Presenting convex sets of probability distributions by convex semilattices and unique bases - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Presenting convex sets of probability distributions by convex semilattices and unique bases

Résumé

We prove that every finitely generated convex set of finitely supported probability distributions has a unique base. We apply this result to provide an alternative proof of a recent result: the algebraic theory of convex semilattices presents the monad of convex sets of probability distributions.
Fichier principal
Vignette du fichier
Uniqueness.pdf (669.59 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03615765 , version 1 (21-03-2022)

Identifiants

Citer

Filippo Bonchi, Ana Sokolova, Valeria Vignudelli. Presenting convex sets of probability distributions by convex semilattices and unique bases. 9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021), Aug 2021, Salzburg, Austria. ⟨10.4230/LIPIcs.CALCO.2021.11⟩. ⟨hal-03615765⟩
46 Consultations
308 Téléchargements

Altmetric

Partager

More