Robust classification with flexible discriminant analysis in heterogeneous data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Robust classification with flexible discriminant analysis in heterogeneous data

Résumé

Linear and Quadratic Discriminant Analysis are well-known classical methods but can heavily suffer from non-Gaussian distributions and/or contaminated datasets, mainly because of the underlying Gaussian assumption that is not robust. To fill this gap, this paper presents a new robust discriminant analysis where each data point is drawn by its own arbitrary Elliptically Symmetrical (ES) distribution and its own arbitrary scale parameter. Such a model allows for possibly very heterogeneous, independent but non-identically distributed samples. After deriving a new decision rule, it is shown that maximum-likelihood parameter estimation and classification are very simple, fast and robust compared to state-of-the-art methods.
Fichier principal
Vignette du fichier
Robust classification with flexible discriminant analysis in heterogeneous data.pdf (513.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03620144 , version 1 (25-03-2022)

Identifiants

Citer

Pierre Houdouin, Andrew Wang, M Jonckheere, Frédéric Pascal. Robust classification with flexible discriminant analysis in heterogeneous data. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2022), May 2022, Singapour, Singapore. ⟨10.1109/ICASSP43922.2022.9747576⟩. ⟨hal-03620144⟩
86 Consultations
146 Téléchargements

Altmetric

Partager

More