(w
(0)
1 =0,w

(0)
2 ,...,w

(0)
r0+s0+1)

(m3, . . . ,mn)
)
=

∑
ϵ3,...,ϵn=0,1

r3,...,rn,s3,...,sn⩾0∑n
i=3 ϵi=r0+

∑n
i=3 ri∑n

i=3 ϵ̄i=s0+
∑n

i=3 si+1

(
s0 +

n∑
i=3

si

)
!

(
ϵ̄3r0 +

n∑
i=3

ϵ̄iri

)(
r0 +

n∑
i=3

ri − 1

)
!

n∏
i=3

π(ϵi)
ri,si

(mi) .

(5.26)

Note that these expressions do not depend on the precise sequence (w(0)
1 , . . . , w

(0)
r0+s0+1) but only

on the values of r0 =
∑r0+s0+1

j=2 w
(0)
j , of s0 =

∑r0+s0+1
j=2 w̄

(0)
j and of w(0)

1 . This is expected since
permuting the terms of the sequence (w(0)

j )j=2,...,n at fixed r0 and s0 simply amounts to changing
the order of the last r0 + s0 trees in the forest f , a harmless operation as far as enumeration is
concerned. We may therefore use the counting formulas (5.7) and (5.8) for petal necklaces m12

with fixed r0, s0 and with a fixed value w
(0)
1 = 1 and w

(0)
1 = 0 respectively. The expression

(5.20) for N0,n(2m1, . . . , 2mn) is obtained by inserting (5.25) into (5.7) and (5.26) into (5.8),
adding these two contributions and finally summing over r0 and s0, which trivially amounts to
replacing in (5.25) and (5.26) each occurrence of r0 by r1 + r2 and each occurrence of s0 by
s1 + s2, and summing over r1, r2, s1, s2 ⩾ 0. This ends the proof of Proposition 5.12.

Even though it is not apparent, the right-hand side of (5.20) turns out to be, as expected,
symmetric upon permuting the mi’s for i in the whole set {1, . . . , n}. This property is shown
in Appendix B where, after some algebraic manipulations, this quantity is given a manifestly
symmetric form, see for instance (B.4) or (B.17). Using this result, we arrive at the following
unified theorem encompassing all the main theorems of the paper (Theorems 2.3, 2.8 and 2.12):

Theorem 5.13. For n ⩾ 3 and m1,m2, . . . ,mn ∈ Z⩾0/2, not all equal to zero, the number
N0,n(2m1, 2m2, . . . , 2mn) of planar tight maps with n boundaries labeled from 1 to n with re-
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spective lengths 2m1, 2m2, . . . , 2mn is given by the symmetric quasi-polynomial

N0,n(2m1, 2m2, . . . , 2mn) =∑
(ϵ1,...,ϵn
r1,...,rn
s1,...,sn

)
∈In

(
n∑

i=1

ri

)
!

(
n∑

i=1

ϵisi

)(
n∑

i=1

si − 1

)
!

n∏
i=1

π(ϵi)
ri,si

(mi)

+(n− 3)!
∑

(r1,...,rn)∈Zn
⩾0

r1+···+rn=n−3

∑
1⩽j<ℓ⩽n

π
(0)
rj ,0

(mj)π
(0)
rℓ,0

(mℓ)
n∏

i=1
i ̸=j,ℓ

π
(1)
ri,0

(mi)

+(n− 3)!
∑

(r1,...,rn)∈Zn
⩾0

r1+···+rn=n−3

π
(−1)
r1,0

(m1)
n∏

i=2

π
(1)
ri,0

(mi).

(5.27)

with π
(ϵ)
r,s(m) as in (2.26) and In as in (2.29). Note that the sum in the last line is equal to the sym-

metric polynomial (n− 3)!pn−3(m1, . . . ,mn) when all mi are integers, and to zero otherwise,
hence it is symmetric.

Proof. Since N0,n(2m1, 2m2, . . . , 2mn) is (by definition) symmetric in m1,m2, . . . ,mn and so
is the right-hand side of (5.27), we may assume without loss of generality that m1 > 0 and
either m2 > 0 or m2 = · · · = mn = 0. In the first case, Proposition 5.12 and the identi-
fication of the right-hand sides of (5.20) and (5.27) proved in Proposition B.1 of Appendix B
allows to conclude. In the second case, both sides of the equation reduce to the univariate quasi-
polynomial (n − 3)!π

(−1)
n−3,0(m1), equal to (n − 3)!pn−3(m1) if m1 is a positive integer, and to

zero otherwise.

Let us now explain how to recover Theorems 2.3, 2.8 and 2.12 from Theorem 5.13. As
in Remark 2.13, let us denote by k the number of half-integers among m1, . . . ,mn. From the
general property that π(ϵi)

ri,si(mi) is non-zero only if mi − si+1+ϵi
2

∈ Z, we see that the sum in
the third line of the right-hand side of (5.27) is non-zero if and only if all the mi’s are integers,
i.e. the map is bipartite (k = 0), in which case it reduces precisely to (n−3)!pn−3(m1, . . . ,mn).
Similarly, the sum in the second line is non-zero if and only if exactly two of the mi’s, say for
i = i1 and i = i2 (1 ⩽ i1 < i2 ⩽ n), are half-integers, i.e. the map is quasi-bipartite (k = 2),
in which case it reduces to (n − 3)!p̃n−3(mi1 ,mi2 ;m1, . . . , m̌i1 , . . . , m̌i2 , . . . ,mn) where m̌iℓ

means that the argument miℓ is omitted. Therefore, for k = 1 and k ⩾ 3, the only possibly
non-zero term is the sum in the first line, which matches precisely the right hand side of (2.28).
This proves Theorem 2.12 (where in practice, only even values of k yield a non-zero result, as
it should). In order to recover Theorems 2.3 and 2.8, it only remains to check that the sum in
the first line of the right-hand side of (5.27) vanishes in the bipartite and quasi-bipartite cases.
Note that if mi is an integer, π(ϵi)

ri,si(mi) is non-zero only if si and 1 − ϵi have the same parity,
a property which, for si ⩾ 0 and 1 − ϵi ∈ {0, 1} implies that si ⩾ 1 − ϵi. If all the mi’s are
integers, the required constraint

∑n
i=1(1−ϵi) =

∑n
i=1 si+2 in the definition of the set In cannot

be fulfilled, hence the sum vanishes. If exactly two of the mi’s, say for i = i1 and i = i2, are
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half-integers, this same constraint imposes that ϵi1 = ϵi2 = 0 and si1 = si2 = 0 while si = 1−ϵi
for all i ̸= i1, i2, hence (

∑n
i=1 ϵisi) =

∑
i ̸=i1,i2

(1−ϵi)ϵi = 0 and the first sum again vanishes. To
summarize, for an even value of k, exactly one of the three lines in the right-hand side of (5.27)
is not identically zero. Each line corresponds to one of the mutually exclusive situations k ⩾ 4
(first line), k = 2 (second line) and k = 0 (third line), corresponding to Theorem 2.12, 2.8 and
2.3 respectively.

6. Conclusion

In this paper, we have provided an explicit expression for the planar lattice count quasi-polynomial
N0,n(2m1, . . . , 2mn), by extending the slice decomposition to the case of planar tight maps.
Note that, in contrast with previous work such as [BG14, Bud22b], our approach is not based on
generating functions but rather on direct bijective enumeration techniques.

We note that our most general formula, stated in Theorem 5.13, still involves a complicated
sum over a no less complicated set In. As discussed in the Appendix B, there are in fact many
identities that can be used to rewrite it, and it is not impossible that it admits a significantly sim-
pler expression yet to be unveiled. A similar remark applies to our extension of Tutte’s slicings
formula given in Theorem 3.2.

We believe that the methodology of Sections 4 and 5 is quite robust and may be adapted to
other map enumeration problems. A first problem one may think of is a model of maps with con-
tinuous edge lengths, whose set can be associated with a natural volume measure. The volumes
of such measures have been considered by Kontsevich [Kon92], and, as noted by Norbury, they
correspond to the homogeneous top degree part of the lattice count polynomials, see [Nor10,
Theorem 3]. Combining with our Theorem 2.3, we obtain the following result (see Norbury’s
paper for the definition of V0,n).

Proposition 6.1. The genus zero volume polynomial V0,n reads explicitly

V0,n(b1, . . . , bn) =
(n− 3)!

22n−7

∑
k1,...,kn⩾0

k1+···+kn=n−3

(
bk11 · · · bknn
k1! · · · kn!

)2

. (6.1)

This amounts to the known expression for the genus zero intersection numbers, see for in-
stance [LZ04, Proposition 4.6.10] and [Nor10, Corollary 1]. Still, a direct construction of maps
with continuous edge lengths, using continuous paths and mimicking the above discrete paths en-
coding for slices, should also be possible and interesting, and we plan to investigate this question
in future work. A second extension is motivated by the work of Budd [Bud22b] who generalized
Norbury’s results to the case of irreducible maps, i.e. maps with a girth constraint. The slice
decomposition of these maps was discussed in [BG14] in the non-tight case, and we expect it
to be adaptable to the tighness constraint. Finally, combining these two ideas, namely, passing
to maps with continuous edge lengths and adding an irreducibility constraint, one obtains ir-
reducible metric maps which have been considered by Budd [Bud22a], who showed that their
volumes are related to the Weil-Petersson volumes of hyperbolic surfaces. We plan to investigate
the slice decomposition of these maps, which might shed new light on these questions.
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In another direction, the bijective techniques presented in this paper should pave the road to
the study of continuum limits of random planar tight maps, when the number of faces tends to
infinity. We believe in particular that, as soon as the face degrees are well-behaved in a certain
sense, the Gromov-Hausdorff limit of appropriately renormalized planar tight maps, seen as
discrete metric spaces, should be given by the Brownian sphere. To this purpose, the recent
approach by Marzouk [Mar18, Mar22], dealing with limits of planar non necessarily tight maps
with prescribed face degrees, should be particularly relevant.

Note that our approach is currently restricted to the planar (i.e. genus 0) case. This is a current
limitation of the slice decomposition. We hope however that this limitation will be challenged by
further investigations. A first result in this vein is the bijective study of pairs of pants (planar maps
with three boundaries) done in [BGM22], and the fact that general surfaces can be decomposed
into pairs of pants gives some support to our hope.

A. Enumeration of one- and two-type labeled plane forests

This appendix lists the forest enumeration results that we need in this paper. We consider plane
forests (sequences of rooted plane trees) which are labeled (distinct labels are assigned to the
vertices). We start with the case of forests with one type of vertices.

Proposition A.1. Let n, k1, . . . , kn be non-negative integers such that k1 + · · ·+ kn < n. Then,
there are exactly (n− 1)! plane forests with n vertices labeled {1, . . . , n}, such that vertex i has
ki children for all i = 1, . . . , n and such that vertex 1 appears in the first tree. (Such forests
consist necessarily of k0 := n− k1 − · · · − kn trees.)

Proof. The case of trees (k0 = 1) is given explicitly in [BM14, Section 5, Equation (18)]. It
implies the general case since, for k0 > 1, there is a straightforward bijection between the set of
forests at hand and the set of labeled plane trees such that vertex 1 has k1 + k0 − 1 children, the
number of children of the other vertices being unmodified.

Remark A.2. Proposition A.1 can alternatively be proved directly by exhibiting a bijection be-
tween the set of forests at hand and the set of cyclic orders on {1, . . . , n}. Such a bijection is
obtained by simply listing the vertex labels of a labeled plane forest in depth-first order, giving
a linear, hence a cyclic, order on {1, . . . , n}. Conversely, from a cyclic order and the data of
the ki’s, we construct a conjugacy class of Łukasiewicz words—see e.g. [Sta99, Section 5.3]—
whose letters are labeled and which contains exactly one word coding for a plane forest having
vertex 1 in the first tree.

We now turn our attention to labeled plane forests with two types of vertices, say A and B.
Our purpose is to enumerate such two-type forests in which, for every vertex, we prescribe not
only its type but also the sequence formed by the types of all its children, read in the planarity
order. Similar counting problems, for an arbitrary number of types, have been previously con-
sidered in the literature—see e.g. [BS13, BM14, CL16] and references therein—but since the
general formulas are quite complicated we provide a self-contained derivation for two types. Our
approach is closely related with that of Chottin [Cho81] who treated the case of two-type trees.
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Handling forests with several components however involves an extra difficulty, which we cir-
cumvent by specializing the general multitype approach of Bacher and Schaeffer [BS13]. Note
that the latter two references consider plane forests which are unlabeled, but adding vertex labels
does not fundamentally change the problem since plane forests have no symmetries.

To state our result we need some definitions and notation. Let us consider a two-type plane
forest whose vertices are labeled {1, . . . , n}. For every vertex i = 1, . . . , n, we denote by ki its
number of children, and we let w(i) = (w

(i)
0 , w

(i)
1 , . . . , w

(i)
ki
) ∈ {A,B}ki+1 be the sequence such

that w(i)
0 is the type of i and such that, for every j = 1, . . . , ki, w(i)

j is the type of the j-th child
of i in the planarity order. We also define a sequence w(0) = (w

(0)
0 , w

(0)
1 , . . . , w

(0)
k0
) where k0 is

the number of trees of the forest, w(0)
0 is a third type denoted O and, for j = 1, . . . , k0, w(0)

j is
the type of the j-th root, i.e. of the root vertex of the j-th tree of the forest. In this sense, 0 can
be seen as the label of a super-root of type O, which is the parent of all the roots (which have
the usual types A or B).

The collection w = (w(0), w(1), . . . , w(n)) is called the type array of the forest. Denoting by
[·] the Iverson bracket ([P ] is equal to 1 if P is true, and to 0 otherwise), we have necessarily

n∑
i=1

[
w

(i)
0 = A

]
=

n∑
i=0

ki∑
j=1

[
w

(i)
j = A

]
:= a (A.1)

as seen by expressing in two different ways the number a of type A vertices. Similarly, the
number b of type B vertices is given by

n∑
i=1

[
w

(i)
0 = B

]
=

n∑
i=0

ki∑
j=1

[
w

(i)
j = B

]
:= b. (A.2)

Note that, by adding these two equations, we obtain the relation n = k0 + k1 + · · ·+ kn already
seen in the context of one-type forests in Proposition A.1. An array w = (w

(i)
j )i=0,...,n

j=0,...,ki
with

w
(0)
0 = O and w

(i)
j ∈ {A,B} for i, j not both zero is said consistent if it satisfies (A.1) and

(A.2).

Proposition A.3. Let w be a consistent array, and let a and b be as defined in (A.1) and (A.2),
respectively. Define furthermore the integers

aO :=

k0∑
j=1

[
w

(0)
j = A

]
, aB :=

n∑
i=1

ki∑
j=1

[
w

(i)
0 = B

] [
w

(i)
j = A

]
, (A.3)

bO :=

k0∑
j=1

[
w

(0)
j = B

]
, bA :=

n∑
i=1

ki∑
j=1

[
w

(i)
0 = A

] [
w

(i)
j = B

]
, (A.4)

namely aO and bO correspond to the number of type A and type B roots, respectively, while aB
is the number of type A vertices with a type B parent, and vice versa for bA.

Then, we have the following enumerative formulas.
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• (General enumeration) The number of two-type labeled plane forests of type array w—
thus containing a type A and b type B vertices—is equal to

(aObO + aObA + aBbO)(a− 1)!(b− 1)! if a > 0 and b > 0,
aO(a− 1)! if a > 0 and b = 0,
bO(b− 1)! if a = 0 and b > 0,
1 if a = 0 and b = 0.

(A.5)

• (Constrained enumeration) Assume that, say, a > 1 and w
(1)
0 = A, i.e. vertex 1 has type

A. Then, the number of two-type labeled plane forests of type array w such that vertex 1
is in the first tree is equal to

(bO + bA)(a− 1)!(b− 1)! if b > 0 and w
(0)
1 = A,

aB(a− 1)!(b− 1)! if b > 0 and w
(0)
1 = B,

(a− 1)! if b = 0.
(A.6)

(The first and second cases correspond to a first root of type A and B, respectively.)

Proof. Let us first note that the cases where a or b vanish follow immediately from Proposi-
tion A.1 (for the general enumeration, we perform a circular permutation of the trees to lift the
constraint that vertex 1 is in the first tree, giving the extra factor aO or bO). Hence, we assume
from now on that a and b are both positive.

We claim that the general enumeration formula follows from the constrained one. Indeed, we
may partition the set of forests of type array w according to the index j = 1, . . . , k0 of the tree
containing vertex 1. Upon doing a circular permutation of the trees, we deduce from (A.6) that,
for w(1)

0 = A, the number of forests with a given value of j is equal to (bO + bA)(a− 1)!(b− 1)!

if w(0)
j = A, and to aB(a − 1)!(b − 1)! if w(0)

j = B. As the first (resp. second) case occurs for
aO (resp. bO) values of j, summing over j gives the first line of (A.5). The case w

(1)
0 = B is

deduced by exchanging the roles of A and B.
It remains to prove the constrained enumeration formula. We will do so by giving an al-

gorithm to construct any forest of type array w, where it will be manifest that the number of
possibilities is given by (A.6). The algorithm is easier to visualize if, instead of working with
labels 0, 1, . . . , n, we relabel the vertices as O,A1, . . . , Aa, B1, . . . , Bb to make their type appar-
ent (as the type array w is fixed, this may be done by fixing a bijection between {0, 1, . . . , n}
and {O,A1, . . . , Aa, B1, . . . , Bb} hence does not change the counting problem). The general
idea, illustrated on Figure A.1, is to proceed in several stages, by first “assembling” the type B
vertices together, before dealing with the types A and O vertices. Let us describe the different
stages of the algorithm in detail.

I. We start with isolated vertices O,A1, . . . , Aa, B1, . . . , Bb, to which we attach sequences
of dangling A-edges and B-edges: these dangling edges will be connected later to type
A and B vertices, respectively. The type array w tells us precisely the sequence which
we have to attach to each vertex. We define a total order on the dangling edges by listing

62



O A1 A2 A3 B1 B2 B3 B4 B1B2

B3B4

A1 A2 A3

B2

B4

B1

B3

B1

B3

I. II.

III.

A4

A4 A4

A1

A2

B1

B3

B1

B3

A3 O

A2

A3

B2

B4 B1

B3

B1

B3

A4

A1
IV. V.

O

Figure A.1: Construction of a two-type forest in the casew(1)
0 = B. See the main text for a precise

description of the stages I-V. We display the type A (resp. B) vertices and dangling A-edges
(resp. B-edges) with squares (resp. circles). The distinguished dangling edges are indicated
with arrows.

those incident to O, then those incident to A1, etc. We distinguish the first edge incident
to O: it has type w(1)

0 . We then distinguish another dangling edge of the opposite type:

– if w(1)
0 = A, then we distinguish a B-edge incident either to O or to a type A vertex:

there are bO + bA possible choices,

– if w(1)
0 = B, then we distinguish an A-edge incident to a type B vertex: there are aB

possible choices.

II. We form a plane forest with the vertices B1, . . . , Bb, by attaching them together via their
incident B-edges. By Proposition A.1, there are (b − 1)! ways to do so (with B1 in the
first tree). A simple computation shows that the resulting forest is made of bO + bA trees.
If w(1)

0 = B, we permute the trees circularly so that the tree containing the distinguished
A-edge comes first.

III. We attach the roots of the forest constructed at stage II to the B-edges (in number bO +
bA) dangling from O,A1, . . . , Aa. Precisely, we attach the root of the first tree to the
distinguished B-edge, and we then proceed circularly using the order on dangling edges
defined at stage I. Note that all the B-edges have now been matched to type B vertices. We
end up with a sequence of supernodes, which are trees with roots O,A1, . . . , Aa, subtrees
made of type B vertices, and dangling A-edges. Observe that the distinguished A-edge
always belongs to the supernode with root O (precisely, the first edge incident to O is
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either the distinguished A-edge when w
(1)
0 = A, or leads to a subtree which contains it

when w
(1)
0 = B).

IV. Viewing the supernodes as compound vertices, we form a plane forest with aO trees by
assembling the supernodes with roots A1, . . . , Aa via their dangling A-edges. Note that
the number of “children” of a supernode is prescribed by its number of dangling A-edges.
By Proposition A.1, there are (a− 1)! ways to do so (with A1 in the first tree).

V. We then complete the construction by attaching these trees to theA-edges of the supernode
with root O, starting with the first tree which we attach to the distinguished A-edge, and
then proceeding circularly using the order of stage I. All dangling edges have now been
matched, and vertex 1 is in the first tree by construction.

It is plain from stage I that we obtain a forest of type array w. Furthermore, each such forest
is obtained in precisely one way, as we may check that it is obtained for a unique choice of
the second distinguished dangling edge at stage I 12 and of the one-type forests at stages II and
IV.

Remark A.4. The factor aObO+aObA+aBbO in (A.5) corresponds to a sum over the three Cayley
trees on the set {O,A,B}. For k types of vertices there would be as many terms as Cayley trees
on a set with k + 1 elements [BS13].

B. Symmetrizing the planar lattice count quasi-polynomials

Let us fix an integer n ⩾ 3 and denote by Π(m1, . . . ,mn) the right-hand side of (5.20). It
is manifest that it is a quasi-polynomial in 2m1, . . . , 2mn of degree n − 3, since π

(ϵ)
r,s(m) is a

univariate quasi-polynomial in 2m of degree r + s. The purpose of this appendix is to show
that Π(m1, . . . ,mn) is in fact symmetric in m1, . . . ,mn, which we will do by rewriting it in a
manifestly symmetric form. Note that the expression (5.20) displays a symmetry in m4, . . . ,mn

only. Here we assume only that mi ∈ Z/2, i = 1, . . . , n without further restriction.
It is useful to introduce compact notations for the high-dimensional sums appearing in (5.20).

Let I be the finite subset of {0, 1}n × Zn
⩾0 × Zn

⩾0 defined by

I :=


 ϵ1, . . . , ϵn

r1, . . . , rn
s1, . . . , sn

 :

n∑
i=1

ϵi =
n∑

i=1

ri + 1

n∑
i=1

(1− ϵi) =
n∑

i=1

si + 2

 . (B.1)

Given a tuple in I , we set

r :=
n∑

i=1

ri, s :=
n∑

i=1

si, (B.2)

12Precisely, if w(0)
1 = A then the distinguished B-edge corresponds to the edge closest to B1 attached to a parent

not of type B, and if w(0)
1 = B then the distinguished A-edge corresponds to the parent edge of the oldest type A

ancestor of A1.
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and note that r + s = n− 3 by the definition of I . Let Ir⩾1, Ir=0, Is⩾1, and Is=0, be the subsets
of I consisting of tuples such that r ⩾ 1, r = 0, s ⩾ 1, and s = 0, respectively. Note that the set
In introduced in (2.29) corresponds in our present notations to Is⩾1. Note also that Ir=0 consists
of tuples such that ri = 0 for all i, exactly one ϵi is equal to 1, and s1 + · · · + sn = s = n− 3.
Similarly, Is=0 consists of tuples such that si = 0 for all i, exactly two ϵi are equal to 0, and
r1 + · · ·+ rn = r = n− 3.

For e1, e2 ∈ {0, 1}, we let I(e1,e2) be the subset of I consisting of tuples such that ϵ1 = e1
and ϵ2 = e2. We also allow for the value e1 = −1, which means that we consider tuples such
that ϵ1 = −1, keeping the sum condition in (B.1) unchanged. The notations I(e1,e2)r⩾1 , etc, should
hopefully be self-explanatory. Note that I(−1,1)

s=0 consists of tuples such that si = 0 for all i,
ϵ1 = −1 and ϵi = 1 for all i ⩾ 2, and r1 + · · ·+ rn = r = n− 3. We finally use, for ϵ ∈ {0, 1},
the shorthand notation ϵ̄ := 1− ϵ (which we shall never use for ϵ = −1).

Armed with all these notations, we can rewrite Π(m1, . . . ,mn)
13 as

Π(m1, . . . ,mn) =
∑

I
(−1,1)
s⩾1 ∪I(0,0)s⩾1

r!(s− 1)!

(
ϵ3(s1 + s2) +

n∑
j=3

ϵjsj

)
n∏

i=1

π(ϵi)
ri,si

(mi)

+
∑

I
(0,1)
r⩾1 ∪I(1,0)r⩾1

(r − 1)!s!

(
ϵ̄3(r1 + r2) +

n∑
j=3

ϵ̄jrj

)
n∏

i=1

π(ϵi)
ri,si

(mi)

+
∑

I
(−1,1)
s=0 ∪I(0,0)s=0 ∪I(0,1)r=0 ∪I(1,0)r=0

r!s!
n∏

i=1

π(ϵi)
ri,si

(mi).

(B.3)

Here, the first (resp. second) sum corresponds to the first (resp. second) sum in (5.20) when at
least one of the si’s (resp. one of the ri’s) is non zero, hence when s ⩾ 1 (resp. r ⩾ 1); the third
sum accounts for the conventional values in (5.20): (ϵ3(s1 + s2) +

∑n
i=3 ϵisi)(

∑n
i=1 si − 1)! →

1 = s! when all the si’s are zero (or equivalently s = 0) and (ϵ̄3(r1+r2)+
∑n

i=3 ϵ̄iri)(
∑n

i=1 ri−
1)! → 1 = r! when all the ri’s are zero (or equivalently r = 0).

The main result of this appendix is:

Proposition B.1. The quasi-polynomialΠ(m1, . . . ,mn) is symmetric inm1, . . . ,mn and admits
the expression

Π(m1, . . . ,mn) =∑
Is⩾1

r!(s− 1)!

(
n∑

j=1

ϵjsj

)
n∏

i=1

π(ϵi)
ri,si

(mi) +
∑

I
(−1,1)
s=0 ∪Is=0

r!s!
n∏

i=1

π(ϵi)
ri,si

(mi). (B.4)

Note that the sum over I(−1,1)
s=0 is equal to (n − 3)!

∑
r1+···+rn=n−3

π
(−1)
r1,0

(m1)
n∏

i=2

π
(1)
ri,0

(mi) which is

13Here we use the shorthand notation
∑
J

(·) for
∑(ϵ1,...,ϵn

r1,...,rn
s1,...,sn

)
∈J

(·).
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equal to the symmetric polynomial (n− 3)!pn−3(m1, . . . ,mn) when all mi are integers, and to
zero otherwise, hence it is symmetric like the rest.

The expression above for Π(m1, . . . ,mn) is precisely the right-hand side of (5.27). Indeed,
we already noticed that Is⩾1 is nothing but the set In defined in (2.29), hence the sum over Is⩾1

gives the first term in the right-hand side of (5.27). Furthermore, the set Is=0 consists of tuples
such that si = 0 for all i, exactly two ϵi are equal to 0, and r1 + · · ·+ rn = r = n− 3, hence the
sum over Is=0 corresponds to the second term in (5.27). Finally, the sum over I(−1,1)

s=0 corresponds
to the third term in (5.27).

In order to prove Proposition B.1, we will first record the following:

Proposition B.2. The univariate polynomials π(ϵ)
r,s(m) satisfy the relations

sπ(ϵ)
r,s(m) = (r + 1)π

(ϵ+1)
r+1,s−1(m), (B.5)

π(1)
r,s (m) = π(−1)

r,s (m) + π
(−1)
r−1,s(m), (B.6)

sπ(1)
r,s (m) = (r + 1)π

(0)
r+1,s−1(m) + rπ

(0)
r,s−1(m), (B.7)

valid for all r, s ⩾ 0 and all integer ϵ, with the convention that π(ϵ)
−1,s = π

(ϵ)
r,−1 = 0.

Proof. The first relation follows immediately from the mere definition (2.26) of π(ϵ)
r,s(m). For

the two other ones, we make use of the “dilaton-like” equation

kpk,e+2(m) = kpk,e(m) + (k − e)pk−1,e(m) (B.8)

which can be checked from the definition (2.25) of pk,e(m) and is valid for all k ⩾ 0, with the
convention that p−1,e(m) = 0. This dilaton-like equation implies immediately (B.6), and to
get (B.7) we first apply (B.5) at ϵ = 1 then the dilaton-like equation to go back from π(2)’s to
π(0)’s.

Lemma B.3 (Transmutation relations). For any j = 1, . . . , n, we have∑
Is⩾1

r!(s− 1)!(ϵ̄jsj)
n∏

i=1

π(ϵi)
ri,si

(mi) =
∑
Ir⩾1

(r − 1)!s!(ϵjrj)
n∏

i=1

π(ϵi)
ri,si

(mi). (B.9)

We also have the four identities∑
I
(−1,1)
s⩾1

r!(s− 1)! ϵ3s1

n∏
i=1

π(ϵi)
ri,si

(mi) =
∑
I
(0,1)
r⩾1

(r − 1)!s! ϵ3r1

n∏
i=1

π(ϵi)
ri,si

(mi), (B.10)

∑
I
(−1,1)
s⩾1

r!(s− 1)! ϵ3s2

n∏
i=1

π(ϵi)
ri,si

(mi)
(∗)
=
∑

I
(1,−1)
s⩾1

r!(s− 1)! ϵ3s2

n∏
i=1

π(ϵi)
ri,si

(mi)

=
∑
I
(1,0)
r⩾1

(r − 1)!s! ϵ3r2

n∏
i=1

π(ϵi)
ri,si

(mi), (B.11)
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∑
I
(1,0)
s⩾1

(r − 1)!s! ϵ̄3r1

n∏
i=1

π(ϵi)
ri,si

(mi) =
∑
I
(0,0)
r⩾1

r!(s− 1)! ϵ̄3s1

n∏
i=1

π(ϵi)
ri,si

(mi), (B.12)

∑
I
(0,1)
s⩾1

(r − 1)!s! ϵ̄3r2

n∏
i=1

π(ϵi)
ri,si

(mi) =
∑
I
(0,0)
r⩾1

r!(s− 1)! ϵ̄3s2

n∏
i=1

π(ϵi)
ri,si

(mi). (B.13)

Finally, for j ⩾ 3 we have∑
I
(−1,1)
s⩾1

r!(s− 1)!(ϵjsj)
n∏

i=1

π(ϵi)
ri,si

(mi) =
∑
I
(1,1)
r⩾1

(r − 1)!s!(ϵ̄jrj)
n∏

i=1

π(ϵi)
ri,si

(mi). (B.14)

Proof. In the left-hand side of (B.9), the only contributing tuples are those with ϵj = 0. By
applying the relation (B.5) to the factor sjπ(0)

rj ,sj(mj) appearing in the product, and by performing
the change of variables ϵ̄j → ϵj , rj + 1 → rj , sj − 1 → sj (leaving all other elements of the
tuples unchanged), we obtain precisely the nonzero terms of the right-hand side.

The proofs of the identities (B.10) and (B.12) are entirely similar, applying now (B.5) to the
factor s1π(ϵ1)

r1,s1(m1) (with ϵ1 = −1, 0) appearing in the left-hand side of (B.10) (with ϵ1 = −1)
and in the right-hand side of (B.12) (with ϵ1 = 0) . For (B.11) and (B.13), we proceed in the
same way (now with ϵ2 = −1, 0), after noting that that it is possible to first replace I

(−1,1)
s⩾1 by

I
(1,−1)
s⩾1 in (B.11) (as indicated by the (∗)

= sign) using (B.6) and appropriate changes of variables.
For (B.14), we apply (B.7) to the factor sjπ(1)

rj ,sj(mj) in the left-hand side (as only the tuples
with ϵj = 1 contribute), and we apply (B.6) to the factor π(1)

r1,s1(m1) in the right-hand side.
Appropriate changes of variables then show that the difference vanishes.

Proof of Proposition B.1. Note that the left-hand sides of (B.10)-(B.13) all appear in (B.3), up to
ϵ3 or ϵ̄3 prefactors. Changing them into the corresponding right-hand sides, and using ϵ3+ϵ̄3 = 1,
allows to write (B.3) as

Π(m1, . . . ,mn) =
∑

I
(−1,1)
s⩾1

r!(s− 1)!

(
n∑

j=3

ϵjsj

)
n∏

i=1

π(ϵi)
ri,si

(mi)

+
∑
I
(0,0)
s⩾1

r!(s− 1)!

(
s1 + s2 +

n∑
j=3

ϵjsj

)
n∏

i=1

π(ϵi)
ri,si

(mi)

+
∑

I
(0,1)
r⩾1 ∪I(1,0)r⩾1

(r − 1)!s!

(
n∑

j=1

ϵ̄jrj

)
n∏

i=1

π(ϵi)
ri,si

(mi)

+
∑

I
(−1,1)
s=0 ∪I(0,0)s=0 ∪I(0,1)r=0 ∪I(1,0)r=0

r!s!
n∏

i=1

π(ϵi)
ri,si

(mi).

(B.15)

By the transmutation relation (B.14), we may replace the sum over I(−1,1)
s⩾1 in the first line by a

sum over I(1,1)r⩾1 in the third line. This gives a sum over I(0,1)r⩾1 ∪ I
(1,0)
r⩾1 ∪ I

(1,1)
r⩾1 which we can rewrite
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as a sum over Ir⩾1 minus a sum over I(0,0)r⩾1 . We claim that this latter sum will almost cancel the
sum over I(0,0)s⩾1 in the second line. Indeed, by writing s1 + s2 +

∑n
j=3 ϵjsi = s −

∑n
j=3 ϵ̄jsj

in the sum over I(0,0)s⩾1 , and
∑n

j=1 ϵ̄jrj = r −
∑n

j=3 ϵjrj in the sum over I(0,0)r⩾1 , we see using the
transmutation relation (B.9) that their difference evaluates to∑

I
(0,0)
s⩾1

−
∑
I
(0,0)
r⩾1

 r!s!
n∏

i=1

π(ϵi)
ri,si

(mi) =

∑
I
(0,0)
r=0

−
∑
I
(0,0)
s=0

 r!s!
n∏

i=1

π(ϵi)
ri,si

(mi). (B.16)

Observe that the sum over I(0,0)s=0 precisely cancels the one appearing in the last line of (B.15),
and the sums over I(0,0)r=0 , I(0,1)r=0 and I

(1,0)
r=0 combine to form a sum over Ir=0. We arrive at the

expression

Π(m1, . . . ,mn) =∑
Ir⩾1

(r − 1)!s!

(
n∑

j=1

ϵ̄jrj

)
n∏

i=1

π(ϵi)
ri,si

(mi) +
∑

I
(−1,1)
s=0 ∪Ir=0

r!s!
n∏

i=1

π(ϵi)
ri,si

(mi) (B.17)

which is interesting on its own, since it is already symmetric inm1, . . . ,mn, see again the remark
below (B.4). To obtain the wanted final expression, we write

∑n
j=1 ϵ̄jrj = r−

∑n
j=1 ϵjrj in the

sum over Ir⩾1 and apply again the transmutation relation (B.9) and the identity (B.16), changing
the sum over Ir⩾1 and that over Ir=0 into the sum over Is⩾1 and that over Is=0 of (B.4), leaving
the sum over I(−1,1)

s=0 unchanged.
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