Immersed boundary conditions for moving objects in turbulent flows with the lattice-Boltzmann method
Résumé
An immersed boundary method is coupled to a turbulent wall model and Large Eddy Simulation, within the Lattice-Boltzmann framework. The method is able to handle arbitrarily moving objects immersed in a high Reynolds number flow and to accurately capture the shear layer and near wall effects. We perform a thorough numerical study which validates the numerical method on a set of test-cases of increasing complexity, in order to demonstrate the application of this method to industrial conditions. The robustness and accuracy of the method are assessed first in a static laminar configuration, then in a mobile laminar case, and finally in a static and oscillating turbulent simulation. In all cases, the proposed method shows good results compared to the available data in the literature.
Origine | Fichiers produits par l'(les) auteur(s) |
---|