Singular integral equations with applications to travelling waves for doubly nonlinear diffusion
Ecuaciones integrales singulares con aplicaciones a Travelling Waves en difusión doblemente no lineal
Équations intégrales singulières avec applications aux Travelling Waves pour diffusion doublement non linéaire
Résumé
The goal of this article is to offer a series of results related to the existence and properties of wavefront solutions for doubly nonlinear diffusion-reaction equations involving the p-Laplacian operator in terms of the constitutive functions of the problem. These results are derived from the analysis of singular Volterra integral equations that appear in the study of monotone travellingwave solutions for such equations. Our results extend the ones due to B. Gilding and R. Kersner for the case p = 2 to p > 1. The fact that p ̸ = 2 modifies the nature of the singularity in the integral equation, and introduces the need to develop some new tools and ideas for the analysis.
Origine | Fichiers produits par l'(les) auteur(s) |
---|