AN ALGEBRAIC CONVERGENCE RATE FOR THE OPTIMAL CONTROL OF MCKEAN-VLASOV DYNAMICS - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Control and Optimization Année : 2023

AN ALGEBRAIC CONVERGENCE RATE FOR THE OPTIMAL CONTROL OF MCKEAN-VLASOV DYNAMICS

Résumé

We establish an algebraic rate of convergence in the large number of players limit of the value functions of N-particle stochastic control problems towards the value function of the corresponding McKean-Vlasov problem also known as mean field control. The rate is obtained in the presence of both idiosyncratic and common noises and in a setting where the value function for the McKean-Vlasov problem need not be smooth. Our approach relies crucially on uniform in N Lipschitz and semi-concavity estimates for the N-particle value functions as well as a certain concentration inequality.
Fichier principal
Vignette du fichier
CvPot20220322JJ_takis2 2.pdf (327.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03618944 , version 1 (25-03-2022)
hal-03618944 , version 2 (10-12-2022)

Identifiants

Citer

Pierre Cardaliaguet, Samuel Daudin, Joe Jackson, Panagiotis Souganidis. AN ALGEBRAIC CONVERGENCE RATE FOR THE OPTIMAL CONTROL OF MCKEAN-VLASOV DYNAMICS. SIAM Journal on Control and Optimization, 2023, 61 (6), pp.3341-3369. ⟨10.1137/22M1486789⟩. ⟨hal-03618944v2⟩
68 Consultations
204 Téléchargements

Altmetric

Partager

More