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Abstract

The goal of this article is to offer a series of results related to the existence
and properties of wavefront solutions for doubly nonlinear diffusion-reaction
equations involving the p-Laplacian operator in terms of the constitutive func-
tions of the problem. These results are derived from the analysis of singular
Volterra integral equations that appear in the study of monotone travelling-
wave solutions for such equations. Our results extend the ones due to B.Gilding
and R.Kersner for the case p = 2 to p > 1. The fact that p ̸= 2 modifies the
nature of the singularity in the integral equation, and introduces the need to
develop some new tools and ideas for the analysis.
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1 Introduction

This work intends to develop and present a collection of results related to the exis-
tence and the properties of travelling-wave solutions of nonlinear reaction-convection-
diffusion equations of the form

(1.1) ut = ∆p(a(u)) + (b(u))x + c(u), x ∈ R, t ≥ 0,

involving the p-Laplacian operator,

∆pu = div(|∇u|p−2∇u), p > 1.

Travelling waves or fronts are special solutions of the form uσ(x, t) = Vσ(x− σt) for
some speed σ and profile, that may depend on the speed, Vσ. They are important
at least in relation with two aspects: finite speed of propagation and large time
behaviour.

Equation (1.1) is said to display finite speed of propagation if a non-negative solution
which has bounded support with respect to the spatial variable at some initial time
also presents this property at later times. As proved in [18] (see also [17]), equa-
tion (1.1) displays finite speed of propagation if and only if it possesses a travelling-
wave solution whose profile’s support is bounded from above. For this purpose it
is enough to have a local travelling wave, with a profile only defined in a half-
interval (ω,∞).

A bounded global (defined in the whole real line) travelling-wave profile Vσ that is
monotonic, but not constant, and such that

Vσ(ξ) → ℓ− as ξ → −∞ and Vσ(ξ) → ℓ+ as ξ → ∞

for some ℓ−, ℓ+ ∈ R such that c(ℓ−) = c(ℓ+) = 0 is said to be a wavefront profile from
ℓ− to ℓ+ (the associated travelling wave is a wavefront solution), see Figures 1 ∼ 2.

Figure 1: Wavefronts with c(u) = u(1− u), ℓ− = 1, ℓ+ = 0.

Wavefronts are already known to be important in the description of the large-time
behaviour of more general solutions for wide classes of initial data when p = 2,
a(u) = um, m ≥ 1, and b ≡ 0 for several reaction nonlinearities c; see for instance [1,
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Figure 2: Wavefronts with c(u) = uq, q > 1, ℓ− = ∞, ℓ+ = 0.

4, 5, 7, 10, 11, 12, 21, 22]. They are also expected to give the large time behaviour
when p ̸= 2. As a first step in this direction we have the papers [2, 3, 6, 12], being
the interest in these problems one of the main motivations for this work.

Given the relevance of this type of solutions it was for our great surprise to find
that not much was known in the particular case of the p-Laplacian operator. In the
making of the article [6] the authors found the need to develop the theory for the
reaction-diffusion case, and that motivated our study here. This survey intends to
be a collection of results and references that will, hopefully, alleviate similar needs in
the future when working with nonlinear diffusion with the p-Laplacian operator.

The main tool in our study and the technical focus of this paper is the Volterra
integral equation

(1.2) x(t) = f(t) +

∫ t

0

g(s)

xα(s)
ds, x(t) ≥ 0, t ≥ 0,

where α ∈ R+ := (0,∞), and

f ∈ C(R+), f(0) ≥ 0, g ∈ L1((0, τ)) for all τ ∈ R+.

We intend to extend the results obtained by Gilding in [15] for the case α = 1 to the
case α > 1. We are mainly interested in the singular case f(0) = 0.

As shown in [18], this equation arises in the study of travelling waves in nonlinear
reaction-convection-diffusion processes, so let us explain the connection between (1.2)
and travelling waves for (1.1) in detail, a connection that was first explored for the
case p = 2 in [16]. Let uσ(x, t) = Vσ(ξ), ξ = x − σt, be a travelling-wave solution
to (1.1) taking values in Ī, where I = (0, ℓ), 0 < ℓ ≤ ∞. The profile V (we drop the
subscript for simplicity) satisfies the ordinary differential equation

(1.3) ∆p(a(V )) + (b(V ))ξ + c(V ) + σVξ = 0

in a weak sense; see Section 3.1 for a precise definition. Taking g := −(a(V ))ξ =
−a′(V )Vξ, we arrive to the system of equations

Vξ =
−g

a′(V )
, gξ =

1

(p− 1)|g|p−2

(
c− g(b′ + σ)

a′

)
.
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The function a is assumed to be nondecreasing, so that equation (1.1) is parabolic
(may be degenerate or singular). Hence, if we restrict to non-increasing profiles, we
may assume that |g| = g. Thus, the trajectories in the phase plane of this system
satisfy

dg

dV
=

1

p− 1

(
b′ + σ

gp−2
− a′c

gp−1

)
.

If (1.3) admits a solution V such that V → 0, and (a(V ))ξ → 0 as ξ → ∞, this V is
represented by a trajectory that approaches the point (V, g) = (0, 0). Thus, setting

θ(s) = gp−1(ξ), s = V (ξ),

and integrating the equation of the trajectories through (0,0) we arrive to

(1.4) θ(s) = b(s) + σs−
∫ s

0

a′(r)c(r)

θα(r)
dr, α = 1/(p− 1) > 0,

which lies within the class of integral equations of the form (1.2). Note that in terms
of the original problem θ represents the flux as a function of the height of the solution.

Conversely, if the flux θ satisfies the integrability condition

(1.5)

∫ s1

s0

a′(r)

θα(r)
dr < ∞ for all 0 < s0 < s1 < δ,

for δ = ℓ, a solution of (1.3) can be constructed from a solution of (1.4) by means of

(1.6)

∫ V (ξ)

ν

a′(r)

θα(r)
dr = ξ0 − ξ

for some ν in the domain of definition of θ and some ξ0 ∈ R. Let us remark that the
profile obtained in this way is strictly monotone in {ξ ∈ R : 0 < V (ξ) < ℓ}.
It turns out that, for ℓ < ∞, the differential equation (1.3) has a wavefront profile

from ℓ to 0 with speed σ if and only if the integral equation (1.4) with α = 1/(p− 1)
has a solution θ such that θ(ℓ) = 0 satisfying the integrability condition (1.5) on Ī.
We omit more explanations regarding this, since the proof of this statement is similar
to the one for the case p = 2 (that is, α = 1) given in [19].

Let us remark that there may be several wavefront profiles leading to the same
solution θ of the integral equation. For instance, equation

ut = ∆pu+

(p− 1)(2u− 4u2)
p−2
2 2pup(8u− 3) for 0 ≤ u ≤ 1/2,

(p− 1)(2(1− u)− 4(1− u)2)
p−2
2 2p(1− u)p(8u− 5) for 1/2 < u ≤ 1,

with p > 2 admits a family of wavefront profiles from 1 to 0 with speed σ = 0, see
Figure 3.
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Figure 3: Reaction c(u)
.

This family of wavefronts is given by

V (ξ) =


1+2(ξ0−ξ)2

2(1+(ξ0−ξ)2)
for ξ < ξ0,

1/2 for ξ0 ≤ ξ ≤ ξ1,

1
2(1+(ξ−ξ1)2)

for ξ1 < ξ,

for any pair or real numbers ξ0 ≤ ξ1, see Figure 4.

Figure 4: Wavefront V (ξ) for ξ0 = −1 and ξ1 = 1.

The corresponding flux

θ(s) =


(
2s
√
2s(1− 2s)

)p−1

for 0 ≤ s ≤ 1/2,(
2(1− s)

√
2(1− s)(2s− 1)

)p−1

for 1/2 < s ≤ 1,

satisfies the integral equation (1.4) regardless the values of ξ0 and ξ1, see Figure 5.

On the other hand, starting from this solution θ of the integral equation and us-
ing (1.6) with ν ∈ (0, 1) we obtain the wavefront profiles

(1.7) V (ξ) =


1+2(η−ξ)2

2(1+(η−ξ)2)
for ξ ≤ η,

1
2(1+(ξ−η)2)

for η < ξ,
where η =


−
(
1−2ν
2ν

)1/2
for ν ≤ 1/2,(

2ν−1
2(1−ν)

)1/2

for ν > 1/2,

see Figure 6.
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Figure 5: Flux θ(s), which is unique for all the family of wavefronts.

Figure 6: Wavefront V (ξ) for ξ0 = ξ1 = 0 and ν = 1/2.

We observe that in this example the flux vanishes only at heights where the reaction
vanishes, s = 0, 1/2, 1. This is true not only in this particular case, but in general,
as can be shown by adapting the proof given in [19, Lemma 2.24] when α = 1. Note,
however, that the opposite implication does not hold: the reaction term may vanish
at points where the flux does not.

When p = 2 the example above coincides with the one given in [19, Application
2.22]. Nevertheless, in sharp contrast with that case, if p > 2 the reaction term is
continuous in (0, ℓ). Moreover, if p ≥ 4, c and hence ca′ are differentiable in the same
open interval. However, the flux θ vanishes at a point in (0, ℓ), namely s = 1/2. This
is not possible when α = 1, since for that value of the parameter the differentiability
of ca′ implies the positivity of the flux; see [19, Lemma 2.40]. The possibility of
having a vanishing flux at positive heights for smooth reactions is introduced by the
degeneracy of the p-Laplacian for p > 2. In the singular case 1 < p < 2 this possibility
does not exist, as can be easily proved in the same way as for α = 1.

We also observe that all the wavefront profiles (1.7) arising from the integral equation
are translates one of each other, with ν giving the point where V takes the value 1/2.
These wavefront profiles correspond to the ones with ξ0 = ξ1 = η, which are strictly
monotonic.

Two wavefront profiles are said to be indistinct if one is a translation of the other.
Otherwise they are distinct. It turns out that to every solution θ of (1.4) satisfy-
ing (1.5) in [0, ℓ] with ℓ < ∞ and θ(ℓ) = 0 there corresponds precisely one distinct
wavefront profile V of equation (1.1) with speed σ from ℓ to 0 which is strictly
monotonic where it is positive. Moreover, there corresponds no other (non-strictly
monotonic) distinct wavefront profile with speed σ from ℓ to 0 if and only if θ > 0 in
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(0, ℓ). We omit the proof, since it is similar to the one of [19, Theorem 2.26].

Back to the integral equation (1.2), Gilding and Kersner have already considered it
for α ̸= 1 in [18] for the particular case

f(t) = σt+ µtγ, µ ∈ R, γ > 0, g(t) = c0t
β, c0 ∈ R, β > −1.

They characterize there for which values of the parameters α, µ, γ, c0, β there is a
local solution of the integral equation for some large enough value σ. This can be
translated into the existence of a local travelling wave with a profile whose support
is bounded from above, which is enough for their purposes.

In the present paper we obtain both necessary conditions and sufficient conditions
in terms of f , g and α for the existence of local solutions to (1.2), in the spirit
of [15], which are enough to analyze the question of existence of travelling waves and
their behavior for diffusion-reaction equations for reaction nonlinearities with none or
one sign change. Though we follow ideas from [15], the new degeneracy/singularity
represented by the power α introduces the need to develop nontrivial generalizations
of several tools that in addition offer more insight on the analysis, as well as new
tools like continued fractions or “polynomials” of fractional order.

Once the study of the integral equation is finished, we apply it to the analysis
of travelling-wave solutions of (1.1), following the ideas developed by Gilding and
Kersner in the remarkable book [19] for the case p = 2. Such examination when
p ̸= 2 has already been considered in [9, 14] for a(u) = u, and in [2, 3] for a(u) = um

using a different technique. However, these papers have several restrictions on the
reaction nonlinearity c. Since the ideas behind the proofs of the results in the last
section are similar to the ones in [19] (though, in ocasions, the calculations are quite
more convoluted) we do not give them here, we leave them as an exercise for the
interested reader and refer him to that book for tips.

Organization of the paper. Section 2 represents the core of the article, where
we study the integral equation (1.2) in detail. In Section 3.1 we exploit the connection
between this integral equation and the diffusion-convection-reaction equation (1.1) to
obtain some general results for the latter. Finally, in Section 3.2 we make full profit
of the results of Section 2 by applying them to study travelling waves of diffusion-
reaction equations (no convection).

2 The integral equation

Throughout this section we will study equation (1.2) in detail in the same fashion as
in [15] when α = 1. The main differences with that work will appear in subsections 2.2,
2.3 and 2.4
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Let us define

I(s, x) =


g(s)/xα if x > 0,

−∞ if g(s) < 0 and x = 0,

0 if g(s) = 0 and x = 0,

∞ if g(s) > 0 and x = 0.

Considering the integral in (1.2) as an improper Lebesgue integral, we will say that
a function x is a solution of equation (1.2) on [0, τ) if it is defined, real, nonnegative
and continuous in [0, τ), G(s, x(s)) ∈ L1

loc((0, τ)), and∫ t

0

I(s, x(s)) ds := lim
ε↓0

∫ t

ε

I(s, x(s)) ds

exists and satisfies

x(t) = f(t) +

∫ t

0

I(s, x(s)) ds for all t ∈ (0, τ).

One can check that a solution in this sense satisfies x(0) = f(0).

We devote a first subsection to give some continuation, uniqueness, and existence
results for (1.2) which are valid in general. We next pay attention in three different
subsections to some particular instances of the integral equation that play an impor-
tant role in the analysis of wavefront profiles, taking advantage of the sign of the
kernel g/xα, as in [15, Sections 7, 8 and 9]. It is here where the analysis becomes
significantly different to the one in [15], requiring the development of new ideas.

2.1 General results

Most of the results in this section will be presented without proofs for the sake of
simplicity, since they are somewhat similar to the classic Volterra theory for integral
equations, we refer again the reader to [15] for details. This similarity is supported
in the fact that the function x → xα is monotonic and differentiable if x > 0.

We start with a prolongation result, see [15, Lemma 2].

Theorem 2.1. Let x be a solution of (1.2) on [0, T ), T < ∞. Then the limits

x(T ) := lim
t→T

x(t),

∫ T

0

g(s)

xα(s)
ds := lim

t→T

∫ t

0

g(s)

xα(s)
ds

exist and are finite and

x(T ) = f(T ) +

∫ T

0

g(s)

xα(s)
ds.

Moreover, either x(T ) = 0 or x is continuously extendible as a solution of equa-
tion (1.2) onto a bigger finite interval [0, T ′).

There is also a comparison principle, see [15, Lemma 4].
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Theorem 2.2. Let x1 denote a solution of the equation

(2.1) x1(t) = f1(t) +

∫ t

0

g1(s)

xα
1 (s)

ds

on some finite interval [0, δ). Suppose that f(0) > f1(0), (f − f1) is nondecreasing
on [0, δ) and g(t) ≥ g1(t) a.e. on (0, δ). If (1.2) has a solution x on [0, δ) such that
x(t) > 0 for all t ∈ [0, δ), then x(t) > x1(t) for all t ∈ [0, δ).

Proof. Suppose that the lemma is false. Then there exists a value t∗ ∈ (0, δ) such
that x(t∗) = x1(t

∗) > 0 and x(t) > x1(t) for all t ∈ [0, t∗).

Let t1 ∈ [0, t∗) be such that xα(s)− xα
1 (s) < K(x(s)− x1(s)) for all s ∈ [t1, t

∗). This
constant K must exist, since the function xα is differentiable and hence Lipschitz in
this interval. After this, we take t0 ∈ [t1, t

∗) such that x1(t) > 0 for all t ∈ [t0, t
∗] and∫ t∗

t0

|g(s)|
xα(s)xα

1 (s)
ds ≤ 1/2K.

We finish as in [15]: using the equations satisfied by x and x1 we see that

x(t)− x1(t) ≤
∫ t∗

t

g(s)

(
1

xα
1 (s)

− 1

xα(s)

)
ds ≤ 1

2
∥x− x1∥L∞(t0,t∗), t ∈ [t0, t

∗],

so that ∥x− x1∥L∞(t0,t∗) = 0, contradicting that x(t) > x1(t) for all t ∈ [0, t∗).

We now pay attention to the number of solutions, see [15, Theorem 2 and 3]..

Theorem 2.3. Equation (1.2) has none, one or an uncountable number of solutions.
Moreover, if ess inf

0<t<τ
g(t) ≥ 0 for some τ > 0, then it has at most one solution in [0, τ).

In the non-singular case f(0) > 0 existence and uniqueness follow from standard
theory for nonlinear Volterra integral equations; see for instance [20]. Hence, we only
have a difficulty when f(0) = 0. The idea to deal with it is to lift the datum f by
a constant µ > 0 and then pass to the limit. Thus, we will construct a solution as
limµ↓0 x(t;µ), where x(t;µ) denotes the unique positive solution to

(2.2) x(t) = µ+ f(t) +

∫ t

0

g(s)

xα(s)
ds,

which has an interval of existence [0, T (µ)).

By Theorem 2.2 we have for all 0 < µ1 < µ2 < ∞ that T (µ1) ≤ T (µ2) and

x(t;µ1) < x(t;µ2) for all t ∈ [0, T (µ1)).

Moreover, T (µ) → ∞ as µ → ∞. These properties allow us to define

x̃(t; 0) = inf{x(t;µ) : µ ∈ R+ such that T (µ) > t}.

Following [15, Section 4, Theorem 4] we can prove that whenever (1.2) has a solution,
x̃ is a maximal solution of the same equation.
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Theorem 2.4. If equation (1.2) has a solution x on an interval [0, δ) then x̃(t; 0)
is a solution of (1.2) on an interval [0, τ) ⊇ [0, δ) and x̃(t; 0) ≥ x(t) for all t ∈ [0, δ).
Furthermore, either τ = ∞ or x̃(t; 0) → 0 as t ↑ τ .

We can now give sufficient conditions for x̃ to be a solution, necessarily the maximal
one, proceeding as in [15, Section 6, Theorems 9 and 10].

Theorem 2.5. Let x1 be a solution of (2.1) on some finite interval [0, τ).

(i) Suppose that f(0) ≥ f1(0), (f − f1) is nondecreasing on [0, τ), g(t) ≥ g1(t) a.e.
on (0, τ) and g/xα

1 ∈ L1
loc((0, τ)). Then x̃(t; 0) solves (1.2) on [0, τ) and

x̃(t; 0) ≥ x1(t) for all t ∈ [0, τ).

Moreover, if (f − f1)(s) < (f − f1)(t) for all s ∈ [0, t) for a fixed t ∈ [0, τ), then
x̃(t; 0) = x1(t) if and only if x̃(t; 0) = 0.

(ii) Suppose that f(t) ≥ f1(t) for all t ∈ [0, τ) and min{0, g(t)} ≥ g1(t) a.e. on
(0, τ). Then x̃(t; 0) solves (1.2) on [0, τ) and

x̃(t; 0)− f(t) ≥ x1(t)− f1(t) for all t ∈ [0, τ).

2.2 Existence: negative kernels

We now concentrate on the case of negative kernels,

(2.3) ess sup
0<t<τ

g(t) ≤ 0 for some τ ∈ (0,∞].

As before, we only need to consider the case f(0) = 0.

Some special functions solving (1.2) for particular data f will play an important role
in the analysis. The first one,

(2.4) G(t) :=

∣∣∣∣(α + 1)

∫ t

0

g(s) ds

∣∣∣∣ 1
α+1

,

solves (1.2) if f ≡ 0. We may assume that

(2.5) G(t) > 0 for all t ∈ (0, τ),

since otherwise our equation reduces to x(t) = f(t) on a small neighbourhood of 0, a
trivial case. The second kind of special solutions have the form x(t) = zG(t), z > 0,
and solve the integral equation with f(t) = kG(t) if and only if z is a root of the
“fractional polynomial”

P+
k (z) := zα+1 − kzα + 1 = 0, z > 0.
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This polynomial attains its minimum in R+ for z = zmin :=
kα

α + 1
, and the number

of its (positive) roots depends on the sign of k − k0, where

k0 := (α + 1)α− α
α+1 .

Indeed, a simple analysis shows that if k > k0, there are two positive roots of P+
k ,

say z1 and z2, while if k = k0 there is only one, z0, and z0 = zmin. It is worth noting
that in the case of positive kernels g, as considered in the next subsection, instead of
the polynomial P+

k we have to deal with

P−
k (z) := zα+1 − kzα − 1 = 0.

The change of sign of the zero-order term makes the analysis simpler in this case.

Let us finally define the important auxiliary quantities

L(t) :=
1

| lnG(t)|
, J(t) :=

1

| lnL(t)|
, t ∈ [0, τ).

Note that |g| = G′Gα, L′ = G′L2/G and J ′ = L′J2/L almost everywhere in (0, τ).
The dependence on t will be omitted in what follows when it is clear.

Theorem 2.6. Assume that (2.3) and (2.5) hold. If

f(t) ≥
(
k0G−K0GL2(1 + J2)

)
(t) for all t ∈ (0, τ), with K0 :=

α
1

α+1

2(α + 1)
,

then equation (1.2) has a maximal solution x̃(t; 0) on an interval [0, δ) ⊂ [0, τ), and

0 ≥ x̃(t; 0)− f(t) ≥ −α
−α
α+1

(
G+

α

α + 1
GL(1 + J + J2)

)
(t) for all t ∈ (0, δ).

Proof. Let δ > 0 be such that G(t) < exp(−1) for t ∈ [0, δ) ⊂ [0, τ), and let us define
a := α/(α + 1) and

S := G+ aGL(1 + J + J2).

A direct computation shows that

D :=
∂S

∂G
= 1 + aL(1 + J + J2) + aL2(1 + J)(1 + 2J2),

and through the Taylor series of the function (1 + x)n we also see that

D1/α =1 +
a

α
(1 + J + J2)L+

a

α

(
(1 + J)(1 + 2J2) +

1− α

2α
a(1 + J + J2)2

)
L2

+O(L3).

It is easy then to check that the function

x1 :=
AG

D1/α
, where A := α

1
α+1 ,
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is a solution of our equation provided that f1 := x1 + A−αS. This is equivalent to

f1 =k0G−K0GL2(1 + J2)

−D−1/α

(
k0GD1/α −K0GL2(1 + J2)D1/α − AG− 1

Aα
SD1/α

)
.

The theorem follows easily once we prove that this last quantity between parentheses
is positive. In order to do so, we group terms by its order.

The terms of order G are multiplied by the factor k0 − A− A−α, but this amounts
to 0 by definition. The terms of order GL(1 + J + J2) are multiplied by the factor
k0aα

−1− aA−α− aA−αα−1, but again this amounts to 0. Note that in order for these
two quantities to be 0 we have not used the value of a.

Recall now that (1 + J + J2)2 = 1+ 2J +3J2 +2J3 + J4, and let us see the term of
order GL2. It is multiplied by

a2
(
α

−1−2α
α+1 − α + 1

2

)
+ aα

−α
α+1 −K0,

and again this is 0, this time thanks to the definition of a. The terms of order GL2J
and GL2J2 suffer the same fate. Finally, the term of order GL2J3 is multiplied by a
factor of 2K0 > 0. The rest of the result now follows from Theorem 2.5.

Theorem 2.7. Assume that (2.3) and (2.5) hold. Let K0 be as in Theorem 2.6. If

f(t) ≤ (k0G− βGL2)(t) for all t ∈ (0, τ)

for some β > K0, equation (1.2) has no solution.

Proof. We define

H(t) := G−1(t)L−1(t), Y (t) := −
∫ t

0

g(s)

xα(s)
ds for t ∈ (0, δ′).

Note that

H ′(t) =
H(t)g(t)

Gα+1(t)
(L(t) + 1) for almost every t ∈ (0, δ′).

Our goal is to obtain an absurd estimate for Y . For a start, since x ≤ f ≤ k0G,
we obtain, substituting in the equation, that x ≤ (k0 − k−α

0 )G. We can repeat this
process again and again to obtain that x ≤ z0G, with

z0 := k0 −
1(

k0 − 1

(k0− 1
(··· )α )

α

)α .

Note that z0 satisfies z0 = k0 − 1
zα0
, which is precisely the root of P+

k , hence the

notation. Therefore

(2.6) Y (t) ≥ −z−α
0

∫ t

0

g(s)/Gα(s) ds = z−α
0 G(t) for all t ∈ (0, δ′).

12



On the other hand we have that

Y (t)H(t)− Y (ε)H(ε) =

∫ t

ε

(
Y ′(s)H(s) + Y (s)H ′(s)

)
ds

for any 0 < ε < t < δ. But substituting H,H ′, Y, Y ′ and using (2.6) we get

Y (t)H(t)− z−α
0 L−1(ε) ≥

∫ t

ε

{
|g|
LG

(
1

xα
+

x(L+ 1)

Gα+1

)
− f(L+ 1)|g|

Gα+2L

}
ds.

Now the term between parentheses can be estimated by studying the function x−α+Ax
for x ≥ 0 and a constant A ≥ 0. This function attains at the point x = (α/A)1/(α+1)

a minimum value of k0A
α/(α+1). Therefore, and using our hypothesis,

Y (t)H(t)− z−α
0 L−1(ε) ≥

∫ t

ε

{
|g|k0(L+ 1)

α
α+1

LGα+1
− (k0 − βL2)(L+ 1)|g|

Gα+1L

}
ds,

and, after throwing away the appearing term βL3, we arrive to

Y (t)H(t)− z−α
0 L−1(ε) ≥

∫ t

ε

|g|
LGα+1

(
k0((L+ 1)

α
α+1 − (L+ 1)) + βL2

)
ds.

It is easy now to check, via Taylor series for example, that

(L+ 1)
α

α+1 ≥ 1 +
α

α + 1
L− α

2(α + 1)2
L2.

Therefore, recalling that |g| = G′Gα and that z0 = k0α/(α + 1), we obtain

Y (t)H(t)− z−α
0 L−1(ε) ≥

∫ t

ε

G′

G
((β −K0)L+ (k0 − z0)) ds.

Therefore, using that L′ = L2G′/G and integrating,

Y (t)H(t) ≥ (β −K0) ln

(
L(t)

L(ε)

)
+ (k0 − z0) ln

(
G(t)

G(ε)

)
+ z−α

0 L−1(ε).

Since k0 − z0 = z−α
0 , taking ε small enough so that L−1(ε) + | ln(G(ε))| = 0, we get

Y (t)H(t) ≥ (β −K0) ln

(
L(t)

L(ε)

)
+ z−α

0 lnL−1(t),

and we get our contradiction by making ε go to 0 whenever β > K0.

We can give an additional necessary condition for the existence of solutions of our in-
tegral equation. For it, we need the following lemma concerning non-negative kernels,
which will be also used in the next subsection.
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Lemma 2.1. Suppose that ess inf
t∈(0,τ)

g(t) ≥ 0 and f(t) ≤ βG(t) for all t ∈ [0, τ) for

some τ ∈ (0,∞) and β ∈ (−∞,∞]. Then, given any µ > 0, there exists ρ > 0 such
that

x(t;µ) ≥ ρ+ f(t) + β−α
0 G(t) for all t ∈ [0,min{T (µ), τ}),

where β0 is the unique positive root of the fractional polynomial P−
β when β < ∞ and

β−α
0 := 0 when β = ∞.

Proof. The case β = ∞ follows easily from (2.2) simply by taking ρ = µ.

For finite β we argue by contradiction. Note that x(0;µ) = µ > 0. Suppose that
there exists t0 ∈ [0,min{T (µ), τ}) such that

(2.7) x(t;µ) > f(t) + β−α
0 G(t) for all t ∈ (0, t0), x(t0;µ) = f(t0) + β−α

0 G(t0).

We set

Y (t) := µ+

∫ t

0

g(s)

xα(s;µ)
ds.

If we multiply equation (2.2) by Y ′ we get

(2.8) 0 = Y Y ′ + fY ′ − x1−αGαG′

for every t ∈ (t0, t1). Substituting x = f + Y and recalling (2.7) and that f ≤ βG,

0 ≤ (βG+ Y )αY ′ −GαG′ and Y (t) > β−α
0 G(t) for all t ∈ (0, t0),

with
G(0) = 0, Y (0) = µ and Y (t0) = β−α

0 G(t0).

From here it is easy to arrive to

G(t0)
α+1

α + 1
≤

∫ t0

0

(βG+ Y )αY ′ dt <

∫ t0

0

(ββα
0 + 1)αYαY′ dt,

and, recalling that βα+1
0 = ββα

0 + 1, we obtain

µα+1 < Y (t0)
α+1 −

(
β−α
0 G(t0)

)α+1
= 0,

which is a contradiction with the fact that µ > 0.

This lemma corresponds to [15, Lemma 11] for the case α = 1, and yields the
following theorem, arguing as in Theorem 13 in the same paper.

Theorem 2.8. Let β and β0 be as in the previous lemma, and assume (2.3). If

f(t) < β−α
0 G(t) for some t ∈ (0, τ) and

f(s)− f(t) ≤ β{Gα+1(t)−Gα+1(s)}
1

α+1 for all 0 ≤ s < t,

then equation (1.2) has no solution on [0, τ).
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Note that we are not asking f to be below β−α
0 G in the whole interval (0, τ), but

only at some specific time. Let us also remark that two of the main differences with
respect to the case α = 1 have already appeared: the fractional polynomials P±

k and
the ordinary differential equation (2.8), that will be studied more profoundly for a
particular f later, in Section 2.4. The final theorem of this subsection corresponds
to [15, Theorem 14].

Theorem 2.9. Assume that (2.3) and (2.5) hold, and f(0) = 0. If given any
t ∈ (0, τ) there exist constants δ > 0 and k < k0 such that

f(s)− f(t) ≤ k{Gα+1(s)−Gα+1(t)}
1

α+1 for all s ∈ (t, t+ δ),

then either the equation (1.2) has no solution or it has a uncountable number of them.

2.3 Existence: non-negative kernels

This time we assume that the kernel is non-negative,

(2.9) ess inf
t∈(0,τ)

g(t) ≥ 0 for some τ ∈ (0,∞].

Our first existence result involves the function G defined in (2.4).

Theorem 2.10. Assume (2.9). If for some −∞ < γ ≤ β ≤ ∞,

γG(t) ≤ f(t) ≤ βG(t) for all t ∈ [0, τ),

then equation (1.2) has a unique solution x̃(t; 0) on [0, τ) such that

β−α
0 G(t) ≤ x̃(t; 0)− f(t) ≤ γ−α

0 G(t),

where γ0 and β0 are respectively the unique positive roots of the polynomials P−
γ and

P−
β . If β = ∞ then we take 1/βα

0 = 0.

Proof. If β = ∞ we are only saying that x̃(t; 0) ≥ f(t), which is trivial, since the
kernel is non-negative. So, let us assume that β < ∞. To prove the right-hand
estimate we argue by contradiction. Suppose that it is false, then there must exist an
interval [t0, t1] ⊂ [0, τ) such that

(2.10) Y (t0) = γ−α
0 G(t0) and Y (t) > γ−α

0 G(t) for all t ∈ (t0, t1],

where Y (t) := x̃(t; 0)−f(t). Multiplying (1.2) by Y ′ we get (2.8) for every t ∈ (t0, t1),
or, substituting x = f + Y and recalling that f ≥ γG,

0 ≥ (γG+ Y )αY ′ −GαG′.

But, using (2.10), we get
0 ≥ (γ + γ−α

0 )αY ′ −G′.

Since γ + γ−α
0 = γ0, it is easy to get now, integrating from t0 to t1, a contradiction

with (2.10) in t1. The left-hand estimate follows analogously.
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The last result of this part can be proved as [15, Theorem 16].

Theorem 2.11. Suppose that ess inf
0<t<τ

g(t) ≥ 0 and that given any t ∈ (0, τ) there

exist δ ∈ (0, t] and β < k0 such that

f(s)− f(t) ≤ β{Gα+1(t)−Gα+1(s)}
1

α+1 for all s ∈ (δ, t).

Then equation (1.2) has a unique solution on [0, τ). Moreover, if there exists a point
s̃ ∈ (0, τ) for which θ(s̃) = 0, then θ(s) ≡ G(s) ≡ 0 in [0, s̃].

2.4 A special case

We consider now equation (1.2) when

(2.11)

∫ t

0

g(s) ds < 0 for all t > 0, f(t) = kG(t) for all t ≥ 0, k ≥ k0.

Again as in [15, Theorem 17] we are able to prove that our equation admits an
uncountable number of solutions characterized by their behaviour as t ↓ 0.

Theorem 2.12. Suppose that (2.11) holds. We denote the positive roots of P+
k by

z1 and z2 when it has two, and by z0 when it has only one.

(i) If k > k0 then equation (1.2) admits the maximal solution

x̃(t; 0) = z2G(t),

and for each ρ ∈ R a unique solution xρ such that

xρ(t) = z1G(t) + ρGγ+1(t) +O(G2γ+1(t)) as t ↓ 0, γ =
α(k − z1)

z1
− 1 > 0,

with maximal interval of existence [0, Tρ), with Tρ = ∞ if ρ ≥ 0 and Tρ finite
if ρ < 0, and no other solutions. Moreover, if G(t) → ∞ as t → ∞ then for
every ρ > 0 there holds xρ(t) ∼ z2G(t) as t → ∞.

(ii) If k = k0 then equation (1.2) admits the maximal solution

x̃(t; 0) = z0G(t),

and for each ρ ∈ R a unique solution xρ such that

xρ(t) = (z0G− ηGL+GL2(ρ+ γJ−1))(t) +O(GL3J−2(t)) as t ↓ 0,

where

η =
2z0
α + 1

=
2kα

(α + 1)2
and γ =

2(α + 2)η

3(α + 1)
,

with maximal interval of existence [0, Tρ), with Tρ finite, and no other solutions.
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In both cases the solutions xρ are monotone with respect to the parameter ρ.

Proof. Suppose that x is a solution of our equation on [0, δ) for some δ positive. We
define

Y (t) := −
∫ t

0

g(s)

xα(s)
ds.

We can multiply the equation by Y ′ to obtain

G′Gα(kG− Y )1−α − Y ′(kG− Y ) = 0.

This equation is homogeneous, so defining V = Y/G we arrive to

G′

G
=

(k − V )αV ′

1− (k − V )αV

or, in other words,

(2.12)
dV

dG
=

1− (k − V )αV

G(k − V )α
.

We have to study the trajectories that satisfy this equation.

Let us first study the case where k > k0, which means that there are two different
roots of P+

k . Inspired by the results in [15], we define, for a certain γ ∈ R to be
defined later, a new independent variable G∗ = Gγ, and (2.12) becomes

dV

dG∗ =
1− (k − V )αV

γG∗(k − V )α
.

We have to study the trajectories V (G∗) as G∗ → 0.

Clearly, we have that V (0) = k − zi, i = 1 or 2. In fact, the only trajectory that
can start from k − z2 is the constant V (G∗) = k − z2, which, recalling the definition
of V , translates to a solution x(t) = z2G(t). More diverse is the family of trajectories
sprouting from k − z1. We would like to study the limit of dV/dG∗ as G∗ goes to 0.

Suppose that this limit exist, and define

ρ = lim
G∗→0

1− (k − V )αV

γG∗(k − V )α
=

1

γzα1
lim
G∗→0

1− (k − V )αV

G∗ .

Then, applying L’Hôpital’s rule, we can check that

ρ =
1

γzα1
lim
G∗→0

V ′(αV (k − V )α−1 − (k − V )α) =
ρ

γzα1
(αzα−1

1 (k − z1)− zα1 ),

meaning that ρ is arbitrary whenever

γ =
α(k − z1)

z1
− 1.
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To see that this limit ρ in fact exists we study the monotonicity of (1−(k−V )αV )/G∗

with respect to G∗. Indeed,

∂G∗

(
1− (k − V )αV

G∗

)
=

V ′

G∗ (αV − (γ + 1)(k − V )) =
V ′αk

z1G∗ (V − (k − z1)).

Since the trajectories never cross the trajectory V (G∗) = k − z1 (i.e. V ′(G∗) = 0),
this means that the previous derivative has a constant sign, which gives monotonicity
and existence of the limit ρ. The rest of the assertions when k > k0 follow from the
study of the phase-plane and the definition of V .

The case k = k0, when we have only one root z0 = αk/(α + 1) of P+
k , is more

difficult, since γ becomes 0. In this case we can say that the zero in the numerator
1 − (k − V )αV is one order higher, so to compensate for it we would need a higher
order zero in the denominator. We achieve this by considering dV/dL, recalling the
definition of L. Summarizing,

(2.13)

dV

dL
=

1− (k − V )αV

L2(k − V )α
,

d2V

dL2
=

V ′

k − V

(
(α + 1)V − k

L2
− 2(k − V )

L
+ αV ′

)
.

Now, from a study similar to the one before, we can see that

lim
L→0

V (L) = k − z0 and η := lim
L→0

dV

dL
=

2z0
α + 1

for every trajectory. So, the distinction between them has to come from the second
order derivative, but a problem appears since through L’Hôpital’s rule we get

lim
L→0

d2V

dL2
= ∞.

Let us write then a possible expansion of the function V (L) near L = 0. We will
omit the higher order terms for the sake of simplicity, since they will not play an
important role here. For a certain function Q(L) we have, near zero, that

V (L) ≈ (k − z0) + ηL+Q(L)L2, V ′(L) ≈ η + 2LQ(L) + L2Q′(L)

and
V ′′(L) ≈ 2Q(L) + 4LQ′(L) + L2Q′′(L),

where we impose that both LQ(L) and L2Q′(L) go to 0 as L goes to 0 in order for
V ′(0) to be equal to η. If we substitute in (2.13) we get

2Q(L) + 4LQ′(L) + L2Q′′(L) ≈ V ′

k − V
· (α + 1)((k − z0) + ηL+Q(L)L2)− k

L2

− V ′

k − V

(
2(z0 − ηL−Q(L)L2)

L
− αV ′

)
.
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Since (α + 1)(k − z0)− k = 0 and (α + 1)η − 2z0 = 0 we can cancel the problematic
terms and make L approach 0 to get

2Q(L) + 4LQ′(L) + L2Q′′(L) ≈ η

z0
((α + 1)Q(L) + (α + 2)η),

which means that we can impose 4LQ′(L)+L2Q′′(L) = η2(α+2)/z0. Thus Q(L) → ∞
as L → 0. The function that satisfies all these conditions is

Q(L) = ρ− 2(α + 2)η

3(α + 1)
ln(L),

where ρ is once more an arbitrary real constant. Again an analysis of the trajectories
of the phase-plane and the definition of V give the desired result.

Remark. If we let α → 1 we recover the result from [15].

3 Travelling Waves

In order to show the full force of the theory developed here, and for future refer-
ence, we encompass in this annex several results regarding wavefronts for the general
equation (1.1) and also for the particular case b ≡ 0, the reaction-diffusion case.
More results, the details of the proofs and the intermediates lemmata can be found
in the doctoral thesis of the author under the title Large time behaviour in local and
non-local diffusion or in [13].

3.1 Travelling waves. General results

It is time now to translate the results obtained in the article for the integral equation
to the frame of travelling waves. Since we are interested mainly in the applications
of the integral equation to the study of wavefronts for diffusion equations we will not
explain in detail all the steps followed to attain the results presented here.

This said, due to the possible degeneracies/singularities of the equation, in general
we will need to deal with weak solutions. A function V defined on an open real
interval Ω with values on I is said to be a travelling-wave profile of equation (1.1)
corresponding to the speed σ if V ∈ C(Ω), |(a(V ))′|p−2(a(V ))′ and c(V ) ∈ L1

loc(Ω)
and

(3.1)

∫
Ω

|(a(V ))′|p−2(a(V ))′φ′ + b(V )φ′ + σV φ′ − c(V )φ = 0

for every φ ∈ C∞
0 (Ω). If Ω = R then it is called a global travelling-wave profile.

The constitutive functions a, b, c : Ī → R are only assumed to satisfy:

(i) a ∈ C(Ī) ∩ C1(I), a′(u) > 0 in I, and a(0) = 0;
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(ii) b ∈ C(Ī) ∩ C1(I) and b(0) = 0;

(iii) c is such that the one sided limitsc(u−) and c(u+) exist for every 0 < u < ℓ,
with c(u−) < 0 if c(u) < 0 and c(u+) > 0 if c(u) > 0;∫ s

0

|c(r)|a′(r) dr < ∞ for all 0 < s ≤ ℓ, s < ∞;

c(0) = 0; and c(ℓ) = 0 if ℓ < ∞.

Let us start this section by presenting two equivalence results.

Theorem 3.1. Suppose ℓ < ∞. If one of the equations

ut = ∆p(a(u)) +∇(b(u)) + c(u), ut = ∆pu+∇(b(u)) + c(u)a′(u)

admits a wavefront profile from ℓ to 0 with speed σ, then they both do. Moreover if
a ∈ C1(I), there is an explicit transformation from a wavefront profile V1 for the first
one onto a wavefront profile V2 for the second one given by

V2(ξ) = V1(Ψ(ξ)), ξ ∈ R, where Ψ(ξ) =

∫ ξ

0

a′(V2(η)) dη.

This equivalence was first studied by Engler in [8] when α = 1 and a(u) = um.
Gilding and Kersner extended the result in [19] to more general nonlinearities a.
Their proof works with only trivial changes for α ̸= 1. The next theorem will be
useful when studying the existence near u = ℓ and the equations with one sign
change in the reaction. It corresponds to [19, Lemma 3.5]

Theorem 3.2. Suppose that ℓ < ∞. Then the following statements are equivalent:
equation (1.4) has a solution θ on Ī with θ(l) = 0; equation

(3.2) Θ(s) = −σs+ b̃(s)−
∫ s

0

c̃(r)ã′(r)

Θα(r)
dr

has a solution Θ on Ī with Θ(ℓ) = 0; and, equations (1.4) and (3.2) both have solu-
tions on Ī. In the same way, these statements are also equivalent: equation (1.4) has
a solution θ satisfying the integrability condition on Ī with θ(l) = 0; equation (3.2)
has a solution Θ satisfying the integrability condition on Ī with Θ(l) = 0; and, equa-
tions (1.4) and (3.2) both have solutions satisfying the integrability condition on Ī.

The next result is about the admissible wave speeds. It corresponds to [19, Theorem
8.3], and is a consequence of [19, Theorem 8.1].

Theorem 3.3. Suppose that ℓ < ∞.

(i) If c < 0 in (0, ℓ), the set S of wave speeds for which (1.1) has a wavefront
solution from ℓ to 0 is either empty or there exists σ0 such that S = (−∞, σ0].
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(ii) If c > 0 in (0, ℓ), either S = ∅ or S = [σ0,∞) for some value σ0.

(iii) If c ≤ 0 in (0, ℓ), the set S is either empty, contains a single value or is an
interval which is bounded above and contains its right endpoint.

(iv) If c ≥ 0 in (0, ℓ), the set S is either empty, contains a single value or is an
interval which is bounded below and contains its left endpoint.

3.2 Reaction-diffusion

In this section we will focus on travelling waves for the equation (1.1) when there is
no convection, b ≡ 0, which leaves us with the reaction-diffusion equation

(3.3) ut = ∆p(a(u)) + c(u).

For an equation of this class the integral equation becomes

(3.4) θ(s) = σs−
∫ s

0

a′(r)c(r)

θα(r)
dr, α > 0.

Remark. If c ≡ 0 (b ̸≡ 0), the integral equation (1.4) becomes θ(s) = σs +
b(s), and the search for nonnegative solutions in an interval (0, δ) is much easier.
Nevertheless, one has to treat the possibility of having θ(s∗) = 0 for some s∗ > 0
more carefully than in the case p = 2, since on the one hand this could happen
without breaking the integrability condition (1.5) and on the other hand there is no
reaction to “compensate” the degeneracy.

We begin by presenting a connection between the speed σ and the integral

(3.5) κ :=

∫ ℓ

0

c(s)a′(s) ds,

a result that corresponds in the semi-linear case p = 2, a(u) = u to [19, Theorem
10.1].

Theorem 3.4. Let ℓ < ∞. Equation (3.3) has a wavefront profile from 0 to ℓ with
speed σ only if one of the following holds:

(a) κ > 0, σ > 0 and

∫ ℓ

u

c(s)a′(s) ds > 0 for all u ∈ (0, ℓ).

(b) κ = 0, σ = 0,

∫ u

0

c(s)a′(s) ds ≤ 0 for all u ∈ (0, ℓ), and θ(s) = G(s) satisfies

the integrability condition on I.

(c) κ < 0, σ < 0 and

∫ u

0

c(s)a′(s) ds < 0 for all u ∈ (0, ℓ).

The necessary condition (b) is also a sufficient condition for existence.
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3.2.1 Fixed sign

Now we focus our attention on the case in which c > 0 in (0, ℓ). Due to a clever
change of variables u → ℓ − u (see [19, Lemma 3.4]) our results will apply, with the
needed changes, to the case in which c < 0 in (0, ℓ).

Theorem 3.5. Suppose that ℓ < ∞ and c > 0 in (0, ℓ). Set

λ1 := lim sup
s↓0

{
1

s

∫ s

0

c(r)a′(r)

rα
dr

}
.

(i) If λ1 = ∞, then equation (3.3) has no wavefront profile from ℓ to 0.

(ii) If λ1 < ∞, there exists a value σ∗ > 0 such that (3.3) has exactly one wavefront
profile from ℓ to 0 for every wave speed σ ≥ σ∗ and no such profile for σ < σ∗.

This result is analogous to the one in [19, Theorem 10.5]

Our next step is to say something about the supports of the solutions. There are
some previous results needed here that are similar to [19, Lemmata 10.9, 10.19 and
10.20]. It is well known that some combinations of filtration and reaction nonlinear-
ities a and c provoke the appearance of free boundaries in the solutions. Thus, for
wavefront profiles from ℓ to 0 one or both of the following properties may hold:

V (ξ) ≡ 0 for all ξ ≥ ξ∗ for some ξ∗ ∈ R,(3.6)

V (ξ) ≡ ℓ for all ξ ≤ ξ∗ for some ξ∗ ∈ R.(3.7)

This theorem about the support of the solutions corresponds to [19, Theorem 10.21].

Theorem 3.6. Suppose that ℓ < ∞, c > 0 in (0, ℓ) and λ1 < ∞. Let σ∗ > 0 be the
critical wave speed for which equation (3.3) has exactly one distinct wavefront profile
from ℓ to 0 for every speed σ ≥ σ∗ and no such solution for σ < σ∗.

(i) Suppose in addition that (ca′)1/α is differentiable on [0, δ] for some δ ∈ (0, ℓ),
(ca′)(0) = 0 and ((ca′)1/α)′(u) → ((ca′)1/α)′(0) as u ↓ 0. Then the following
alternatives are mutually exclusive.

(a) Every wavefront profile from ℓ to 0 satisfies (3.6). This occurs if and only
if ∫ δ

0

1

c(s)
ds < ∞.

(b) Every wavefront profile from ℓ to 0 with wave speed σ∗ satisfies (3.6), while
every such solution with speed σ > σ∗ satisfies V (ξ) > 0 for all ξ ∈ R.
This occurs if and only if∫ δ

0

a′(s)

sα
ds <

∫ δ

0

1

c(s)
ds = ∞.
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(c) Every wavefront profile from ℓ to 0 satisfies V (ξ) > 0 for all ξ ∈ R. This
occurs if and only if ∫ δ

0

a′(s)

sα
ds = ∞.

(ii) Suppose furthermore that (ca′)1/α is differentiable on [ℓ−δ, ℓ] for some δ ∈ (0, ℓ),
(ca′)(ℓ) = 0 and ((ca′)1/α)′(u) → ((ca′)1/α)′(ℓ) as u ↑ ℓ. Then the following
alternatives are mutually exclusive.

(a) Every wavefront profile from ℓ to 0 satisfies (3.7). This occurs if and only
if ∫ ℓ

ℓ−δ

1

c(s)
ds < ∞.

(b) Every wavefront profile from ℓ to 0 satisfies V (ξ) < ℓ for all ξ ∈ R. This
occurs if and only if ∫ ℓ

ℓ−δ

1

c(s)
ds = ∞.

We close this section studying the behaviour of our wavefront profiles when they
approach the critical values 0 and ℓ. This result is analogous to [19, Theorem 10.22]
though we find important to sketch the behaviour of the parameter λ1 in this case.
When α = 1 the work in [19] shows how λ1 becomes (ca′)′(0) but our case is not
so tidy. In fact tracing back the definition of λ1 we see that in our case, whenever
λ1 < ∞, we have that this value becomes [((ca′)1/α)′(0)]α.

Theorem 3.7. Let V denote a wavefront profile of equation (3.3) from ℓ to 0 with
wave speed σ.

(i) Suppose that the conditions of Theorem 3.6 (i) hold and define

(3.8) ξ∗ := sup{ξ ∈ R : V (ξ) > 0}.

If σ = σ∗, then (a(V ))′(ξ)
V α(ξ)

→ −zα2 as ξ ↑ ξ∗, where z2 is the biggest root of Qγ,
with

Qγ(z) := zα+1 − σzα + γ

and γ = [((ca′)1/α)′(0)]α, whereas if σ > σ∗, then V ′(ξ)
c(V (ξ))

→ − zα1
((ca′)1/α)′(0)

as

ξ ↑ ξ∗, where z1 is the smallest root of the fractional polynomial Qγ.

(ii) Suppose that the conditions of Theorem 3.6 (ii) hold and define

(3.9) ξ∗ := inf{ξ ∈ R : V (ξ) < ℓ}.

Then, V ′(ξ)
c(V (ξ))

→ − zα0
((ca′)1/α)′(ℓ)

as ξ ↓ ξ∗, where z0 is the smallest root of Qγ with

γ = [((ca′)1/α)′(ℓ)]α.
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3.2.2 One sign change

It is time to close up this work and we do so by studying the properties of wavefront
profiles appearing when the reaction term has one sign change, in essence, c ≤ 0 in
[0, a] and c ≥ 0 in [a, ℓ], for some a ∈ (0, ℓ). In the opposite case, when the reaction
starts being non-negative and ends being non-positive, Theorem 3.4 prevents the
existence of wavefront profiles connecting ℓ with 0. Therefore, we stick to the first
case, and to work with it we define the value

H(s) :=

∣∣∣∣(α + 1)

∫ ℓ

s

c(r)a′(r) dr

∣∣∣∣1/(α+1)

,

which plays a similar role as the function G but coming from the value ℓ. We also
recall the equation

(3.10) Θ(s) = −σs+ b̃(s)−
∫ s

0

c̃(r)ã′(r)

Θα(r)
dr

from Theorem 3.2, and the reader may have already guessed that we are going to use
it to split the analysis of our equation in two halves separated by the value u = a. This
creates a new difficulty, because during the study of the existence of wavefront profiles
we would like to paste the two halves together at some point and with the same speed
of propagation. Continuity of wavefront profiles with respect to the parameter σ is
stated in [19, Lemma 8.5], and the possibility of sticking both halves back together
in [19, Lemma 8.9].

Theorem 3.8. Suppose that c ≤ 0 in [0, a] and c ≥ 0 in [a, ℓ], for some a ∈ (0, ℓ),
ℓ < ∞. Let κ be defined as in (3.5). Suppose also that one of the following holds:

(i) κ > 0 and c > 0 in (a, ℓ);

(ii) κ = 0, G(u) > 0 in (0, a) and H(u) > 0 in (a, ℓ);

(iii) κ < 0 and c < 0 in (0, a).

Then there exists a real number σ∗ for which equation (3.3) has exactly one distinct
wavefront profile from ℓ to 0 with speed σ∗ and no such solution for any other wave
speed.

We finish by studying the behaviour close to the critical values S = 0, ℓ and the
support of the solutions, as we did in the previous section.

Theorem 3.9. Suppose that ℓ < ∞ and let V denote the wavefront profile from ℓ
to 0 of equation (3.3) with wave speed σ.

(i) Suppose also that c ≤ 0 on (0, δ] for some δ ∈ (0, ℓ/2), (ca′)1/α is differentiable
on [0, δ], (ca′)(0) = 0 and ((ca′)1/α)′(u) → ((ca′)1/α)′(0) as u ↓ 0.
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(a) If κ > 0 then V satisfies (3.6) if and only if∫ δ

0

a′(s)

sα
ds < ∞.

(b) If κ = 0 and G > 0 on (0, δ] then V satisfies (3.6) if and only if∫ δ

0

a′(s)

Gα(s)
ds < ∞.

(c) If κ < 0 and c < 0 on (0, δ] then V satisfies (3.6) if and only if∫ δ

0

1

|c(s)|
ds < ∞.

(ii) Suppose that c ≥ 0 on [ℓ − δ, ℓ) for some δ ∈ (0, ℓ/2), (ca′)1/α is differentiable
on [ℓ− δ, ℓ], (ca′)(ℓ) = 0 and ((ca′)1/α)′(u) → ((ca′)1/α)′(ℓ) as u ↑ ℓ.

(a) If κ > 0 and c > 0 on [ℓ− δ, ℓ) then V satisfies (3.7) if and only if∫ ℓ

ℓ−δ

1

c(s)
ds < ∞.

(b) If κ = 0 and H > 0 on [ℓ− δ, ℓ) then V satisfies (3.7) if and only if∫ ℓ

ℓ−δ

a′(s)

Hα(s)
ds < ∞.

(c) If κ < 0 then V satisfies (3.6) if and only if∫ ℓ

ℓ−δ

a′(s)

(ℓ− s)α
ds < ∞.

This theorem is a corollary of the following, which is at the same time consequence
of Theorems 3.4, 3.8 and 3.2.

Theorem 3.10. Let V denote a wavefront profile of equation (3.3) from ℓ to 0 with
wave speed σ. Define ξ∗ and ξ∗ as in (3.8)–(3.9).

(i) Suppose that the conditions of Theorem 3.9 (i) hold.

(a) If κ > 0 then (a(V ))′(ξ)
V α(ξ)

→ −zα2 as ξ ↑ ξ∗, where z2 is the biggest root of Qγ with

γ = [((ca′)1/α)′(0)]α.

(b) If κ = 0 and G > 0 on (0, δ] then (a(V ))′(ξ)
G(V α(ξ))

→ −1 as ξ ↑ ξ∗.

(c) If κ < 0 and c < 0 on (0, δ] then V ′(ξ)
|c(V (ξ))| →

zα2
((ca′)1/α)′(0)

as ξ ↑ ξ∗.

25



(ii) Suppose that the conditions of Theorem 3.6 (ii) hold.

(a) If κ > 0 and c > 0 on [ℓ− δ, ℓ) then V ′(ξ)
|c(V (ξ))| → − zα1

((ca′)1/α)′(0)
as ξ ↓ ξ∗, where z1

is the smallest root of Qγ with γ = [((ca′)1/α)′(ℓ)]α.

(b) If κ = 0 and H > 0 on [ℓ− δ, ℓ) then (a(V ))′(ξ)
H(V α(ξ))

→ −1 as ξ ↓ ξ∗.

(c) If κ < 0 then (a(V ))′(ξ)
(ℓ−V (ξ))α

→ zα1 as ξ ↓ ξ∗.
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