Towards Automata-Based Abstraction of Goals in Hierarchical Reinforcement Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Towards Automata-Based Abstraction of Goals in Hierarchical Reinforcement Learning

Résumé

Hierarchical Reinforcement Learning (HRL) offers potential benefits for solving long horizon tasks, generally unhandled by standard Reinforcement Learning (RL) techniques, by decomposing the problem and combining simple policies to achieve the goal. They are however still held back by the curse of dimensionality and the ambiguity of selected subtasks. We explore relevant approaches in HRL while highlighting the key challenges of goal representation, high-level planning and propose a research outline tackling them.
Fichier principal
Vignette du fichier
bare_conf.pdf (57.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03600799 , version 1 (07-03-2022)

Identifiants

  • HAL Id : hal-03600799 , version 1

Citer

Mehdi Zadem, Sergio Mover, Sao Mai Nguyen, Sylvie Putot. Towards Automata-Based Abstraction of Goals in Hierarchical Reinforcement Learning. Intrinsically Motivated Open-ended Learning IMOL 2022, Apr 2022, Tübingen, Germany. ⟨hal-03600799⟩
278 Consultations
271 Téléchargements

Partager

More