Connectedness and Gaussian Parts for Compact Quantum Groups - Archive ouverte HAL
Article Dans Une Revue Journal of Geometry and Physics Année : 2023

Connectedness and Gaussian Parts for Compact Quantum Groups

Résumé

We introduce the Gaussian part of a compact quantum group $\QG$, namely the largest quantum subgroup of $\QG$ supporting all the Gaussian functionals of $\QG$. We prove that the Gaussian part is always contained in the Kac part, and characterise Gaussian parts of classical compact groups, duals of classical discrete groups and $q$-deformations of compact Lie groups. The notion turns out to be related to a new concept of "strong connectedness" and we exhibit several examples of both strongly connected and totally strongly disconnected compact quantum groups.
Fichier principal
Vignette du fichier
2203.08030v3.pdf (291.59 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-03616091 , version 1 (10-09-2024)

Licence

Identifiants

Citer

Uwe Franz, Amaury Freslon, Adam Skalski. Connectedness and Gaussian Parts for Compact Quantum Groups. Journal of Geometry and Physics, 2023, 184, pp.104710. ⟨10.1016/j.geomphys.2022.104710⟩. ⟨hal-03616091⟩
57 Consultations
8 Téléchargements

Altmetric

Partager

More