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CONNECTEDNESS AND GAUSSIAN PARTS FOR COMPACT

QUANTUM GROUPS

UWE FRANZ, AMAURY FRESLON, AND ADAM SKALSKI

Abstract. We introduce the Gaussian part of a compact quantum group G, namely the
largest quantum subgroup of G supporting all the Gaussian functionals of G. We prove that
the Gaussian part is always contained in the Kac part, and characterise Gaussian parts of
classical compact groups, duals of classical discrete groups and q-deformations of compact
Lie groups. The notion turns out to be related to a new concept of “strong connectedness”
and we exhibit several examples of both strongly connected and totally strongly disconnected
compact quantum groups.

1. Introduction

Lévy processes, i.e. stochastic processes with independent and identically distributed in-
crements, form one of the most studied classes of stochastic processes ([Sat99]); and among
these the Gaussian processes, and in particular the Brownian motion are crucial examples.
They were initially studied in the Euclidean space, but it quickly became clear that the con-
volution product for probability measures afforded by the (locally compact) group structure
gives a very natural framework for generalisations ([Hey77], [Lia04]). In the end of 1980s,
motivated by the development of quantum probability theory, the algebraic language was
used by Accardi, Schürmann and von Waldenfels to define in [ASvW88] abstract quantum
Lévy processes, understood as certain families of quantum random variables living on a ˚-
bialgebra. Soon after, Schürmann introduced in [Sch90] an important subclass of quantum
Lévy processes, namely quantum Gaussian processes, see also [Sch93, Section 5]. Schürmann’s
definition is phrased in terms of Gaussian generating functionals. These should be viewed as
quantum counterparts of ‘second-order’ or ‘quadratic’ generators of convolution semigroups of
measures, and naturally lead to the concept of Gaussian states on (compact) quantum groups.
The idea of Schürmann opened a path to studying quantum versions of Lévy-Khintchine de-
compositions ([DFKS18] and references therein) or to classification of Gaussian generators on
concrete quantum groups (see [SS98]).

The last cited paper exhibited a curious phenomenon: all Gaussian generating functionals
on Woronowicz’s SUqp2q (with q P p´1, 0q Y p0, 1q) are supported on the circle T, the largest
classical subgroup of SUqp2q. In the same spirit, it is known that the free permutation do not
support any non-trivial Gaussian generating functionals whatsoever ([FKS16]). Meanwhile,
some examples show that in general Gaussian generating functionals need not be supported
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on classical subgroups (see [DFKS18] or the results in Sections 5 and 6 below). This motivates
the main question studied in this paper, which has natural connections for example with the
notion of topological generation for compact quantum groups (see the end of Section 6.3):

‚ Given a compact quantum group G, what is the smallest quantum subgroup of G
which supports all Gaussian generating functionals (equivalently, all Gaussian states)
of G?

We will call the quantum subgroup as above (whose existence is easy to deduce) the Gauss-
ian part of G and denote it GausspGq, by analogy with the classical part (i.e. the largest
classical subgroup) of G and the Kac part (the largest quantum subgroup of Kac type) of G.
The analysis of the classical case shows that there the notion of the Gaussian part coincides
with the connected component of the identity. This motivates the introduction of a natural
quantum counterpart of classical connectedness. To distinguish this notion from a strictly
weaker concept defined in [Wan09], we call it strong connectedness; roughly speaking a com-
pact quantum group G is strongly connected if the intersection of a certain family of ideals
in OpGq trivialises. With this notion at hand – which appears to be of independent interest
– we can state the first main result of this work.

Theorem A. For any compact quantum group G the Gaussian part of G is contained in the
strongly connected component of identity of G, which in turn is contained in the Kac part of
G:

GausspGq Ă G00 Ă KacpGq.
Apart from the structural result above we compute the Gaussian parts of many compact

quantum groups. We summarise the main statements obtained in the following theorem.

Theorem B. The following hold:

‚ If G is a classical compact group, then its Gaussian part coincides with its (strongly)
connected component of the identity: GausspGq “ G0;

‚ If Γ is a finitely generated discrete group, then GaussppΓq “ {Γ{
a

γ3pΓq;
‚ Gaussian parts of (pro-)finite quantum groups and of quantum permutation groups are
trivial;

‚ If G is a simply connected semisimple compact Lie group and q P p0, 1q then GausspGqq
is the maximal torus T Ă Gq;

‚ GausspO˚
N q “ SOpNq;

‚ GausspO`
N q (for N ě 4) and GausspU`

N q (for N ě 2) are neither classical nor dual to
discrete groups.

It is worth noting that we do not know whether the Gaussian part of the free orthogonal
group O`

N is O`
N itself (similarly for the free unitary group). The problem seems to have

subtle connections with the questions regarding topological generation inside free quantum
groups.

The detailed plan of the paper is as follows: in Section 2 we recall the basic facts concerning
generating functionals on ˚-bialgebras, including the notion of Gaussian generating functionals
and the subclass of drifts, together with several related characterizations, and establish a
Wick-type formula which is useful for computations. Section 3 recalls basic facts of the
theory of compact quantum groups, introduces the Gaussian part and establishes its basic
properties. We also prove a that point that Gaussian parts satisfy the Kac property, and
the proof relies on a new characterization of the maximal Kac quotient which we believe
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to be of independent interest. Section 4 is devoted to the concept of strong connectedness;
there we also complete the proof of Theorem A. Eventually, the last two sections contain
computations of the Gaussian part in several examples. In Section 5 we determine Gaussian
(and drift) parts for classical compact groups and duals of discrete groups, and in Section 6
we do the same for q-deformations and half-liberated orthogonal groups and discuss partial
results we obtained for free quantum groups. This completes the proof of Theorem B, which
is a combination of Corollary 5.3, Theorem 5.5, Proposition 4.10, Proposition 6.1, Proposition
6.3 and Proposition 6.5.

2. Gaussian functionals

In this section we recall the notion of generating functionals on ˚-bialgebras, focusing on
the class of Gaussian functionals and drifts for which we provide several characterizations.
We also show that Gaussian generating functionals satisfy a version of the Wick property.

2.1. Definition and properties. Let B be an involutive bialgebra with unit 1 and counit ε.
In all cases of interest afterwards, B will be the Hopf *-algebra OpGq of a compact quantum
group G, but we stay at a general level for the moment. A generating functional on B is a
linear functional φ : B Ñ C with the following three properties:

(1) φp1q “ 0 (normalization);

(2) φpb˚q “ φpbq for all b P B (hermitianity);
(3) φpb˚bq ě 0 for all b P ker ε (conditional positivity).

We are interested in generating functionals, because it follows from [Sch93, Section 3.2]
that they are in one-to-one correspondence with convolution semigroups of states.

Proposition 2.1. Let B be an involutive bialgebra and let φ : B Ñ C a linear functional.
Set, for t P R`,

ϕt “ exp‹ptφq :“
`8ÿ

n“0

ptφq‹n

n!
,

with the convention φ‹0 “ ε. Then, the following are equivalent:

(1) φ is a generating functional;
(2) ϕt is a state for all t ě 0, in the sense that

(a) ϕtp1q “ 1;
(b) ϕtpb˚bq ě 0 for all b P B.

By a GNS-type construction one can associate a so-called Schürmann triple to a generating
functional, cf. [Sch93, Subsection 2.3]. Let us recall how this works. For an inner product
space D (pre-Hilbert space), we denote by

LpDq “
 
X : D Ñ D linear | DX˚ : D Ñ D s.t. @u, v P D, xu,Xvy “ xX˚u, vy

(

the *-algebra of adjointable linear maps on D.

Definition 2.2. Let pB, εq be a pair consisting of a *-algebra B and a *-homorphism ε : B Ñ C

(an augmented *-algebra), and let D be a pre-Hilbert space. A Schürmann triple on pB, εq
over D is a family of three linear maps pρ : B Ñ LpDq, η : B Ñ D,φ : B Ñ Cq such that

(1) ρ is a unital *-homomorphism;
3



(2) η satisfies

(2.1) ηpabq “ ρpaqηpbq ` ηpaqεpbq
for all a, b P B,

(3) φ is hermitian and satisfies

(2.2) φpa˚bq ´ εpaqφpbq ´ φpaqεpbq “ xηpaq, ηpbqy
for all a, b P B.

Relations (2.1) and (2.2) imply ηp1q “ 0 and φp1q “ 0. Relation (2.2) furthermore shows
that φ is positive on the kernel of ε, hence φ is a generating functional.

We call two Schürmann triples pρ, η, φq and pρ1, η1, φ1q on the same augmented *-algebra
pB, εq and over pre-Hilbert spaces D and D1 equivalent, if there exists a surjective isometry
V : D Ñ D1 s.t.

V ηpbq “ η1pbq and V ρpbq “ ρ1pbqV
for all b P B. Note that we thus get one-to-one correspondences between convolution semi-
groups of states, generating functionals, and Schürmann triples with surjective cocycle (up to
equivalence) on a given involutive bialgebra B. Schürmann [Sch93] proved that these three
families of objects are also in one-to-one correspondence with Lévy processes on B (up to
stochastic equivalence).

We now introduce a family of ideals which will play a crucial rôle in this work. We set
K1pBq “ kerpεq and KnpBq “ K1pBqn for n ě 1, or more explicitly

KnpBq “ Spantb1 ¨ ¨ ¨ bn | b1, ¨ ¨ ¨ , bn P kerpεqu
We also set

K8pBq “
č

ně1

KnpBq.

The family pKnpBqq`8
n“1

is decreasing, and the containments can be proper, as we will see later
on. In order to lighten notations, we will simply write Kn as soon as there is no ambiguity
concerning the algebra B.

If B “ OpGq, then K1 is also a coideal and therefore a Hopf *-ideal, as it is the kernel
of a Hopf *-algebra homomorphism. For n ě 2 however, Kn is in general not a coideal but
nevertheless defines a filtration since

∆pKnq Ď
nÿ

ℓ“0

Kℓ b Kn´ℓ Ď Ktn
2

u b B ` B b Ktn
2

u

(where K0 “ B by convention). It turns out that if B is a Hopf algebra, then K8 is a Hopf
ideal, see Proposition 4.1.

Example 2.3. Consider the *-algebra B “ Crxs of polynomials in one self-adjoint variable (i.e.
x˚ “ x) and the augmentation map determined by εpxq “ 0. Then the ideal Kn consists
exactly of the polynomials that have a zero of order at least n at the origin, and K8 “ t0u.

We are now ready for the definition of Gaussian processes, which are the main subject of
this work.

Definition 2.4. A generating functional φ : B Ñ C on an augmented *-algebra B is called
Gaussian (or quadratic, [Sch93, Section 5.1]), if φ|K3

“ 0.
4



A state on B is called Gaussian, if it is of the form ϕ “ exp‹ptφq for some t ě 0 and φ a
Gaussian generating functional. A cocycle η : B Ñ H is called Gaussian, if it is a derivation
in the sense that ηpabq “ εpaqηpbq ` ηpaqεpbq for all a, b P B.

The connection between the last definition and the first two ones is not obvious and relies
on the following result.

Proposition 2.5. [Sch93, Proposition 5.1.1] Let B be an augmented *-algebra and let pρ, η, φq
be a Schürmann triple on B over some pre-Hilbert space H with surjective cocycle η. Then,
the following are equivalent:

(1) φ|K3
“ 0,

(2) φpa˚aq “ 0 for all a P K2,
(3) ρ|K1

“ 0,
(4) ρpbq “ εpbqidH for all b P B,
(5) η|K2

“ 0,
(6) ηpabq “ εpaqηpbq ` ηpaqεpbq for all a, b P B.

Note that the first property translates into the following condition, valid for all a, b, c P B:

φpabcq “ φpabqεpcq ` φpacqεpbq ` φpbcqεpaq ´ φpaqεpbcq ´ φpbqεpacq ´ φpcqεpabq.
This gives an inductive algorithm to compute φ which leads to a Wick-type formula, see
Subsection 2.2.

Remark. Assume that B is an augmented *-algebra, that X Ă B generates B as a *-algebra,
and let φ : B Ñ C be a Gaussian generating functional with associated cocycle η : B Ñ D.
Then, the following conditions are equivalent:

(i) φpxyq “ φpyxq for all x, y P X;
(ii) xηpx˚q, ηpyqy “ xηpy˚q, ηpxqy for all x, y P X;
(iii) φ is a trace: φpabq “ φpbaq for all a, b P B;
(iv) φ factors through the commutator ideal of B.

Indeed, (i) and (ii) are equivalent by (2.2). Then, it suffices to observe that if (i) holds then
we can prove first (iii) and then (iv) using the formula displayed before the remark; the other
implications are trivial. Even though we will not need nor use the terminology hereafter, such
functionals may be called classical since they factor through a commutative algebra.

Looking at the definition of a Gaussian generating functional, one may wonder at the
definition obtained by strengthening the condition to φ|K2

“ 0. A functional satisfying
this condition called a drift (or degenerate quadratic, [Sch93, Section 5.1]). Drifts can be
characterized through their Schürmann triples similarly to Gaussian functionals.

Proposition 2.6. Under the same assumptions as in Proposition 2.5, the following are equiv-
alent:

(1) φ|K2
“ 0;

(2) φ is a hermitian derivation, i.e. φpa˚q “ φpaq and

φpabq “ εpaqφpbq ` φpaqεpbq
for all a, b P B;

(3) φpa˚aq “ 0 for all a P K1.
5



Remark. A generating functional φ is a drift if and only if ϕt “ exp‹ptφq is a character for all
t P R`. One way is easy: if ϕt is a character for all t ě 0, then for all a, b P B we have

φpabq “ lim
tÑ0

ϕtpabq ´ εpabq
t

“ lim
tÑ0

ϕtpaqϕtpbq ´ εpaqεpbq
t

“ φpaqεpbq ` φpbqεpaq

and combining this with the hermitian property which comes from the hermitian property of
ϕt, we conclude by the second point of the above proposition. Conversely, if φ is a drift then
a straightforward induction shows that for all a, b P B and all k ě 0,

φ˚kpabq “
kÿ

p“0

ˆ
k

p

˙
φ˚ppaqφ˚pk´pqpbq

with φ˚0 “ ε. Multiplicativity of ϕt then follows from the equalities

ϕtpaqϕtpbq “
`8ÿ

k,k1“0

tk`k1

k!k1!
φ˚kpaqφ˚k1 pbq

“
`8ÿ

r“0

tr

r!

rÿ

i“0

r!

i!pr ´ iq!φ
˚ipaqφ˚pr´iqpbq

“
`8ÿ

r“0

tr

r!
φ˚rpabq “ ϕtpabq.

2.2. A Wick-type formula for Gaussian generating functionals. The defining property
of Gaussian generating functionals gives a way to compute their value on a product of elements
by centering them and then applying the property recursively. This can be turned into a closed
formula which is reminiscent of the Wick formula for operators on the full Fock space.

Proposition 2.7. Let φ be a Gaussian generating functional on B. Then we have for any
n ě 2 and any a1, ¨ ¨ ¨ , an P B,

φpa1 ¨ ¨ ¨ anq “
ÿ

1ďjăkďn

φpajakqε pa1 ¨ ¨ ¨ qaj ¨ ¨ ¨ qak ¨ ¨ ¨ anq

´ pn ´ 2q
ÿ

1ďjďn

φpajqεpa1 ¨ ¨ ¨ qaj ¨ ¨ ¨ anq,

where qaj means that this factor is omitted from the product.

Proof. For n “ 2 this is trivially true, and for n “ 3 it is one of the equivalent characterisations
in Proposition 2.5.

The general case follows by induction. Let us first observe that for any j, n P N,

φpajanan`1q “ φpajanqεpan`1q ` φpajan`1qεpanq ` φpanan`1qεpajq
´ φpajqεpanan`1q ´ φpanqεpajan`1q ´ φpan`1qεpajanq.

6



Now, let n ě 3 and a1, ¨ ¨ ¨ , an`1 P B. Then we have

φ
`
a1 ¨ ¨ ¨ panan`1q

˘
“

ÿ

1ďjăkăn

φpajakqε pa1 ¨ ¨ ¨ qaj ¨ ¨ ¨ qak ¨ ¨ ¨ anan`1q

`
ÿ

1ďjăn

φpajanan`1qloooooomoooooon ε pa1 ¨ ¨ ¨ qaj ¨ ¨ ¨ an´1q

´ pn ´ 2q
ÿ

1ďjăn

φpajqεpa1 ¨ ¨ ¨ qaj ¨ ¨ ¨ anan`1q

´ pn ´ 2qφpanan`1qεpa1 ¨ ¨ ¨ an´1q
“

ÿ

1ďjăkďn`1

φpajakqε pa1 ¨ ¨ ¨ qaj ¨ ¨ ¨ qak ¨ ¨ ¨ an`1q

´ pn ´ 1q
ÿ

1ďjďn`1

φpajqεpa1 ¨ ¨ ¨ qaj ¨ ¨ ¨ an`1q.

�

This implies immediately the following lemma which will be useful to determine conditions
guaranteeing that Gaussian generating functionals vanish on certain ideals.

Corollary 2.8. Assume that we have two subsets X “ ta1, ¨ ¨ ¨ , anu Ď B and Y “ tb1, ¨ ¨ ¨ , bmu Ď
kerpεq such that

(1) X generates B as an algebra;
(2) 0 “ φpbkq “ φpajbkq “ φpbkajq for all j P t1, ¨ ¨ ¨ , nu and all k P t1, ¨ ¨ ¨ ,mu.

Then φ vanishes on the ideal generated by Y .

Proof. It suffices to show that φpaj1 ¨ ¨ ¨ ajsbkajs`1
¨ ¨ ¨ ajs`t

q vanishes for all s, t P N Y t0u,
j1, ¨ ¨ ¨ , js`t P t1, ¨ ¨ ¨ , nu, k P t1, ¨ ¨ ¨ ,mu. Proposition 2.7 allows to do that by reducing this
value to a linear combination of terms of the form appearing in Condition (2). �

3. The Gaussian part of a compact quantum group

In this section we restrict the context of our study to Hopf ˚-algebras related to compact
quantum groups. We introduce the notion of the Gaussian part of a compact quantum group,
discuss its basic properties, and prove that it is neccessarily a quantum group of Kac type.

3.1. Compact quantum groups. In this work, we are interested in Gaussian processes on
compact quantum groups. We will therefore briefly introduce these objects. We refer the
reader to [Tim08] and [NT13] for detailed treatments of the theory. It is known since the
work of M. Dijkhuizen and T. Koornwinder [DK94] that compact quantum groups can be
treated algebraically through the following notion of a CQG-algebra.

Definition 3.1. A CQG-algebra is a Hopf ˚-algebra which is spanned by the coefficients of
its finite-dimensional unitary corepresentations.

If G is a compact group, then its algebra of regular functions OpGq is a CQG-algebra.
Based on that example, and in an attempt to retain the intuition coming from the classical
setting, we will denote a general CQG-algebra by OpGq and say that it corresponds to the
compact quantum group G. If Γ is a discrete group and CrΓs denotes its group algebra, it is
easy to endow it with a Hopf ˚-algebra structure with coproduct given by ∆pgq “ gbg for all
g P Γ. Since this turns each g P Γ Ă CrΓs into a one-dimensional co-representation, it yields
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a CQG-algebra. The resulting compact quantum group is called the dual of Γ and is denoted

by pΓ.
We will at some point use arguments involving representation theory of compact quantum

groups, which is just another point of view on the corepresentation theory of the corresponding
CQG-algebra. Let us give a definition to make this clear.

Definition 3.2. An n-dimensional representation of a compact quantum group G is an
element v P MnpOpGqq which is invertible and such that for all 1 ď i, j ď n,

∆pvijq “
nÿ

k“1

vik b vkj.

It is said to be unitary if it is unitary as an element of MnpOpGqq.
Given two representations v and w, one can form their direct sum by considering a block

diagonal matrix with blocks v and w respectively, and their tensor product by considering
the matrix with coefficients

pv b wqpi,kq,pj,ℓq “ vijwkℓ.

In this setting, an intertwiner between two representations v and w of dimension respectively
n and m will be a linear map T : Cn Ñ Cm such that Tv “ wT (we are here identifying
MnpCq with MnpC.1OpGqq Ă MnpOpGqq). The set of all intertwiners between v and w will be
denoted by MorGpv,wq.

If T is injective, then v is said to be a subrepresentation of w, and if w admits no non-zero
subrepresentation apart from itself, then it is said to be irreducible. One of the fundamental
results in the representation theory of compact quantum groups is due to S.L. Woronowicz
in [Wor98] and can be summarized as follows:

Theorem 3.3 (Woronowicz). Any finite-dimensional representation of a compact quantum
group splits as a direct sum of irreducible ones, and any irreducible representation is equivalent
to a unitary one.

3.2. Definition and basic properties. Recall that if we are given two compact quantum
groups G and H, then we say that H is a (closed quantum) subgroup of G if there is a
surjective Hopf *-algebra morphism

qH : OpGq Ñ OpHq.
In that case, OpHq is naturally a Hopf-quotient of OpGq; we will sometimes denote the
corresponding Hopf *-ideal by IH. As we are dealing with CQG-algebras, each Hopf *-ideal I
of OpGq in fact determines a compact quantum group H which is a subgroup of G such that
IH “ I. Further note that as qH preserves in particular the respective counits, it is easily
checked that qHpKnpOpGqq “ KnpOpHqq for all n P N Y t8u.

Given a family pHiqiPI of quantum subgroups of G, we define its intersection
Ź

iPI Hi as the
quantum subgroup corresponding to the Hopf *-ideal generated by all the IHi

, i P I (which
is nothing but their algebraic sum). Conversely the subgroup generated by a given family
pHiqiPI of quantum subgroups of G is defined as the quantum subgroup corresponding to the
largest Hopf *-ideal contained in the intersection of the Hopf *-ideals IHi

, i P I (note that an
intersection of Hopf ideals is not Hopf in general), and will be denoted

Ž
iPI Hi. All this is

discussed in detail for instance in [CHK17].
Let us now move to generating functionals.
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Definition 3.4. Let G be a compact quantum group with a quantum subgroup H. We say
that a generating functional φ : OpGq Ñ C factors through H if there exists a functional
φH : OpHq Ñ C such that φH “ φ ˝ qH.

Assume that a generating functional φ : OpGq Ñ C factors through H. Then φH as above
is automatically a generating functional itself (this follows from the facts stated earlier) and
moreover the whole Schürmann triple of φH factors through H, by which we mean that that if
pρH, ηH, φHq is a (surjective) Schürmann triple for φH, then pρH˝qH, ηH˝qH, φq is a (surjective)
Schürmann triple for φ. Further observe that if φ as above factors through H and is Gaussian
(respectively, a drift) then φH is also Gaussian (respectively, a drift).

Note that if φ as above factors through H, then it also factors through any quantum
subgroup of G containing H.

Definition 3.5. Let G be a compact quantum group. We define the Gaussian part of G to
be intersection of all quantum subgroups of G through which all Gaussian functionals factor.
Note that the intersection is not empty since all functionals factor through G itself. The drift
part is defined similarly.

The Gaussian (respectively, drift) part of G is determined by the largest Hopf *-ideal of
OpGq contained in the intersection of all Kerpφq with φ Gaussian (respectively, a drift). In
other words, it is the smallest quantum subgroup H of G such that all Gaussian functionals
(respectively, drifts) factor through H. The next result tells us about the behaviour of this
construction when we move between a quantum group and its subgroup.

Proposition 3.6. Let G be a compact quantum group and let H be a quantum subgroup of
G. Then, the Gaussian part of G contains the Gaussian part of H. The same result holds for
the drift parts.

Proof. Let us denote the respective Gaussian parts by K and K1. The latter is viewed as a
subgroup of H – hence corresponds to a Hopf *-ideal of OpHq that we denote by IK1 . But we
can also view it as a subgroup of G, and then the corresponding Hopf *-ideal is q´1

H pIK1q, as
can easily be checked. Thus our claim is equivalent to the inclusion

IK Ă q´1

H pIK1q.
But we have already mentioned that

č

φ Gaussian

Kerpφq Ă q´1

H

¨
˝ č

φ1 Gaussian

Kerpφ1q

˛
‚.

This ends the proof of the first part, if we note that as qH is a surjective Hopf *-morphism,
for any set X Ă OpHq if J is the largest Hopf *-ideal contained in X, then q´1

H pJ q is the

largest Hopf *-ideal contained in q´1

H pXq.
The proof for the drift part is similar. �

Definition 3.7. For a quantum group G, we denote its Gaussian part by GausspGq and for
brevity we call G Gaussian if G “ GausspGq.
Corollary 3.8. If G is a compact quantum group with a quantum subgroup H, then GausspHq Ă
GausspGq. On the other hand if GausspGq is contained in H, then GausspHq “ GausspGq.
Further if G is generated by its Gaussian quantum subgroups, it is Gaussian itself.

Proof. Follows immediately from Proposition 3.6 and respective definitions. �
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3.3. Kac property of the Gaussian part of a compact quantum group. A compact
quantum group is said to be of Kac type if (among many other equivalent characterizations,
see for instance [NT13, Prop 1.7.9]), its antipode is involutive, i.e. S2 “ id. It turns out
that this condition is closely linked to gaussianity. To express this, we will use the notion of
maximal Kac type quantum subgroup introduced in [Sol05] but slightly revisited. Recall (see
for instance [NT13, Sec 1.4]) that to any irreducible unitary representation U “ puijqni,j“1

of

G one can associate a unique positive invertible operator Q such that TrpQq “ TrpQ´1q and
QUQ´1 is unitary. It is easy to see that conjugating U by a unitary scalar matrix again yields
a unitary representation, hence we may, and will, assume that Q is diagonal. Let pqiq1ďiďn

be its diagonal coefficients, i.e., its eigenvalues. Then the formula

τtpuijq “
ˆ
qi

qj

˙´it

uij, t P R, i, j “ 1, . . . , n,

defines consistently a one-parameter group of *-homomorphisms of OpGq, called the scaling
group of G (see for instance [NT13, Prop 1.7.6] for a proof).

This can be used to give a new description of the maximal Kac type quantum subgroup of
a compact quantum group G.

Lemma 3.9. Let G be a compact quantum group and let IKac be the ideal generated by the
range of S2 ´ id. Then, IKac is a Hopf *-ideal and the compact quantum group GKac defined
by OpHq “ OpGq{IKac is the maximal Kac type quantum subgroup of G. Moreover we also
have that IKac is the ideal generated by the union of the ranges of all τs ´ id, s P R.

Proof. Note that the image of S2 ´ id is a selfadjoint subspace of OpGq, as follows from the
formula S2 ˝ ˚ “ ˚ ˝ S´2. Moreover if x P OpGq, then using Sweedler’s notation we have

∆pS2pxq ´ xq “ pS2 b S2 ´ idq ˝ ∆pxq
“
ÿ

S2pxp1qq b S2pxp2qq ´
ÿ

xp1q b xp2q

“
ÿ`

S2px1q ´ xp1q

˘
b S2pxp2qq `

ÿ
xp1q b

`
S2pxp2qq ´ xp2q

˘

In other words, ImpS2 ´ idq is a *-coideal.
Let now K be a quantum subgroup of G given by π : OpGq Ñ OpKq. Then K is of Kac

type if and only if pS2 ´ idq ˝ π “ 0. Because, π is a Hopf algebra homomorphism, this is
equivalent to π ˝ pS2 ´ idq “ 0. In other words, K is of Kac type if and only if the range
of S2 ´ id is contained in kerpπq. As a consequence, the intersection of all Hopf *-ideals
containing the range of S2 ´ id gives rise to the maximal Kac type quantum subgroup of G,
and that intersection is exactly the ideal IKac.

As for the last two statements, we can simply repeat the proof above, using the following
facts: for any t P R we have that τt is

˚-preserving and ∆ ˝ τt “ pτt b τtq ˝∆, and K is of Kac
type if and only if pτs ´ idq ˝ π “ 0 for all s P R. �

We will need hereafter a variant of that characterization, involving an explicit description
of the map S2. More precisely, the family pτtqtPR has a unique holomorphic extension pτzqzPC

which is given exactly by the same formula, and we have the equality S2 “ τ´i.

Corollary 3.10. Let IrrpGq be a complete set of pairwise inequivalent irreducible unitary
representations of G and fix for each U P IrrpGq an eigenbasis of the corresponding matrix Q.

10



Then, with the notations above, the ideal IKac is generated by the set
 
uij | U “ puijqni,j“1 P IrrpGq, i, j “ 1, . . . , n, qi ‰ qj

(
.

Proof. We know by Lemma 3.9 that IKac is generated by the range of S2 ´ id. Because the
coefficients of the elements of IrrpGq form a basis of OpGq, the range of S2 ´ id is the span of
the images of all these coefficients. If qi “ qj, then S2puijq “ uij while if qi ‰ qj, then

uij “
ˆ
qi

qj
´ 1

˙´1

pS2puijq ´ uijq P ImpS2 ´ idq,

hence the result. �

With this we can establish the link between Gaussian processes and the maximal Kac type
quantum subgroup.

Theorem 3.11. Let G be a compact matrix quantum group. Any Gaussian process on G

factors through the maximal Kac type quantum subgroup of G.

Proof. By Lemma 3.9, we have to prove that φ vanishes on IKac. It is in fact enough to prove
that it vanishes on X “ ImpS2 ´ idq, i.e. that φ is S2-invariant, thanks to Corollary 2.8.

We first claim that for any Gaussian cocycle η we have η ˝ pS ` idq “ 0. Indeed, for any
x P OpGq,

0 “ ηpεpxq1q
“ ηpxp1qSpxp2qqq
“ ηpxp1qqεpSpxp2qqq ` εpxp1qqηpSpxp2qqq
“ ηpxp1qqεpxp2qq ` εpSpxp1qqqηpSpxp2qqq
“ ηpxq ` ηpSpxqq

where the last step uses the fact that X is a *-coideal. This implies η ˝ S2pxq “ ηpxq for all
x P OpGq, hence η vanishes on X. As a consequence, for any a P X,

0 “ φpεpaq1q “ φpap1qSpap2qqq
“ φpεpap1qqSpap2qqqq ` φpap1qεpSpap2qqqq ` xηpa˚

p1qq, ηpSpap2qqqy
“ φpSpaqq ` φpaq ´ xηpa˚

p1qq, ηpap2qqy
“ φpSpaqq ` φpaq.

This implies that for any a P X, φpS2paqq “ a. Let us now consider an irreducible unitary
representation U “ puijqni,j“1

and consider i, j “ 1, . . . , n such that qi ‰ qj. Then uij P X by
Corollary 3.10, so that

φpuijq “ φpS2puijqq “ qi

qj
φpuijq.

This implies φpuijq “ 0, hence the result. �

4. Strong connectedness

Before turning to examples, it will be useful to have at hand a condition which is necessary
for a compact quantum group to be Gaussian. To introduce it, recall that by definition the
intersection of the kernels of all Gaussian functionals contains K3. Thus, any Hopf *-ideal
contained in K3 is contained in IGauss. In particular, since K8 is such an ideal (see below),

11



it must be trivial as soon as G is Gaussian. Our purpose in this section is to explore the
condition K8 “ t0u.

4.1. The definition. Before going further, let us give a proof of the coideal property for K8

which was alluded to in the beginning. It does in fact follow from a more general result.

Proposition 4.1. Let A be a Hopf algebra and let I be a Hopf ideal. Then,

I8 “
č

kě1

Ik

is a Hopf ideal.

Proof. First observe that I8 is by construction an ideal which is contained in I Ă kerpεq and
invariant under the antipode. Moreover for any k P N we have

∆pI2kq Ă
2kÿ

n“0

In b I2k´n Ă Ik b A ` A b Ik.

As a consequence, we have the inclusion

pIkqK ¨ pIkqK Ă pI2kqK

of vector subspaces of the dual algebra A˚ (endowed with the convolution product). This
implies that the increasing union ď

kě1

pIkqK

is a subalgebra of A˚ and it then follows (from instance from [Abe04, Thm 2.3.6 (i)]) that

J “
˜ď

kě1

pIkqK

¸K

“
!
x P A | fpxq “ 0 for all f P A˚ such that DkPN f|Ik “ 0

)

is a coideal of A. We now claim that I8 “ J , which is enough to conclude.
Let us first consider x P I8. Then, if f : A Ñ C is a linear map which vanishes on Ik0 for

some k0 P N, it vanishes on I8, hence in particular on x. In other words, x P J . Conversely,
let x R I8. Then, there exists k0 P N such that x R Ik0 . By taking a basis of Ik0 and
completing it into a basis of A containing x, we see that there exist a linear map f : A Ñ C

such that fpxq “ 1 and f|Ik0 “ 0. As a consequence, x is not in the kernel of all the elements

of
Ť

kě1
pIkqK, which means that it is not in J , concluding the proof. �

Our goal in this section is to investigate compact quantum groups with the property that
K8 “ t0u. To get a better intuition for the meaning of that condition, let us consider the
classical case.

Lemma 4.2. Let G be a classical compact group. Then K8 “ t0u if and only if G is
connected.

Proof. It follows from standard Gelfand duality arguments that the closure of K8 in the C*-
algebra CpGq of continuous complex-valued functions on G is the ideal of functions vanishing
outside some open subgroup H Ă G. Since any open subgroup in a topological group is also
closed, it follows that H is a union of connected components of G. Let now Z be a connected
component of G not containing the neutral element. Then, the indicator function p “ 1Z is
a continuous function on G and moreover belongs to K1. Thus, p “ pn P Kn for all n P N,

12



i.e. p P K8 so that Z is not contained in H. As a conclusion, H is the connected component
of the identity and the result follows from the fact that K8 “ t0u if and only if its closure
equals t0u. �

In view of this result, we might want to call a compact quantum group G connected if
K8 “ t0u. However, there is already a notion of connectedness in the literature, introduced
by Wang in [Wan09] and studied in detail in [CDPR14]: a compact quantum group is said
to be connected if OpGq does not contain any finite-dimensional Hopf *-subalgebra. It turns
out that vanishing of K8 is stronger than this (see Proposition 4.5 below), hence we choose
the following terminology.

Definition 4.3. A compact quantum group G is said to be strongly connected if K8 “ t0u.
To see the link with the aforementioned definition of connectedness, we need to generalize

the idea concerning projections used in the proof of Lemma 4.2.

Lemma 4.4. Let G be a compact quantum group and let p P OpGq be a non-trivial projection.
Then, p ´ εppq1 P K8pOpGqq ‰ t0u.
Proof. Because the counit ε is a *-homomorphism, εppq is an idempotent in C, hence equals
0 or 1. In both cases, q “ p ´ εppq P K1 and satisfies q2 P tq,´qu. Thus, q “ ˘qn P Kn for
all n, hence q P K8. �

We are now ready to state and prove several fundamental properties of strong connected-
ness. Note that for duals of discrete groups, this has already been studied as the residual
nilpotency of the augmentation ideal of the group ring, and the monograph [Pas79] gives a
comprehensive survey of the known results to which we will refer.

Proposition 4.5. Let G be a compact quantum group. The following hold:

(1) If G is the dual of a discrete group Γ, then it is strongly connected if and only if
Γ is residually ‘torsion-free nilpotent’ (recall that it means that for any non-identity
element γ P Γ, there is a normal subgroup N of Γ such that γ R N and Γ{N is
torsion-free nilpotent);

(2) If G is strongly connected, then it is connected but the converse does not hold in
general;

(3) If G is topologically generated (in the sense of [Chi20]) by strongly connected quantum
subgroups, then it is strongly connected.

Proof. (1) This is the contents of [Pas79, Thm VI.2.26].
(2) Assume that G is not connected and OpHq Ă OpGq is a finite-dimensional Hopf

*-subalgebra. As OpHq is a finite-dimensional C˚-algebra, it contains non-zero pro-
jections, hence the result follows from Lemma 4.4.

For the dual of a discrete group, connectedness is equivalent to torsion-freeness.
Hence, the dual of any torsion-free group which is not residually nilpotent is connected
but not strongly connected.

(3) Assume that G is topologically generated by quantum subgroups pHiqiPI and let us
consider the corresponding surjective ˚-homomorphisms πi : OpGq Ñ OpHiq. Obvi-
ously, πipK8pOpGqqq Ă K8pOpHiqq so that under the assumption of the statement,

K8pOpGqq Ă
č

iPI

kerpπiq.
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By definition of topological generation, the right-hand side does not contain any non-
zero Hopf *-ideal, hence the result.

�

Remark. The first point in the previous proposition suggests that there may be a connection
between strong connectedness of a compact quantum group and torsion-freeness of its dual
discrete quantum groups. There is however no relationship with torsion-freeness in the sense
of Meyer [Mey08]. Indeed,

(1) SOpNq is connected but not simply connected, hence it is strongly connected but its
dual is not torsion free (it has a projective representation comming from its universal
covering which yields an ergodic finite-dimensional action not equivariantly Morita
equivalent to the trivial one);

(2) If Γ is a torsion-free group which is not residually nilpotent, then it is torsion-free
while its dual is not strongly connected.

The topological generation criterion can prove useful to provide examples which are neither
commutative nor cocommutative.

Proposition 4.6. The free unitary quantum group U`
N is strongly connected for all N P N.

Proof. For N “ 1, U`
N is just the circle, which is strongly connected because it is connected.

For N ě 2, the result immediately follows from the following two facts:

‚ U`
N is topologically generated by UpNq and FN by [Chi20];

‚ K8pOpUpNqqq “ t0u by connectedness while K8pCrFN sq “ t0u as FN is residually
‘torsion-free nilpotent’ by a result of Magnus [Mag35].

�

For O`
N one cannot apply directly the same strategy, because the diagonal quotient is Z˚N

2 ,
which is not torsion free. To get a better insight, let us deal with the very special case N “ 2.

Lemma 4.7. The strongly connected component of the identity of O`
2

is the circle T.

Proof. Recall that O`
2
is isomorphic to SU´1p2q, so that OpO`

2
q is generated by two elements

α and γ such that γ is normal, anti-commutes with α and

αα˚ ` γγ˚ “ 1.

Moreover, γ P K1pOpO`
2

qq and β “ α ´ 1 P K1pOpO`
2

qq. Now, the equation above yields

β ` β˚ “ β˚β ` γ˚γ P K2

while the anti-commutation relations translate into

γpβ ` β˚q “ ´pβ ` β˚qγ ´ 4γ

so that

γ “ ´1

4
pγpβ ` β˚q ` pβ ` β˚qγq .

As a consequence, if γ P Kn then γ P Kn`1. Since γ P K1, it follows by a straightforward
induction that γ P K8. Thus, xγy Ă K8. On the other hand, if π denotes the surjection onto
OpTq “ OpO`

2
q{xγy, we have

πpK8pOpO`
2

qq Ă K8pOpTqq “ t0u,
so that K8 Ă xγy, concluding the proof. �
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4.2. Totally strongly disconnected quantum groups. It is quite natural to consider the
Hopf *-algebra OpGq{K8 to be the function algebra on the strongly connected component
of the identity. We will therefore denote it by OpG00q, the double 0 exponent being meant
to distinguish it from the connected component of the identity G0 in the sense of [CDPR14].
Of course, if G is classical then this coincides with the usual connected component of the
identity. Another extreme case, in contrast to being strongly connected, is when G00 reduces
to the trivial group.

Definition 4.8. A compact quantum group is said to be totally strongly disconnected if G00

is trivial, i.e. if K8 “ K1.

Remark. One may wonder whether the property of being totally strongly disconnected can be
expressed in terms of representation theory. We do not know, but we can at least mention that
it is not a property of the corresponding C*-tensor category since it is not preserved under
monoidal equivalence. Indeed, we will see below that S`

N is totally strongly disonnected, while

the quantum automorphism group of pMN pCq, trq, which is monoidally equivalent to S`
N2 , is

strongly connected (because U`
N is).

By definition, G00 is strongly connected, hence connected. As a consequence, it is a quan-
tum subgroup of the connected component of the identity G0 in the sense of [CDPR14, Def
4.11]. This implies that if G is totally disconnected in the sense of [CDPR14], then it is also
totally strongly disconnected.

Before going further, let us describe that property for duals of discrete groups. Interestingly,
there turns out to be a simple characterization. We will denote by γ2pΓq the subgroup of Γ

generated by commutators and by
a

γ2pΓq the group of all elements of Γ of which a finite
power lies in γ2pΓq.

Proposition 4.9. Let Γ be a discrete group. Then pΓ is totally strongly disconnected if and
only if its abelianization is torsion.

Proof. Obviously, K8 “ K1 if and only if K2 “ K1 if and only if K2 ` 1 “ CrΓs. Taking
intersections with Γ in the last equality then yields by [Pas79, Thm IV.1.5] the equivalent

condition
a

γ2pΓq “ Γ, which in turn means that the abelianization of Γ is torsion. �

Remark. A group has torsion abelianization if and only if it has no non-zero homomorphism
to Q. This can in turn be restated in a homological way by saying that the first Betti number
of Γ vanishes, or that H1pΓ,Qq “ t0u.

Totally strongly disconnected compact quantum groups are interesting to us because they
have, by definition, trivial Gaussian part. Here is a sufficient criterion for total strong dis-
connectedness, which will yield our first examples of computation of Gaussian parts.

Proposition 4.10. If G is a compact quantum group such that OpGq is generated by projec-
tions, then it is strongly totally disconnected.

Proof. Assume that OpGq is generated by projections ppiqiPI . By Lemma 4.4, pi ´ εppiq P K8

for all i P I and since these elements generate K1, the proof is complete. �

Remark. The quantum permutation group S`
N is is totally strongly disconnected in our sense

while it is connected in the sense of [CDPR14]. This shows that strong connectedness is
strictly stronger than connectedness.
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Some straightforward examples to which the previous statement applies are the following:

‚ Finite quantum groups, i.e. those for which the corresponding Hopf algebra is finite-
dimensional;

‚ Quantum permutation groups, i.e. quantum subgroups of S`
N for N P N (this includes

for instance the quantum reflection groups Hs`
N for all 1 ď s ă `8);

‚ Profinite compact quantum groups in the sense of [CDPR14], or in the terms of
[CS19], duals of locally finite discrete quantum groups. Note also that [CDPR14]
gives examples of duals of discrete groups which are totally disconnected as compact
quantum groups, hence totally strongly disconnected, but not profinite.

Remark. It is natural to wonder whether whenG is totally strongly disconnected, thenOpGq is
generated by projections. A negative answer can be provided by an example of a discrete group
Γ with torsion abelianization such that CrΓs does not contain any non-trivial projection. For
instance, the group whose existence in given in [GKO16, Cor 3.2] is torsion-free (because it is
orderable) and amenable (because it is locally solvable) hence satisfies the Kadison-Kaplansky
conjecture (there is no non-trivial idempotent in CrΓs) but has trivial abelianization since it
is perfect.

4.3. Link to Kac type quantum groups. Even though the definition of strong connect-
edness is very general, it turns out that it entails a strong restriction on compact quantum
groups. More precisely, a strongly connected compact quantum group must be of Kac type.

Proposition 4.11. A strongly connected compact quantum group is of Kac type.

Proof. Let G be a compact quantum group. Following the notations of Corollary 3.10, let
U P IrrpGq be an n-dimensional unitary representation of G.

For j, k “ 1, ¨ ¨ ¨ , n, set ûjk “ ujk ´ δjk1 P K1. Then if j ‰ k we have

0 “
nÿ

ℓ“1

ujℓu
˚
kℓ “

nÿ

ℓ“1

ûjℓû
˚
kℓ ` ujk ` u˚

kj

and

0 “
nÿ

ℓ“1

qk

qℓ
uℓku

˚
jℓ “

nÿ

ℓ“1

qk

qℓ
ûℓkû

˚
ℓj ` qk

qj
ujk ` u˚

kj.

Taking the difference, we get
ˆ
qk

qj
´ 1

˙
ujk “

nÿ

ℓ“1

ûjℓû
˚
kℓ ´

nÿ

ℓ“1

qk

qℓ
ûℓkû

˚
ℓj .

This shows that if qj ‰ qk then ujk “ ûjk P K2, and by taking adjoints, u˚
jk “ û˚

jk P K2. If
we now look again at the expression above, still assuming qj ‰ qk, we see that each element
of the sum on the right hand side is a product of elements in K1 and K2 (this follows, as
whenever qj ‰ qk we necessarily have for any ℓ “ 1, . . . , n that either qℓ ‰ qj or qℓ ‰ qk).
Thus in fact ujk “ ûjk P K3, and similarly u˚

jk “ û˚
jk P K3. By a straightforward induction,

we conclude that ujk, u
˚
jk P K8 whenever qj ‰ qk.

By Corollary 3.10, the elements above generate IKac as an ideal, hence IKac Ă K8. �

As noted in the beginning of the section, because K8 Ă K3, any Gaussian functional
factors through the strongly connected part. Combining that observation with the previous
statement yields Theorem A of the introduction.
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5. Examples I

In this section we fully characterise the Gaussian parts of classical compact groups and
duals of classical discrete groups.

5.1. Classical compact groups. We will now determine the Gaussian part of any classical
compact group. We will in fact show a stronger result concerning the drift part of any compact
quantum group. This will be done in two steps, the first being a reduction to the classical case.
To do so, let us say that for a compact quantum group G, its classical version is the quantum
subgroup corresponding to the Hopf *-ideal of commutators (see for instance [Daw16]).

Proposition 5.1. Let G be a compact quantum group. Then, its drift part is the closed
subgroup of its classical version generated by all continuous one-parameter subgroups.

Proof. We start by observing that since ra, bs “ ra ´ εpaq, b ´ εpbqs, the Hopf *-ideal of
commutators of OpGq is contained in K2. Hence, any drift vanishes on it so that if H denotes
the drift part of G, then H is contained in the quantum group obtained by quotienting OpGq
with the commutators, i.e. in the classical version of G.

Because characters on OpGq correspond to elements of G, Remark 2.1 implies that drifts
are in one-to-one correspondence with continuous one-parameter subgroups. Now if φ is a
drift and H is a closed subgroup of G, then as soon as φ factors through the restriction map
OpGq Ñ OpHq, the corresponding one-parameter subgroup lives in H. Thus, any closed
subgroup through which all drifts factor must contain the closed subgroup K generated by
all continuous one-parameter subgroups. Since K is obviously its own drift part, the proof is
complete. �

Remark. There is one subtlety in the statement, which is that the drift part is by definition
a closed subgroup. Hence, the result states that the subgroup generated by one-parameter
subgroups in a connected compact group is dense, but not that it is itself equal to the whole
group. Indeed, solenoids such as the Pontryagin dual of the additive group of rationals have
a unique one-parameter subgroup which is not closed but which is dense.

We are now left with characterizing the drift part of a classical compact group, and this is
easily done using the notion of generalized Lie algebra.

Proposition 5.2. The drift part of a compact group G is the connected component of the
identity.

Proof. We will prove the equivalent statement that G equals its drift part if and only if it is
connected. One way is clear: the subgroup generated by one-parameter subgroups is path-
connected, hence also connected, so that its closure is connected. As for the other direction,
recall that any connected compact group is a projective limit of connected compact Lie groups.
As a consequence, these are LP-groups in the sense of [Las57, Def 3.1]. It then follows from
[Las57, Thm 3.5] that the connected component of the identity is the closure of the range
of the exponential map on the generalized Lie algebra and is therefore contained in the drift
part. �

Corollary 5.3. The Gaussian part of a classical compact group is the connected component
of the identity.

Proof. It follows from Proposition 5.2 that if G is connected, then it equals its drift part, which
is itself contained in the Gaussian part, so that any connected compact group is Gaussian.
Conversely, if G is Gaussian then it is strongly connected, hence connected by Lemma 4.2. �
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5.2. Duals of discrete groups. The next case to consider is that of duals of discrete groups.
Let us recall that for a group Γ, one defines its canonical lower central series by setting
γ1pΓq “ Γ and for any n P N putting γn`1pΓq to be the subgroup generated by rγnpΓq,Γs.
Moreover, for a subgroup Λ Ă Γ, we write

?
Λ for the subgroup of all elements γ P Γ such

that there exists n P N satisfying γn P Λ.
Before proving the main result of this section, we need to clarify the connection between

group commutators and the structure of the group algebra.

Lemma 5.4. Let Γ be a discrete group and let g, h, k P Γ. Then,

rrg, hs, ks ´ 1 P K3pCrΓsq.
Proof. For clarity, we will denote by r¨, ¨sΓ the group commutator and by r¨, ¨sCrΓs the algebra
commutator. Start by noticing that for g, h P Γ,

rg, hsΓ ´ 1 “ rg, hsCrΓsg
´1h´1.

It then follows that

rrg, hs, ksΓ ´ 1 “ rrg, hsΓ, ksCrΓsrg, hs´1

Γ
k´1

“ rrg, hsCrΓsg
´1h´1, ksCrΓsrg, hs´1

Γ
k´1.

Now observe that for any a, b P CrΓs,
ra, bsCrΓs “ ra ´ εpaq, b ´ εpbqsCrΓs

so that in particular all algebra commutators are in K2 and if a P K2, then the commutator
is in K3. The result then follows. �

We are now ready for the characterization of Gaussianity for duals of discrete groups.
Recall that a group is said to be nilpotent of class 2 if all its commutators are central.

Theorem 5.5. Let Γ be a finitely generated discrete group. Then,

GaussppΓq “ {
Γ{
a

γ3pΓq.

In particular, pΓ is Gaussian if and only if Γ is torsion-free nilpotent of class 2.

Proof. Assume first that pΓ is Gaussian. The subgroup γ3pΓq being normal, the set Crγ3pΓqs´1
is a Hopf *-ideal in CrΓs. Because it is contained inK3 by Lemma 5.4, all Gaussian functionals

vanish on it by definition so that they factor through {Γ{γ3pΓq. Thus, γ3pΓq must be trivial so
that Γ is nilpotent of class 2. Let furthermore g P Γzteu and n P N be such that gn “ e Then,

pg “ 1

n

n´1ÿ

k“0

gk

is a non-trivial projection in CrΓs, hence pΓ is not strongly connected by Lemma 4.4, con-
tradicting Gaussianity. Therefore, we have proven that Γ is torsion-free nilpotent of class
2.

This means that for an arbitrary discrete group Γ, the Gaussian part of pΓ is of the form pΛ
with Λ a torsion-free nilpotent of class 2 quotient of Γ. There is one such quotient which is
maximal in the sense that all the other ones factor through it, namely Γ{

a
γ3pΓq. To conclude

it is enough to prove that the duals of all such groups are Gaussian. To do this, note first
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that Λ{ZpΛq is an abelian finitely generated group. By [Mal49], Λ{ZpΛq is also torsion free,
thus

{Λ{ZpΛq – Tn

for some n P N0 and {Λ{ZpΛq is Gaussian because it is a connected compact group. By

Corollary 3.8, this means that GaussppΛq contains {Λ{ZpΛq, or in other words that GaussppΛq “
zΛ{Θ where Θ ă ZpΛq.

It remains then to show that for every γ0 P ZpΛqzteu there is a Gaussian generating
functional on CrΛs – i.e. conditionally positive-definite function φ on Λ of Gaussian type –
such that φpγ0q ‰ 0. But once again we have ZpΛq – Zm for some m P N0 and using the
usual Laplacian on Tm we first get a function φ0 : ZpΛq Ñ C as above by setting

φ0pk1, ¨ ¨ ¨ , kmq “
mÿ

i“1

k2i ,

and then extend it to Λ as follows:

φpγq “
#
φ0pγq γ P ZpΛq
0 γ R ZpΛq .

An elementary check shows that φ is a conditionally positive-definite function of Gaussian
type. �

Remark. In the case of group algebras, it turns out that K3 is a Hopf ideal, and it follows from
[Pas79, Thm IV.1.5] that it equals Cr

a
γ3pΓqs ´ 1. We could have used this (involved) result

to prove directly that a discrete group dual is Gaussian only if it is torsion-free nilpotent of
class 2. We have chosen however to give a direct and self-contained proof which is furthermore
completely elementary.

Let us conclude this section with a word on free wreath products of a discrete group by
the quantum permutation group S`

N . We refer the reader to [Bic04] for the definition of these
objects, whose Gaussian part can be easily expressed in terms of the building discrete group.

Proposition 5.6. Let N P N and let Γ be a discrete group. Then

GaussppΓ ≀˚ S`
N q “ GaussppΓ˚N q.

Proof. Recall that we have a generating family ofN -dimensional representations tupgq : g P Γu
whose coefficients satisfy in particular the relations

uijpgquikphq “ δjkuijpghq,
and

εpupgqijq “ δij

for all g, h P Γ and all 1 ď i, j ď N . It follows that for any g P Γ and i, j “ 1, . . . , n, i ‰ j,

uijpgq “ uijpgqpuiipgq ´ 1q P K2

and by induction, all the off-diagonal coefficients are in K8. As a consequence, the Gaussian
part factors through the diagonal quantum subgroup, which is the dual of Γ˚N . �

In particular, the Gaussian part of H8`
N is the free residually “torsion-free nilpotent” group

of rank N .
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6. Examples II

In this, last section we describe Gaussian parts of q-deformations, and discuss the case of
free quantum groups.

6.1. q-deformations. Consider a simply connected semisimple compact Lie groupG equipped
with a standard Poisson structure and the deformation parameter q P p0, 1q. The quantisa-
tion procedure due to Korogodski and Soibelman [KS98], see also [NT12], leads to a compact
quantum group Gq. The procedure is compatible with the deformation of Poisson subgroups
of G; in particular the maximal torus, i.e. a maximal abelian connected subgroup of G, which
is unique up to a conjugation, remains (a classical) subgroup of Gq.

Proposition 6.1. For a simply connected semisimple compact Lie group G and q P p0, 1q the
Gaussian part of the quantum group Gq is the maximal torus T Ă Gq.

Proof. Lemma 4.10 in [Tom07], based on the knowledge of the representation theory of OpGqq,
shows that the maximal torus T coincides with the Kac part of Gq. As T is by definition
connected, the proof is complete. �

6.2. Deformations of the orthogonal group. We will now consider the half-liberated quan-
tum orthogonal group O˚

N introduced in [BS09]. Recall that OpO˚
N q is defined to be the quo-

tient of OpO`
N q by the relations abc “ cba for all a, b, c P tujk | 1 ď j, k ď Nu. We will prove

that its Gaussian part is that of the classical group ON . This requires first characterizing
Gaussian functionals on O`

N lying in its classical part. More precisely, any Gaussian functional

on O˚
N yields a Gaussian functional on O`

N by composition with the quotient map, and it is
easy to determine when such a Gaussian functional in fact factors through the abelianization.

Lemma 6.2. Let N P N. A Gaussian triple on O`
N factors through ON if and only if the

corresponding cocycle η satisfies

xηpaq, ηpbqy P R @a, b P tujk | 1 ď j, k ď Nu.
Proof. This follows immediately from the equivalence of (ii) and (iv) in Remark 2.1. �

We can now elucidate the Gaussian part of O˚
N .

Proposition 6.3. Let N P N. The Gaussian part of O˚
N is SON .

Proof. First note that for any Gaussian generating functional we have

φpabcq “ εpabqφpcq ` εpacqφpbq ` εpbcqφpaq
` xpηpa˚q, ηpbqyεpcq ` xηpa˚q, ηpcqyεpbq ` xηpb˚q, ηpcqyεpaq.

Thus, if j, k “ 1, . . . , N and we have ηpujkq “ vjk P C, then the condition φpabcq “ φpcbaq for
a, b, c P tujk | 1 ď j, k ď Nu becomes

δjkvℓmvnp ` δℓmvjkvnp ` δnpvjkvℓm “ δnpvℓmvjk ` δℓmvnpvjk ` δjkvnpvℓm

for all j, k, ℓ,m, n, p P t1 . . . , Nu. Now, by [DFKS18, Proposition 3.7], v “ pvjkqNj,k“1
has to

be anti-symmetric, therefore vjj “ 0 for j “ 1, . . . , N . We have several possibilities:

‚ If two or three of the index pairs contain twice the same index, e.g. j “ k and ℓ “ m,
then the all terms vanish;

‚ If none of the index pairs contains twice the same index, i.e. if j ‰ k, ℓ ‰ m, and
n ‰ p, then we also find 0 “ 0, thanks to the Kronecker symbols;
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‚ The only non-trivial case occurs if only one index pair contains twice the same index.
Without loss of generality we can assume that this is the first pair, i.e. j “ k. In that
case we find the condition

vℓmvnp “ vnpvℓm

for all ℓ,m, n, p P t1, . . . , Nu.
The last condition exactly means that xηpuℓmq, ηpunpqy P R, so that we can conclude by
Lemma 6.2 that all Gaussian triples factor through ON . As a consequence,

GausspO˚
N q “ GausspON q “ SON .

�

We can deal in a similar way with another variant of O`
N called the twisted orthogonal

quantum group ON and introduced in [BBC07] as a type of q-deformation of orthogonal
groups at q “ ´1. More precisely, we let OpON q be the quotient of OpO`

N q by the relations :

uijukℓ “
"

´ukℓuij if i “ k & j ‰ ℓ or i ‰ k & j “ ℓ

ukℓuij otherwise

In other words, the generators anti-commute if they are on the same row or column and
commute otherwise.

Proposition 6.4. The Gaussian part of ON is trivial for any N P N.

Proof. The computations of Lemma 6.2 show that the condition for the second case is equiv-
alent to vijvkℓ P R for any i, j, k, l “ 1, . . . , N as soon as i ‰ k and j ‰ ℓ. As for the first case,
observe that

φpuijuiℓ ` uiℓuijq “ 2pδijφpuiℓq ` δiℓφpuijqq ` 2Re pvijviℓq .
Recalling that for any Gaussian functional on O`

N , v is anti-symmetric (see [DFKS18, Section
3]), we get for ℓ ‰ j “ i

φpuiℓq “ Repviiviℓq “ 0

so that φ factors through the quotient by the ideal generated by all the off-diagonal coefficients.
The quotient is easily seen to be the dual of ZˆN

2
, which has trivial Gaussian part because it

is totally strongly disconnected, hence the result. �

6.3. Free quantum groups.

Proposition 6.5. For N ě 4, the Gaussian part of O`
N is neither classical nor dual to a

discrete group. The same holds for U`
N with N ě 2.

Proof. Let us first note the Gaussian part of the dual of the free group F2 on two generators
is not classical. Indeed, it arises from the quotient of F2 obtained by the relations making
the commutator of the two generators central, which is easily seen to be isomorphic to the
discrete Heisenberg group. As a consequence, O`

4
contains, through the quotient OpO`

4
q Ñ

OpO`
2

˚ O`
2

q, the dual of the (non-abelian) Heisenberg group, which is Gaussian. It also
contains the nonabelian group SO4, which is also Gaussian. It then follows from Corollary
3.8 that GausspO`

4
q contains a classical non-abelian group and a dual of a non-commutative

discrete group. For N ą 4, simply observe that O`
N contains O`

4
, hence a similar containment

holds for their Gaussian parts, again by Corollary 3.8.
As for U`

N , it contains the dual of the free group FN , hence the free 2-nilpotent torsion-free
group, as well as the connected compact group UN . �
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We do not know whether U`
N is Gaussian or not. Let us notice however that the problem

can be reduced to the case N “ 2 thanks to the following observation.

Lemma 6.6. If G is topologically generated by Gaussian quantum subgroups pGiqiPI , then it
is Gaussian.

Proof. Let I be a Hopf *-ideal on which all Gaussian functionals of G vanish. Given a Gaussian
functional φ in OpGiq, φ ˝ πi is a Gaussian functional on OpGq, hence it vanishes on I. In
other words, πipIq is a Hopf *-ideal annihilating all Gaussian functionals, hence πipIq “ 0 by
assumption. This is in turn equivalent to I Ă

Ş
iPI kerpπiq, which by topological generation

forces I “ 0. �

Because U`
N is topologically generated by U`

N´1
and UN for all N ě 3 by [Chi20], it follows

by induction that if U`
2

is Gaussian, then U`
N is Gaussian for all N ě 2. Nevertheless,

it seems difficult to understand all the Gaussian processes on U`
2
. One strategy to prove

Gaussianity would be to find enough Gaussian quantum subgroups to topologically generate
everything. For instance U2 and the dual of the Heisenberg group H3 are both Gaussian
quantum subgroups of U`

2
, leading to the question: is U`

2
topologically generated by U2 and

the dual of H3? More generally one may ask: for which quotients Γ of F2 is U`
2

topologically
generated by U2 and the dual of Γ?
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