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Abstract
We prove that every finitely generated convex set of finitely supported probability distributions has
a unique base. We apply this result to provide an alternative proof of a recent result: the algebraic
theory of convex semilattices presents the monad of convex sets of probability distributions.
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1 Introduction

Models of computations exhibiting both nondeterministic and probabilistic behaviour are
abundantly used in computed assisted verification [1, 12, 19, 5, 35, 11, 27], Artificial Intelli-
gence [4, 17, 26], and studied from semantics perspective [14, 29, 13]. Indeed, probability
is needed to quantitatively model uncertainty and belief, whereas nondeterminism enables
modelling of incomplete information, unknown environment, implementation freedom, or
concurrency.

Since several decades, computer scientists have found it convenient to exploit algebraic
methods to analyse computing systems. From an algebraic perspective, the interplay of
nondeterminism and probability has been posing some remarkable challenges [34, 18, 20, 16,
33, 24, 9, 31, 23]. Nevertheless, several fundamental algebraic structures have been identified
and studied in depth.

In this paper we focus on one such structure, namely convex sets of probability distributions.
These sets give rise to a monad that is well known in the literature and has found applications
in several works [24, 9, 31, 33, 34, 16, 10, 22]. In recent work [3], we proved that this monad
is presented by the algebraic theory of convex semilattices. In this paper, we provide an
alternative proof based on a simple property: We show that every (finitely generated) convex
set of distributions has a unique base.
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13:2 Presenting convex sets of probability distributions by unique bases

This alternative proof technique is based on a categorical machinery together with a more
syntax-based approach, which has already proven useful in extensions of the presentation
results to the setting of metric spaces and quantitative equational theories [22, 21].

Synopsis: In Section 2, we show the unique base theorem. Our alternative proof of the
presentation of the monad is based on exhibiting a monad map which is an isomorphism.
We recall the relevant categorical notions in Section 3, and introduce a general recipe for
building a monad map. In Section 4 we illustrate the monad of interest as well as the theory
of convex semilattices, and in Section 5 we apply the recipe from Section 3 to build a monad
map relating the monad and the theory. In Section 6 we prove that this monad map is an
isomorphism, by relying on the unique base theorem to derive a normal-form argument.

2 A unique base theorem for convex sets of probability distributions

Given a set X, a probability distribution is a function d : X → [0, 1] such that
∑
x∈X d(x) = 1.

A probability distribution d is finitely supported if d(x) 6= 0 for finitely many x. We
call D(X) the set of finitely suported probability distributions over X. A probability
distribution d ∈ D(X) is a convex combination of the distributions d1, . . . dn ∈ D(X) if there
exist α1, . . . , αn ∈ [0, 1] such that

∑
i αi = 1 and for all x, d(x) =

∑
i αidi(x). Hereafter

we will just write the latter condition as d =
∑
i αidi. The convex closure of a subset

S ⊆ D(X), written conv(S), is the set of all the convex combinations of the distributions
in S. A subset S ⊆ D(X) is convex if S = conv(S). A convex set is finitely generated
if there exist d1, . . . , dn ∈ D(X) such that S = conv({d1, . . . , dn}). We let C(X) denote
the set of non-empty, finitely-generated convex sets of distributions over X. A base for
S ∈ C(X) is a set {d1, . . . , dn} such that S = conv({d1, . . . , dn}) and for all i ∈ 1 . . . n,
di /∈ conv({dj | j 6= i, 1 ≤ j ≤ n}).

I Theorem 1. For every S ∈ C(X), there exists a unique base.

We show here a direct proof (Proof I) and an alternative proof using functional analysis
tools and the strong theorem of Krein-Milman [25] (Proof II).

Proof I. Existence of the base comes from the property that S is finitely generated. In the
rest of this section we prove uniqueness; namely if {d1, . . . , dn} and {d′1, . . . , d′m} are two
bases for some S ∈ D(X), then {d1, . . . , dn} = {d′1, . . . , d′m}.

Let {d1, . . . , dn} and {d′1, . . . , d′m} be two bases for S ∈ D(X). Then for all i ∈ 1 . . . n
it holds di ∈ conv({d′1, . . . , d′m}) and for all j ∈ 1 . . .m it holds d′j ∈ conv({d1, . . . , dn}). By
unfolding the definition of conv, this means that for all i there exist αi,j such that

∑
j αi,j = 1

and for all j there exist α′j,i such that
∑
i α
′
j,i = 1 and such that

di =
∑

j∈{1...m}

αi,jd
′
j and d′j =

∑
i∈{1...n}

α′j,idi. (1)

Hence, for all i it holds

di =
∑

j∈{1...m}

αi,j

 ∑
k∈{1...n}

α′j,kdk

 =
∑

k∈{1...n}

 ∑
j∈{1...m}

αi,jα
′
j,k

 dk

where the fist equality follows by replacing the d′j in the left equation in (1) with the one in
the right equation in (1). So we have

di =

 ∑
j∈{1...m}

αi,jα
′
j,i

 di +
∑

k∈{1...n}\{i}

 ∑
j∈{1...m}

αi,jα
′
j,k

 dk (2)
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We now prove by contradiction that∑
j∈{1...m}

αi,jα
′
j,i = 1 for all i ∈ {1 . . . n} (3)

Let i ∈ {1 . . . n} and let βi =
∑
j∈{1...m} αi,jα

′
j,i. If βi 6= 1, then by (2) we have

di = βidi + (1− βi)
∑

k∈{1...n}\{i}

(∑
j∈{1...m} αi,jα

′
j,k

1− βi

)
dk

and from this we derive

di =
∑

k∈{1...n}\{i}

(∑
j∈{1...m} αi,jα

′
j,k

1− βi

)
dk

This means that di is expressible as a convex combination of {d1 . . . , dn}\{di}, which
contradicts the hypothesis that {d1 . . . , dn} is a base. Hence, βi = 1, which proves (3).

From (3) and (2) we derive that for all k ∈ {1 . . . n} \ {i},
∑
j∈{1...m} αi,jα

′
j,k = 0. Since

all the summands are non-negative, this entails that

αi,jα
′
j,k = 0 for all i ∈ {1 . . . n}, k ∈ {1 . . . n} \ {i} and j ∈ {1 . . .m}. (4)

By reasoning in the same way, we obtain the following

α′j,iαi,l = 0 for all j ∈ {1 . . .m}, l ∈ {1 . . .m} \ {j} and i ∈ {1 . . . n}. (5)

We now prove that for all i there exists one j such that αi,j = 1. As
∑
j αi,j = 1, there

is at least one j such that αi,j > 0. By this and (4) one has that for all k ∈ {1 . . . n} \ {i},
α′j,k = 0. Since

∑
k∈{1...n} α

′
j,k = 1, we have that α′j,i = 1. Hence we derive by (5) that

αi,l = 0 for all l ∈ {1 . . .m} \ {j}. Since
∑
l∈{1...m} αi,l = 1, we have αi,j = 1.

Using this fact, we conclude by the left equation in (1) that for every i there exists one
j such that di = d′j . Hence, we have {d1, . . . , dn} ⊆ {d′1, . . . , d′m}. The opposite inclusion
follows symmetrically. J

Proof II. Let S ∈ C(X). Note that then S is a subset of D(X) ⊆ RX and hence a subset
of a locally convex topological vector space (RX with the product topology). Consider the
family B = {B ⊆ S | S = conv(B)}. It is obvious that B is minimal in B if and only if no
element d ∈ B satisfies d ∈ conv(B \ {d}). We now show that B contains a smallest element.

First, note that for all B ∈ B, Ext(S) ⊆ B, with Ext(S) being the set of extreme
points of S. Indeed, let d ∈ Ext(S). Then d ∈ S and can be written as d =

∑
di∈B pidi =

pi · di + (1 − pi) · e for some pi 6= 0 and e ∈ S, and hence by extremality of d we have
d = di = e yielding d ∈ B.

Next, we show that S = conv(Ext(S)), which means that Ext(S) ∈ B and hence together
with Ext(S) ⊆ B shows that Ext(S) is the smallest element of B. This smallest element
Ext(S) is the unique base of S. Pick a finite B0 = {d1, . . . , dn} ∈ B. Then S = Φ(∆n) for

∆n = {(x1, . . . , xn) ∈ Rn | xi ∈ [0, 1],
∑
i

xi = 1}

and Φ: Rn → RX given by Φ(x1, . . . , xn) =
∑
i xidi. Note that ∆n is compact, by Heine-

Borel, as it is a closed and bounded subset of Rn, and Φ is continuous, since we are in a
topological vector space and hence algebraic operations are continuous. As a consequence, S
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13:4 Presenting convex sets of probability distributions by unique bases

is compact as a continuous image of a compact set. Now, Krein-Milman applies, yielding
that S = conv(Ext(S)) with conv denoting the closed convex hull and hence

S = conv(Ext(S)) = conv(Ext(S))

since by the same argument as above conv(Ext(S)) is compact and hence closed. J

Instead of the Krein-Milman theorem, one could use in this proof its predecessor from
classical convex analysis in Rn, e.g. [32, Theorem 18.5]. The reason is that since we deal
with finitely generated convex subsets of finitely supported distributions, such subsets are
actually elements of C(X) for a finite set X.

3 Monads and presentations

Theorem 1 states the existence of a unique base for every finitely generated convex set
of probability distributions. In the remainder of this paper, we exploit this result to
illustrate an alternative proof of Theorem 4 in [3] that provides a presentation of the monad
C [24, 9, 31, 33, 34, 16]. In Section 4, we recall the monad as well as its presentation given
in [3]. In this section, we recall some basic facts about monads and presentations.

Amonad on Sets is a functorM : Sets→ Sets together with two natural transformations:
a unit η : Id ⇒ M and multiplication µ : M2 ⇒ M that satisfy the laws µ ◦ ηM = µ ◦
Mη = id and µ ◦ Mµ = µ ◦ µM.

A monad map from a monadM to a monad M̂ is a natural transformation σ : M⇒ M̂
that makes the following diagrams commute, with η, µ and η̂, µ̂ denoting the unit and
multiplication ofM and M̂, respectively, and σσ = σ ◦ Mσ = M̂σ ◦ σM.

X

η̂ %%

η //MX

σ��

MMX
µ
��

σσ // M̂M̂X

µ̂��
M̂X MX

σ
// M̂X

If σ : MX → M̂X is an iso, the two monads are isomorphic.

An important example of monad is provided by the free monad of terms. Given a
signature Σ, namely a set of operation symbols equipped with an arity, the free monad
TΣ : Sets→ Sets of terms over Σ maps a set X to the set of all Σ-terms with variables in
X, and f : X → Y to the function that maps a term over X to a term over Y obtained by
substitution according to f . The unit maps a variable in X to itself, and the multiplication
is term composition.

Given a set of axioms E over Σ-terms, one can define the smallest congruence generated
by the axioms, denoted by =E . Hereafter we write [t]E for the =E-equivalence class of
the Σ-term t and TΣ,E(X) for the set of E-equivalence classes of Σ-terms with variables
in X. The assignment X 7→ TΣ,E(X) gives rise to a functor TΣ,E : Sets → Sets where
the behaviour on functions is defined as for TΣ. Such functor carries the structure of a
monad: the unit ηE : Id⇒ TΣ,E and the multiplication µE : TΣ,ETΣ,E ⇒ TΣ,E are defined
as ηE(x) = [x]E and µE [t{[ti]E/xi}]E = [t{ti/xi}]E .

An algebraic theory is a pair (Σ, E) of signature Σ and a set of equations E. We say that
(Σ, E) provides a presentation for a monadM if TΣ,E is isomorphic toM.

We next introduce several monads on Sets together with their presentations.

Nondeterminism. The non-empty finite powerset monad Pne maps a set X to the set of
non-empty finite subsets PneX = {U | U ⊆ X, U is finite and non-empty} and a function
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f : X → Y to Pnef : PneX → PneY , Pnef(U) = {f(u) | u ∈ U}. The unit η of Pne is given
by singleton, i.e., η(x) = {x}, and the multiplication µ is given by union, i.e., µ(S) =

⋃
U∈S U

for S ∈ PnePneX.
Let ΣN be the signature consisting of a binary operation ⊕. Let EN be the following set

of axioms, the axioms of semilattice:

(x⊕ y)⊕ z (A)= x⊕ (y ⊕ z) x⊕ y (C)= y ⊕ x x⊕ x (I)= x

It is easy to show that the algebraic theory (ΣN , EN ) provides a presentation for the monad
Pne, in the sense that there exists an isomorphism of monads ιN : TΣN ,EN

⇒ Pne.

Probability. The finitely supported probability distribution monad D is defined, for a set X
and a function f : X → Y , as DX = {ϕ : X → [0, 1] |

∑
x∈X ϕ(x) = 1, supp(ϕ) is finite} and

Df(ϕ)(y) =
∑

x∈f−1(y)
ϕ(x). The unit of D is given by a Dirac distribution η(x) = δx = (x 7→ 1)

for x ∈ X and the multiplication by µ(Φ)(x) =
∑
ϕ∈supp(Φ) Φ(ϕ) · ϕ(x) for Φ ∈ DDX. We

sometimes write
∑
i∈I pixi for a distribution ϕ with supp(ϕ) = {xi | i ∈ I} and ϕ(xi) = pi.

Let ΣP be the signature consisting of a binary operation +p for all p ∈ (0, 1). Let EP be
the following set of axioms, the axioms of a barycentric algebra, also called convex algebra:1

(x+q y) +p z
(Ap)
= x+pq (y + p(1−q)

1−pq

z) x+p y
(Cp)
= y +1−p x x+p x

(Ip)
= x

The algebraic theory (ΣP , EP ) provides a presentation for the monad D [30, 28, 7, 8, 15], in
the sense that there exists an isomorphism of monads ιP : TΣP ,EP

⇒ D.

3.1 A well known recipe for constructing monad morphisms
To prove that an algebraic theory (Σ, E) presents a monadM, one has to provide ι : TΣ,E ⇒
M that (a) is a monad map and (b) is an isomorphism. While the proof of (b) often requires
some specific normal form arguments, the proof of (a) can be significantly simplified by using
some standard categorical machinery.

In this section, we illustrate a well known recipe which allows for constructing a monad
map ι : TΣ,E ⇒M in a principled way. We begin by recalling Eilenberg-Moore algebras.

To each monadM, one associates the Eilenberg-Moore category EM(M) ofM-algebras.
Objects of EM(M) are pairs A = (A, a) of a set A ∈ Sets and a map a : MA→ A, making
the first two diagrams below commute.

A
η //MA

a��

M2A
µ ��

Ma//MA
a��

MA
a ��

Mh//MB

b��
A MA

a
// A A

h
// B

A homomorphism from an algebra A = (A, a) to an algebra B = (B, b) is a map h : A→ B

between the underlying sets making the third diagram above commute.
It is well known that, when M is the monad TΣ,E for some algebraic theory (Σ, E),

EM(M) is isomorphic to the category Alg(Σ, E) of (Σ, E)-algebras and their morphisms. A
Σ-algebra (X,ΣX) consist of a set X together with a set ΣX of operations ôX : Xn → X,
one for each operation symbol o ∈ Σ of arity n. A (Σ, E)-algebra is a Σ-algebra where all the

1 There is another equivalent presentation for convex algebras with a signature involving arbitrary convex
combinations and two axioms, projection and barycenter. In this paper we will mainly use the binary
convex operations.
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13:6 Presenting convex sets of probability distributions by unique bases

equations in E hold. A homomorphism h from a (Σ, E)-algebra (X,ΣX) to a (Σ, E)-algebra
(Y,ΣY ) is a function h : X → Y that commutes with the operations, i.e., h ◦ ôX = ôY ◦ hn
for all n-ary o ∈ Σ.

For instance, (ΣN , EN )-algebras are semilattices, namely a set X equipped with a binary
operation ⊕̂X that is associative, commutative and idempotent. A semilattice homomorphism
is a function h : X → Y such that h(x1⊕̂Xx2) = h(x1)⊕̂Y h(x2) for all x1, x2 ∈ X.

Now we can display an abstract recipe for constructing a monad map ι : TΣ,E ⇒ M,
which consists of three steps:

(A) For each set X, provideMX with the structure of a (Σ, E)-algebra, namely functions
ôX : (MX)n →MX for each o ∈ Σ, that satisfy the equations in E;

(B) Prove that for each function f : X → Y ,Mf is a (Σ, E)-algebra homomorphism;
(C) Prove that for each set X, µMX : MMX →MX is a (Σ, E)-algebra homomorphism.

By the correspondence of (Σ, E)-algebras and Eilenberg-Moore algebras for TΣ,E and
(A), we obtain a TΣ,E-algebra α]X : TΣ,EMX → MX for each set X. These α]X give rise
to a natural transformation α] : TΣ,EM ⇒ M by (B) and the correspondence of (Σ, E)-
homomorphisms and TΣ,E-homomorphisms. The monad morphism ι : TΣ,E ⇒M is then
obtained by (C) and the following theorem2.

I Theorem 2. Let (M, ηM, µM) and (M̂, ηM̂, µM̂) be two monads. Let α] : MM̂ ⇒ M̂
be a natural transformation such that α]X : MM̂X → M̂X is an Eilenberg-Moore algebra
for M and that µM̂X : M̂M̂X → M̂X is an M-algebra morphism from (M̂M̂X,α]M̂X

) to
(M̂X,α]X). Then the following is a monad map:

ι := M
MηM̂+3MM̂ α]

+3 M̂ .

Proof. In order to prove that ι is a monad map, we need to prove that the following two
diagrams commute.

X

ηM̂X %%

ηMX //MX

ιX
��

M̂X

MMX

µMX
��

MιX //MM̂X
ιM̂X // M̂M̂X

µM̂X��
MX

ιX
// M̂X

(6)

For the diagram on the left, it is enough to recall that ι = α] ◦ MηM̂ and observe that
the following diagram commutes: the top square commutes by naturality of ηM and the
bottom triangle commutes since α]X is an Eilenberg Moore algebra forM.

X
ηMX //

ηM̂X ��

MX

MηM̂X��
M̂X

idX ''

ηMM̂X //MM̂X

α]
X��

M̂X

2 This theorem is known, but it is not easy to find an original reference for it. We thank Jurriaan Rot for
recalling the theorem and the proof with us.
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In order to prove the commutation of the diagram on the right in (6), by ι = α] ◦ MηM̂

it is enough to prove that the following commutes:

MMX

µMX
��

MMηM̂X //MMM̂X
Mα]

X //

µMM̂X ��

MM̂X

α]
X��

ιM̂X // M̂M̂X

µM̂Xww
MX

MηM̂X

//MM̂X
α]

X

// M̂X

The left square commutes by naturality of µM. The central square commutes since α]X is an
Eilenberg-Moore algebra forM. It remains to prove that the right triangle commutes.

First, observe that the diagram below commutes: the left triangle commutes by definition
of ι, and the right square commutes by the assumption that µM̂X is anM-algebra morphism.

MM̂X
MηM̂M̂X //

ιM̂X ((

MM̂M̂X

α]

M̂X��

MµM̂X //MM̂X

α]
X��

M̂M̂X
µM̂X

// M̂X

This completes the proof asMµM̂X ◦ MηM̂M̂X
=M(µM̂X ◦ ηM̂M̂X

) =M(idM̂X) = idMM̂X . J

The function ιX : TΣ,EX →MX obtained by the above recipe can be inductively defined
for all x ∈ X, t1, . . . , tn ∈ TΣX and n-ary operations o in Σ as follows.

ιX([x]E) = ηMX (x) ιX([o(t1, . . . , tn)]E) = ôX(ιX [t1]E , . . . , ιX [tn]E). (7)

The fact that the functions ôX form a (Σ, E)-algebra ensures that ι is a well defined function,
namely if t =E t′, then ι([t]E) = ι([t′]E).

We conclude this section by shortly illustrating how to apply the above recipe to the
monad for nondeterminism and the one for probability discussed above. To construct a monad
map ιN : TΣN ,EN

⇒ Pne, we define for all sets X the binary function ⊕̂ : Pne(X)×Pne(X)→
Pne(X) as the union ∪. This is associative, commutative and idempotent, so the axioms in
EN are satisfied, or in other words, this forms a semilattice. This corresponds to point (A)
of the recipe. It is not difficult to check (B) and (C). The resulting monad map is defined for
all sets X as

ιNX([x]EN
) = {x} ιNX([t1 ⊕ t2]EN

) = ιNX([t1]EN
) ∪ ιNX([t2]EN

).

To construct the monad map ιP : TΣP ,EP
⇒ D, we define for all p ∈ (0, 1) and all sets X the

binary function +̂p : D(X) × D(X) → D(X) as d1+̂pd2 = p d1 + (1 − p)d2. One can check
that the three axioms in EP are satisfied (distributions form a convex algebra), and that
points (B) and (C) of the recipe hold. The resulting monad map is defined for all sets X as

ιPX([x]EP
) = δx ιPX([t1 +p t2]EP

) = p ιPX([t1]EP
) + (1− p)ιPX([t2]EP

). (8)

4 The monad for nondeterminism and probability

In this section, we recall the monad for nondeterminism and probability, its presentation,
and we illustrate some interesting properties.
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13:8 Presenting convex sets of probability distributions by unique bases

The monad C : Sets → Sets maps a set X into CX, namely the set of non-empty,
finitely-generated convex subsets of distributions on X (as defined in Section 2). For a
function f : X → Y , Cf : CX → CY is given by Cf(S) = {Df(d) | d ∈ S}. The unit of
C is η : X → CX given by η(x) = {δx}. The multiplication µ : CCX → CX of C can be
expressed in concrete terms as follows [16]. Given S ∈ CCX,

µ(S) =
⋃

Φ∈S

{ ∑
U∈supp Φ

Φ(U) · d | d ∈ U
}
.

Let Σ be the signature ΣN ∪ ΣP . Let E be the sets of axioms consisting of EN , Ep and
the following distributivity axiom:

(x⊕ y) +p z
(D)= (x+p z)⊕ (y +p z)

This theory (Σ, E) is the algebraic theory of convex semilattices, introduced in [3].

I Theorem 3. (Σ, E) is a presentation of the monad C.

The above theorem has been proved in [3]. In the remainder of this paper, we will provide
an alternative proof of this fact by exploiting the unique base theorem (Theorem 1).

We begin by observing that the assignment S 7→ conv(S) gives rise to a natural trans-
formation conv: PneD ⇒ C [20, 2]. Theorem 1 provides a way of going backward, from C

to PneD: we call UBX : CX → PneDX the function assigning to each convex subset S its
unique base. However such UBX does not give rise to a natural transformation, in the sense
that the diagram on the left in (9) only commutes laxly for arbitrary functions f : X → Y .

CX

⊇UBX

��

Cf // CY

UBY

��
PneDX PneDf

// PneDY

CX

UBX

��

Cf // CY

PneDX PneDf
// PneDY

convY

OO (9)

It holds that UBY ◦ Cf ⊆ PneDf ◦ UBX but not the other way around, as shown by the
next example.

I Example 4. Let X = {x, y, z}, Y = {a, b} and f : X → Y be the function mapping both
x and y to a and z to b. Consider the set S = { 1

2x + 1
2y,

1
2x + 1

2z, δz}: this set is a base
since none of its element can be expressed as convex combination of the others. However,
the set PneDf(S) = {δa, 1

2a + 1
2b, δb} is not a base since 1

2a + 1
2b can be expressed as a

linear combination of δa and δb. Now, by taking the convex set conv(S) ∈ CX one can
easily see that UBY ◦ Cf 6⊇ PneDf ◦ UBX . Indeed PneDf ◦ UBX(conv(S)) = PneDf(S) =
{δa, 1

2a+ 1
2b, δb}, while UBY ◦ Cf(conv(S)) = {δa, δb} since Cf(conv(S)) = conv(Df(S))

by Lemma 5 below.

Interestingly enough, while the diagram on the left in (9) does not commute, the diagram
on the right in (9) does. This is closely related to Lemma 37 from [3], which provides a
slightly different formulation. Below, we illustrate a proof: to simplify the notation of the
natural transformations, we avoid to specify the set X whenever it is clear from the context.

I Lemma 5. Let S ∈ C(X) and f : X → Y . Then Cf(S) = conv({Df(d) | d ∈ UB(S)}).

Proof. We prove Cf(S) ⊆ conv(
⋃
d∈UB(S){Df(d)}). Let e ∈ Cf(S). Then e = Df(d) for

some d ∈ S, which implies that d is a convex combination of elements of UB(S), that is,
d =

∑
i pi ·di with di ∈ UB(S) for all i. Hence, e =

∑
i pi ·Df(di) ∈ conv(

⋃
d∈UB(S){Df(d)}).
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For the opposite inclusion, let e ∈ conv(
⋃
d∈UB(S) {Df(d)}). Hence, e =

∑
i pi · Df(di)

with di ∈ UB(S) for all i. We have
∑
i pi · Df(di) = Df(

∑
i pi · di) and, from

∑
i pi · di ∈ S,

we conclude e ∈ Cf(S).
J

5 The monad map ι : TΣ,E ⇒ C

In this section we apply the standard recipe from Section 3.1 to construct a monad map
ι : TΣ,E ⇒ C.

For this aim, we first recall two well-known operations on convex sets: the convex union
⊕ : C(X)× C(X)→ C(X) defined for all S1, S2 ∈ C(X) as

S1 ⊕ S2 = conv(S1 ∪ S2)

and, for all p ∈ (0, 1), the Minkowski sum +p : C(X)× C(X)→ C(X) defined as

S1 +p S2 = {d | d = pd1 + (1− p)d2 for some d1 ∈ S1 and d2 ∈ S2}.

Points (A) and (B) of the recipe hold by the following result from [3, Lemma 38].

I Lemma 6. With the above defined operations (CX,⊕,+p) is a convex semilattice. Moreover,
for a map f : X → Y , the map Cf : CX → CY is a convex semilattice homomorphism from
(CX,⊕,+p) to (CY,⊕,+p). J

The following lemma proves point (C) explicitly, namely that µ is a (Σ, E)-homomorphism.3

I Lemma 7. For all S1, S2 ∈ CC(X), it holds that:

1. µ(S1 ⊕ S2) = µ(S1)⊕ µ(S2)
2. µ(S1 +p S2) = µ(S1) +p µ(S2)

Proof. Through this proof, we will often use the following key observation: d ∈ µ(S) iff

∃Φ ∈ S such that d =
∑

U∈supp(Φ)

Φ(U)·f(U) , for f : supp(Φ)→ D(X) such that f(U) ∈ U .

1. We first prove the inclusion µ(S1)⊕µ(S2) ⊆ µ(S1⊕S2). As S1 ⊆ S1⊕S2 we derive that

µ(S1) def=
⋃

Φ∈S1
{
∑
U∈supp(Φ) Φ(U) · d | d ∈ U}

⊆
⋃

Φ∈S1⊕S2
{
∑
U∈supp(Φ) Φ(U) · d | d ∈ U}

def= µ(S1 ⊕ S2)
(10)

Symmetrically, by S2 ⊆ S1 ⊕p S2 we have

µ(S2) def=
⋃

Φ∈S2
{
∑
U∈supp(Φ) Φ(U) · d | d ∈ U}

⊆
⋃

Φ∈S1⊕S2
{
∑
U∈supp(Φ) Φ(U) · d | d ∈ U}

def= µ(S1 ⊕ S2)
(11)

3 In [3], we show that (CX,⊕,+p) is the free convex semilattice generated by X and then prove that
µ = id#

CX , see [3, Lemma 41]. An implicit consequence of this is that µ is the unique homomorphism
from the free convex semilattice generated by CX to the free convex semilattice generated by X that
extends the identity map on CX.
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Hence,

µ(S1)⊕ µ(S2)

= conv
( ⋃

Φ∈S1

{ ∑
U∈supp(Φ)

Φ(U) · d | d ∈ U
}
∪
⋃

Φ∈S2

{ ∑
U∈supp(Φ)

Φ(U) · d | d ∈ U
})

⊆ conv(µ(S1 ⊕ S2)) (by (10), (11))
= µ(S1 ⊕ S2) (by µ(S1 ⊕ S2) a convex set)

We then prove the inclusion µ(S1 ⊕ S2) ⊆ µ(S1) ⊕ µ(S2). Take d ∈ µ(S1 ⊕ S2). Then
there is a Φ ∈ S1 ⊕ S2 such that d =

∑
U∈supp(Φ) Φ(U) · f(U), with f : supp(Φ)→ D(X)

such that f(U) ∈ U . As Φ is a convex combination of distributions in S1 ∪ S2, we have
Φ =

∑
i pi · Φi with Φi ∈ (S1 ∪ S2) for all i. Then for all x ∈ X we have

∑
U∈supp(Φ)

Φ(U) · f(U)(x) =
∑

U∈∪i supp(Φi)

(
(
∑
i

pi · Φi)(U) · f(U)(x)
)

=
∑

U∈∪i supp(Φi)

(∑
i

pi · Φi(U) · f(U)(x)
)

=
∑
i

pi ·
( ∑
U∈∪i supp(Φi)

Φi(U) · f(U)(x)
)

=
∑
i

pi ·
( ∑
U∈supp(Φi)

Φi(U) · f(U)(x)
)

Hence, the result follows as

d =
∑
i

pi ·
( ∑
U∈supp(Φi)

Φi(U) · f(U)
)

∈ conv
( ⋃

Φ∈(S1∪S2)

{ ∑
U∈supp(Φ)

Φ(U) · d | d ∈ U
})

= µ(S1 ⊕ S2).

2. We first prove µ(S1) +p µ(S2) ⊆ µ(S1 +p S2). Let d ∈ µ(S1) +p µ(S2). Then

d =
( ∑
U∈supp(Φ1)

Φ1(U) · f(U)
)

+p

( ∑
U∈supp(Φ2)

Φ2(U) · g(U)
)

with Φ1 ∈ S1,Φ2 ∈ S2, with f : supp(Φ1) → D(X) such that f(U) ∈ U , and with
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g : supp(Φ2)→ D(X) such that g(U) ∈ U . For all x ∈ X, we have

d(x) =
(( ∑

U∈supp(Φ1)

Φ1(U) · f(U)
)

+p

( ∑
U∈supp(Φ2)

Φ2(U) · g(U)
))

(x)

=
( ∑
U∈supp(Φ1)

(p · Φ1(U) · f(U)(x))
)

+
( ∑
U∈supp(Φ2)

((1− p) · Φ2(U) · g(U)(x))
)

=
( ∑
U∈supp(Φ1)\supp(Φ2)

(p · Φ1(U) · f(U)(x))
)

+
( ∑
U∈supp(Φ2)\supp(Φ1)

((1− p) · Φ2(U) · g(U)(x))
)

+
( ∑
U∈supp(Φ1)∩supp(Φ2)

(
(p · Φ1(U) · f(U)(x)) + ((1− p) · Φ2(U) · g(U)(x))

))
(∗)=
( ∑
U∈supp(Φ1)\supp(Φ2)

((Φ1 +p Φ2)(U) · f(U)(x))
)

+
( ∑
U∈supp(Φ2)\supp(Φ1)

((Φ1 +p Φ2)(U) · g(U)(x))
)

+
( ∑
U∈supp(Φ1)∩supp(Φ2)

(
(Φ1 +p Φ2)(U) · (f(U)(x) + p·Φ1(U)

(Φ1+pΦ2)(U)
g(U)(x))

))
=

∑
U∈supp(Φ1+pΦ2)

(
(Φ1 +p Φ2)(U) · h(U)(x)

)
where h : supp(Φ1 +p Φ2)→ D(X) is defined as:

h(U) =


f(U) if U ∈ (supp(Φ1) \ supp(Φ2))
g(U) if U ∈ (supp(Φ2) \ supp(Φ1))
(f(U) + p·Φ1(U)

(Φ1+pΦ2)(U)
g(U)) if U ∈ (supp(Φ1) ∩ supp(Φ2))

and the equality (∗) holds by (p1 · q1) + (p2 · q2) = (p1 + p2) · (q1 + p1
p1+p2

q2), ∀p1, p2, q1, q2.
Then, observe that for every U ∈ supp(Φ1 +p Φ2) we have h(U) ∈ U , since every U is a
convex set, and thus if U contains f(U) and g(U) then it also contains f(U) +q g(U), for
all q. Thereby, we conclude d ∈ µ(S1 +p S2).
We now prove the remaining inclusion, i.e., µ(S1 +p S2) ⊆ µ(S1) +p µ(S2).
Let Φ ∈ S1 +p S2 and let d =

∑
U∈supp(Φ) Φ(U) · f(U), with f : supp(Φ)→ D(X) such

that f(U) ∈ U , be an element of µ(S1 +pS2). Then, Φ = Φ1 +pΦ2, with Φ1 ∈ S1,Φ2 ∈ S2.
For every x ∈ X we have

d(x) =
∑

U∈supp(Φ1)∪supp(Φ2)

(
(Φ1 +p Φ2)(U) · f(U)(x)

)
=

∑
U∈supp(Φ1)∪supp(Φ2)

(
(p · Φ1(U) · f(U)(x)) + ((1− p) · Φ2(U) · f(U)(x))

)
=
( ∑
U∈supp(Φ1)

p · Φ1(U) · f(U)(x)
)

+
( ∑
U∈supp(Φ2)

(1− p) · Φ2(U) · f(U)(x)
)

=
( ∑
U∈supp(Φ1)

Φ1(U) · f(U)(x)
)

+p

( ∑
U∈supp(Φ2)

Φ2(U) · f(U)(x)
)

which implies d ∈ µ(S1) +p µ(S2). J
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By applying the recipe from Section 3.1, we obtain from Lemmas 6 and 7 a monad map.

I Proposition 8. The natural transformation ι : TΣ,E ⇒ C is a monad map, defined as:

ι([x]E) = {δx} ι([t1 ⊕ t2]E) = ι([t1]E)⊕ ι([t2]E) ι([t1 +p t2]E) = ι([t1]E) +p ι([t2]E)

Lemma 7, together with the existence of unique bases, also allows us to derive a useful
characterization of the multiplication µ of the monad C.

I Lemma 9. For S ∈ CCX,

µ(S) = conv
( ⋃

Φ∈UB(S)

{ ∑
U∈supp Φ

Φ(U) · d | d ∈ UB(U)
})
.

Proof. We have S = conv(
⋃

Φ∈UB(S){Φ}) which means that S is a convex union of the
sets {Φ}, for Φ ∈ UB(S). Then by Lemma 7 we derive µ(S) = conv(

⋃
Φ∈UB(S) µ{Φ}). By

definition, µ{Φ} = {
∑
U∈supp(Φ) Φ(U) · d | d ∈ U}, hence

µ(S) = conv
( ⋃

Φ∈UB(S)

{ ∑
U∈supp(Φ)

Φ(U) · d | d ∈ U
})
. (12)

Observe that the Minkowski sum operation, which is equivalently defined on arbitrary
(i.e., not necessarily convex) sets of distributions, enjoys the following property:

for any sets of distributions X,Y , conv(X) +p conv(Y ) = conv(X +p Y ). (13)

Indeed, X +p Y ⊆ conv(X) +p conv(Y ), and as the Minkowski sum of convex sets is convex
we have conv(X +p Y ) ⊆ conv(conv(X) +p conv(Y )) = conv(X) +p conv(Y ). For the other
direction, take p(

∑
i pixi) + (1− p)(

∑
j qjyj) ∈ conv(X) +p conv(Y ). We have:

p(
∑
i

pixi)+(1−p)(
∑
j

qjyj) = p(
∑
i,j

(piqj)xi)+(1−p)(
∑
i,j

(piqj)yj) =
∑
i,j

(piqj)(pxi+(1−p)yj)

which is then an element of conv(X +p Y ). This shows (13).
For every Φ, the set {

∑
U∈supp(Φ) Φ(U) · d | d ∈ U} is a Minkowski sum over the elements

U of supp(Φ), which are themselves convex sets satisfying U = conv(UB(U)). Then by (13)
we derive:{ ∑

U∈supp(Φ)

Φ(U) · d | d ∈ U
}

= conv
({ ∑

U∈supp(Φ)

Φ(U) · d | d ∈ UB(U)
})
. (14)

By (12) and (14) it holds:

µ(S) = conv

 ⋃
Φ∈UB(S)

conv
({ ∑

U∈supp(Φ)

Φ(U) · d | d ∈ UB(U)
}) .

Then, by using the property that conv(conv(X)∪ Y ) = conv(X ∪ Y ) for any sets of distribu-
tions X,Y (as shown in the proof of [3, Lemma 38]), we conclude that the latter is equal
to

conv
( ⋃

Φ∈UB(S)

{ ∑
U∈supp(Φ)

Φ(U) · d | d ∈ UB(U)
})
.

J
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6 Proving the isomorphism

In the previous section we have constructed a monad map ι : TΣ,E ⇒ C (Proposition 8). In
this section, we prove that it is an isomorphism by exploting Theorem 1.

We start with a simple observation: for each setX, there is a trivial injection iX : TΣP
(X)→

TΣ(X). A term in TΣ is said to be a purely probabilistic term (p-term, for short) if and only
if it lays in the image of i. We overload the notation and also denote with i its extension to
equivalence classes iX : TΣP ,EP

(X)→ TΣ,E(X), which is well defined as EP ⊆ E.

I Lemma 10. Let {−}X : D(X)→ C(X) be the function mapping every distribution d into
the convex set {d} and let ιP : TΣP ,EP

⇒ D be the monad map from (8). The following
diagram commutes.

TΣP ,EP
X

iX //

ιPX
��

TΣ,EX

ιX

��
DX

{−}X

// CX

Proof. We prove by induction that {ιPX([t]EP
)}X = ιX(iX(([t]EP

))) for all t ∈ TΣP
. If

t = x ∈ X, then {ιPX([x]EP
)}X = {δx} = ιX([x]E) = ιX(iX(([t]EP

))). If t = t1 +p t2, then

{ιPX([t1 +p t2]EP
)}X = {p · ιPX([t1]EP

) + (1− p) · ιPX([t1]EP
)}

= {ιPX([t1]EP
)}+p {ιPX([t2]EP

)}
= ιX(iX([t1]EP

)) +p ιX(iX([t2]EP
))

= ιX([t1]E) +p ιX([t2]E)
= ιX([t1 +p t2]E)
= ιX(iX([t1 +p t2]EP

)).

J

Recall that the monad map ιP : TΣP ,EP
⇒ D defined in (8) is an isomorphism. We call

κP : D ⇒ TΣP ,EP
its inverse. By exploiting κP and Theorem 1, it is easy to define a function

κX : C(X)→ TΣ,E(X) as follows: for S ∈ C(X) with base {d1, . . . , dn}

κX(S) = [ i(κP (d1))⊕ . . .⊕ i(κP (dn)) ]E . (15)

I Proposition 11. ι ◦ κ = idC

Proof. Let S ∈ C(X) be a convex set with base {d1, . . . , dn}. By definition of κ and ι,

ι(κ(S)) = ι([i(κP (d1))]E)⊕ · · · ⊕ ι([i(κP (dn))]E).

By Lemma 10, ι(κ(S)) = {d1} ⊕ · · · ⊕ {dn} which is exactly S. J

I Remark 12. Proposition 11 and Lemma 10 entail that iX : TΣP ,EP
(X) → TΣ,E(X) is

injective. Hence, two p-terms are equal in E if and only if they are also equal in EP .
We are now left to prove that κ ◦ ι = idTΣ,E

. This means that any term t is in the
equivalence class of κ ◦ ι([t]E), which by definition of κ is [i(κP (d1)) ⊕ . . . ⊕ i(κP (dn))]E
where {d1, . . . , dn} is the base of ι([t]E).

The first step consists in showing that every term is equivalent, modulo E, with a term
of a certain shape: a term t ∈ TΣ(X) is said to be in nondeterministic-probablistic form, n-p
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form for short, if there exists t1, . . . , tn ∈ TΣP
(X) such that t = i(t1)⊕ . . .⊕ i(tn). This can

be thought of as an analogous of the disjunctive-conjunctive form that is commonly used in
propositional logic.

I Example 13. The term (x⊕ y) + 1
2

(y + 1
3
z) is not in n-p form, since x⊕ y occurs inside

+ 1
2
. However, by using the distributivity axiom (D), we have that (x⊕ y) + 1

2
(y + 1

3
z) =E

(x+ 1
2

(y + 1
3
z))⊕ (y + 1

2
(y + 1

3
z)) which is in n-p form.

The following proposition ensures that every term is equivalent to one in n-p form.

I Proposition 14. For all t ∈ TΣ(X), there exists t′ in n-p form such that t =E t′.

Proof. Intuitively, by virtue of the axiom (D) all the occurrences of +p can be pushed inside
some ⊕. This can be proved formally by means of the following term rewriting system.

(t1 ⊕ t2) +p t3  (t1 +p t3)⊕ (t2 +p t3) t1 +p (t2 ⊕ t3) (t1 +p t2)⊕ (t1 +p t3)

If t ∈ TΣ(X) rewrites to t′ ∈ TΣ(X), then t =E t′ since the left rule is just the axiom (D),
while the right can be derived using (Cp), (D) and (Cp) again. Using standard term rewriting
techniques from [6] we can prove that the rewriting system terminates:

(1) Define the partial order +p > ⊕ on Σ;
(2) Observe that the generated recursive path ordering on TΣ(X) is a simplification ordering

(see e.g., Example A in Section 5 of [6]);
(3) Conclude by the First Termination Theorem.

Finally, we observe that a term t is in n-p form iff t 6 : Indeed, if t is in n-p form then
there is no redex for the two rules above. On the other hand, if t is not in n-p form, then
some ⊕ should occur inside a +p and then one of the rules applies.

Therefore, each term t can be rewritten into an E-equivalent term t′ in n-p form. J

Given a term t′ ∈ TΣ(X) in n-p form and t1, . . . , tn ∈ TΣP
(X) such that t′ = i(t1)⊕ . . .⊕

i(tn), one would like {ιP ([t1]EP
), . . . , ιP ([tn]EP

)} to be the base for ι([t′]E). But this is not
always the case since some ιP ([ti]EP

) can be a convex combination of the other ιP ([tj ]EP
).

I Example 15. The term (x + 1
2
y) ⊕ (x + 2

3
(x ⊕ y)) is not in n-p form. By applying the

rewriting procedure in the proof of Proposition 14 one obtains: (x+ 1
2
y)⊕ (x+ 2

3
(x⊕ y)) =E

(x+ 1
2
y)⊕ (x+ 2

3
x)⊕ (x+ 2

3
y). Observe that this is equivalent to (x+ 1

2
y)⊕x⊕ (x+ 2

3
y). The

convex set ι
(
[(x+ 1

2
y)⊕x⊕ (x+ 2

3
y)]E

)
has base {ιP ([x+ 1

2
y]EP

), ιP ([x]EP
)} = { 1

2x+ 1
2y, δx}.

Indeed the distribution ιP ([x+ 2
3
y]EP

) = 2
3x+ 1

3y is a convex combination of { 1
2x+ 1

2y, δx}
as 2

3x+ 1
3y = 2

3 ( 1
2x+ 1

2y) + 1
3x.

The next two lemmas are necessary to show that, using the axioms in E, we can remove
from t′ those summands i(ti) such that ιP ([ti]EP

) is a convex combination of the other
ιP ([tj ]EP

). The first lemma is a well known observation (see e.g. [23, 33]), but we report its
instructive proof; the second lemma follows easily from the first one and properties of convex
algebras. We defer its proof to the Appendix.

I Lemma 16 (Convexity law). For all terms t1, t2 ∈ TΣ(X), for all p ∈ (0, 1),

t1 ⊕ t2 =E t1 ⊕ t2 ⊕ (t1 +p t2).
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Proof. We first prove that

t1 ⊕ t2
(Ip)
= (t1 ⊕ t2) +p (t1 ⊕ t2)

(D)= ((t1 ⊕ t2) +p t1)⊕ ((t1 ⊕ t2) +p t2)
(D)= ((t1 +p t1)⊕ (t2 +p t1))⊕ ((t1 +p t2)⊕ (t2 +p t2))
(Ip)
= t1 ⊕ (t2 +p t1)⊕ (t1 +p t2)⊕ t2

Then, by applying first this equality and then idempotency, we derive the result:

t1 ⊕ t2 ⊕ (t1 +p t2) = t1 ⊕ (t2 +p t1)⊕ (t1 +p t2)⊕ t2 ⊕ (t1 +p t2)
(Ip)
= t1 ⊕ (t2 +p t1)⊕ (t1 +p t2)⊕ t2

J

I Lemma 17. Let t, t1, . . . , tn ∈ TΣP
(X) such that ιP ([t]EP

) ∈ conv{ιP ([t1]EP
), . . . , ιP ([tn]EP

)}.
Then

i(t1)⊕ . . .⊕ i(tn) =E i(t1)⊕ . . .⊕ i(tn)⊕ i(t)

I Proposition 18. For all terms t ∈ TΣ(X), there exist t1, . . . , tn ∈ TΣP
such that

t =E i(t1)⊕ . . .⊕ i(tn)

and {ιP ([t1]EP
), . . . , ιP ([tn]EP

)} is the base of ι([t]E).

Proof. By Proposition 14, there exists a t′ ∈ TΣ(X) in n-p form such that t =E t′.
Take t′1, . . . , t′m ∈ TΣP

such that t′ = i(t1) ⊕ . . . ⊕ i(tm). By definition of ι, ι([t]E) =
ι(i([t1]EP

)) ⊕ · · · ⊕ ι(i([tm]EP
)) which by Lemma 10 is {ιP ([t1]EP

)} ⊕ · · · ⊕ {ιP ([tm]EP
)}.

By definition of ⊕, this is just conv{ιP ([t1]EP
), . . . , ιP ([tm]EP

)}. Therefore, to conclude
that {ιP ([t1]EP

), . . . , ιP ([tm]EP
)} is the base of ι([t]E) we only need to show that none of

the ιP ([ti]EP
) is in the convex combination of the others ιP ([tj ]EP

). This is not true
in general, but thanks to Lemma 17 all such ti can be removed, while preserving E-
equivalence. To be more precise, by associativity and commutativity of ⊕, we can as-
sume that ιP ([t1]EP

), . . . , ιP ([tn]EP
) form the base, while ιP ([tn+1]P ), . . . , ιP ([tm]EP

) are in
conv{ιP ([t1]EP

), . . . , ιP ([t′n]EP
)}. Then, by repeating (m− n)-times Lemma 17, we conclude

that t′ =E i(t1)⊕ . . .⊕ i(tn). J

I Proposition 19. κ ◦ ι = idTΣ,E

Proof. We need to prove that for all terms t ∈ TΣ(X), [t]E = κ ◦ ι([t]E). By Proposition 18,
there exists t1, . . . , tn ∈ TΣP

(X) such that

t =E i(t1)⊕ . . .⊕ i(tn)

and {ιP ([t1]EP
), . . . , ιP ([tn]EP

)} is the base for ι([t]E).
By definition of κ, κ(ι([t]E)) is exactly [i(κP ◦ιP [t1]EP

)⊕. . .⊕i(κP ◦ιP [tn]EP
)]E = [t]E . J

This is enough to conclude the proof of Theorem 3. Indeed we have that ι : TΣ,E ⇒ C is
a monad map and that, by Propositions 11 and 19, it is an isomorphism.
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A Proof of Lemma 17.

I Lemma 20. Let t, t1, . . . , tn ∈ TΣP
(X) such that ιP ([t]EP

) ∈ conv{ιP ([t1]EP
), . . . , ιP ([tn]EP

)}.
Then there exist p1 . . . pn−1 ∈ (0, 1) such that t =EP

(. . . (t1 +p1 t2) +p2 . . . ) +pn−1 tn.

Proof. If ιP ([t]EP
) ∈ conv{ιP ([t1]EP

), . . . , ι([tn]EP
)}, then ιP ([t]EP

) = µD
(∑

i qi (ιP ([ti]EP
))
)

for some
∑
i qi = 1. Since ιP is a monad map, its inverse κD : D ⇒ TΣP ,EP

is also a monad
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map and in particular it makes the following diagram commute.

DDX

µDX
��

DκP
X // DTΣP ,EP

X
κP

TΣP ,EP
X

// TΣP ,EP
TΣP ,EP

X

µ
TΣP ,EP
X

��
DX

κP
X

// TΣP ,EP

Therefore, we have that

[t]EP
= κP ◦ ιP ([t]EP

)

= κP ◦ µD
(∑

i

qi (ιP ([ti]EP
))
)

= µTΣP ,EP ◦ κPTΣP ,EP
◦ DκP

(∑
i

qi (ιP ([ti]EP
))
)

= µTΣP ,EP ◦ κPTΣP ,EP

(∑
i

qi (κP ◦ ιP ([ti]EP
))
)

= µTΣP ,EP ◦ κPTΣP ,EP

(∑
i

qi [ti]EP

)
Observe that

∑
i qi [ti]EP

∈ DTΣp,EP
(X) and that κPTΣp,EP

X maps it into an element of
TΣp,EP

TΣp,EP
(X), namely a term obtained by the operations +p and the constants [ti]EP

.
Using the axioms in EP any such term can always be written as (. . . ([t1]EP

+p1 [t2]EP
) +p2

. . . ) +pn−1 [tn]EP
for some pi ∈ (0, 1). Then, the application of µTΣP ,EP to [(. . . ([t1]EP

+p1

[t2]EP
) +p2 . . . ) +pn−1 [tn]EP

]EP
gives [(. . . (t1 +p1 t2) +p2 . . . ) +pn−1 tn]EP

. Thus t =EP

(. . . (t1 +p1 t2) +p2 . . . ) +pn−1 tn. J

Proof of Lemma 17. By Lemma 20, we take p1, . . . , pn−1 such that

t =EP
(. . . (t1 +p1 t2) +p2 . . . ) +pn−1 tn. (16)

By Lemma 16, i(t1) ⊕ . . . ⊕ i(tn) is E-equivalent to i(t1) ⊕ . . . ⊕ i(tn) ⊕ i(t1 +p1 t2). By
applying Lemma 16 again, one obtains i(t1)⊕ . . .⊕ i(tn)⊕ i(t1 +p1 t2)⊕ i((t1 +p1 t2) +p2 t3).
We can then remove i(t1 +p1 t2) using Lemma 16, to obtain

i(t1)⊕ . . .⊕ i(tn)⊕ i((t1 +p1 t2) +p2 t3).

By iterating this procedure, one obtains

i(t1)⊕ . . .⊕ i(tn)⊕ i((. . . (t1 +p1 t2) +p2 . . . ) +pn−1 tn)

which, by (16), is i(t1)⊕ . . .⊕ i(tn)⊕ i(t). J
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