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ABSTRACT

An immersed boundary method is coupled to a turbulent wall model and Large Eddy Simulation, within the Lattice-Boltzmann framework.
The method is able to handle arbitrarily moving objects immersed in a high Reynolds number flow and to accurately capture the shear layer
and near wall effects. We perform a thorough numerical study which validates the numerical method on a set of test-cases of increasing
complexity, in order to demonstrate the application of this method to industrial conditions. The robustness and accuracy of the method are
assessed first in a static laminar configuration, then in a mobile laminar case, and finally in a static and oscillating turbulent simulation. In all
cases, the proposed method shows good results compared to the available data in the literature.

I. INTRODUCTION

In many industrial contexts, the simulation of flows at high
Reynolds numbers involving unsteady structures is often encountered,
from rotating objects in turbomachines to landing gears in aeronau-
tics.1,2 Several solutions have emerged over the years to tackle this
issue: the grid can be deformed during the simulation as is done with
the Arbitrary Lagrangian Eulerian (ALE)3–5 or regenerated after each
motion of the solid, leading to a cumbersome computation in both
cases and limitations concerning the mesh size. An alternative is the
overset method,6,7 which consists of using two different meshes, one
for the moving solid, and one for the fluid, coupled with accurate
interpolations between the two meshes in order to translate the motion
of the solid in the fluid. This method has been shown to produce very
interesting results in the context of the lattice-Boltzmann method
(LBM),8 though being restricted to rotating geometries.

In this work, we propose to consider arbitrary moving objects
immersed in turbulent flow conditions, using a robust and efficient
method to impose boundary conditions on immersed geometries.
Initially developed by Peskin in the 1970s,9 the Immersed Boundary
(IB) Method (IBM) consists of defining a volume force term on the
boundary between the fluid and the solid, calculated to satisfy the no-
slip boundary condition at the wall. A Lagrangian coordinate system is
introduced to define the position of the solid, and the fluid quantities

(velocity and force fields) are transferred back and forth from the fluid
mesh, referred to as the Eulerian mesh, thanks to interpolation and
spreading mathematical operators. These operators rely on delta func-
tions defined on a narrow band across the boundary, typically three or
four nodes. Despite a large usage of the immersed boundary method
for laminar flows in contexts involving flexible, multiphase, magnetic,
or porous boundary conditions,10–17 it is less frequent to encounter
studies at high Reynolds number flows, which can be done using
Navier–Stokes solvers,18 and more rarely using the lattice-Boltzmann
framework, which is the framework here.

When dealing with high Reynolds number turbulent wall-
bounded flows, modeling near wall turbulence, and more precisely the
inner layer of the turbulent boundary layer, becomes a primary con-
cern in many industrial fields, since this part of the flow governs most
of the friction and heat/mass transfers at the wall. Since the mesh
topology does not allow for a direct resolution of the turbulent inner
layer dynamics, it must be modeled thanks to wall models that are in
practice implemented as a new type of boundary condition at solid
walls. To this end, different techniques exist to predict the mean veloc-
ity profile within the first cell near the wall. One of them is to consider
that the tangential velocity profile follows a universal analytical law.
The most commonly used law is the logarithmic law, which gives a
relation between the tangential velocity, the distance to the wall, and
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the friction velocity. The no-slip boundary condition can thus be
replaced by the prescription of the wall shear stress. In this work, the
power wall law,19 which is an explicit wall model without any iterative
procedure for the determination of the friction velocity, is combined
with the immersed boundary method.

As proposed by Shi et al.,20 one can distinguish different types of
immersed boundaries: the sharp-interface immersed boundary
method, where the solid and fluid phases are treated distinctly, and the
diffuse-interface immersed boundary method, which is the case of this
work, and in which the solid and fluid phases are treated indistinctly.
In the former, the identification of the different types of points inside
and outside the boundary is necessary, i.e., the fluid points, the solid
points, and the interface points. When dealing with complex moving
boundaries, this impacts the robustness and efficiency of the method,
which can also suffer from spurious oscillations due to the spatial and
temporal discontinuities near the wall. In the latter, a smooth transi-
tion between the fluid and solid phases is applied, hence bypassing
these stability problems near the wall. Moreover, the diffuse interface
IB method relies on a single mesh, meaning that there is no need to
identify the different types of points, making the method more robust,
especially in the moving boundary configuration. However, the
diffuse-interface IB method has rarely been applied and combined to
turbulent wall models, except recently in Ref. 20. They combined wall
models with the diffuse interface immersed boundary and applied
their method to turbulent flows, but only in a steady configuration.
Here, we propose to further extend their approach by considering
moving solids problems, and by using the Lattice-Boltzmann method.
It is worth noting that the coupling of Wall Modeled Large Eddy
Simulation (WMLES) with IB methods is pretty rare. Some illustrative
examples are given in Table I.

The Lattice-Boltzmann Method (LBM) is based on the
Boltzmann equation at a mesoscopic level and recovers the
Navier–Stokes equations on the macroscopic level. Thanks to its auto-
matically generated Cartesian mesh, as well as its very high parallel
efficiency and very high numerical accuracy, the LBM has been gain-
ing more and more interest in the industry. Practical applications
range from the automotive industry, to the aerospace industry, but
also civil engineering, among other applications. Here, we chose to
combine the LBM to the immersed boundary, as both methods are
naturally built on Cartesian meshes. It is worth noting that coupling
wall models with LBM-IBM is still very rare, the only example to the
knowledge of the authors being given recently in Ref. 27.

The novelty of this work is to propose (1) an implementation of
Wall-Modeled LES within an LBM-IBM framework relying on the

Hybrid Recursive Regularized (HRR) LBM collision model, (2) along
with a validation for both steady and moving solid bodies at high
Reynolds number flows.

The present paper is organized as follows. First, the key features
of the present LBM algorithm are given in Sec. II. Details of the imple-
mentation of the wall-model within the LBM-IBM framework are dis-
played in Sec. III. The computation of aerodynamic forces on the
immersed boundary is also discussed in this section. A first validation
of the implementation of LBM-IBM on both steady and laminar test
cases is then given in Sec. IV. Application of the proposed WMLES-
LBM-IBM technique to the flow around both steady and oscillating
square cylinders is then discussed in Sec. V. Conclusions are drawn in
Sec. VI

II. KEY FEATURES OF THE PRESENT LBM ALGORITHM
FOR LES
A. HRR-collision-model

The typical D3Q19 lattice discretization is used in this work
because it is well-suited to simulate athermal weakly compressible
flows, even though the LBM is inherently compressible. The weighting
coefficients for the D3Q19 quadrature are x0 ¼ 1

3 for the center,
x1…6 ¼ 1

18 for the faces, and x7…18 ¼ 1
36 for the edges

ci ¼
ð0; 0; 0Þ; i ¼ 0;

ð61; 0; 0Þ; ð0;61; 0Þ; ð0; 0;61Þ; i ¼ 1� 6;

ð61;61; 0Þ; ð61; 0;61Þ; ð0;61;61Þ; i ¼ 7� 18:

8><
>: (1)

The macroscopic quantities (density q, momentum qua, and
momentum flux tensor Pab) are then computed from the velocity
moments of the distribution functions as follows:

q ¼
P

i fi;

qua ¼
P

i ci;afi;

Pab ¼
P

i ci;aci;bfi:

8><
>: (2)

The Lattice-Boltzmann equation, discretized in space, time, and
velocities, is given by

fiðx þ ciDt ; t þ DtÞ ¼ f eqi ðx; tÞ þ 1� 1
s

� �
f neqi ðx; tÞ þ

1
2
hiðx; tÞ;

(3)

hi ¼ xi 1� 1
2s

� �
ci � u
c2s
þ ci:u

c4s
ci

� �
:g; (4)

where g denotes an external macroscopic volumic force. The equilib-
rium function is written

f eqi ¼ xi qþ ciaqua

c2s
þ
að2Þ;eqab Hð2Þiab

2c4s
þ
að3Þ;eqabc Hð3Þiabc

6c6s

" #
; (5)

where Hiab and Hiabc are, respectively, the second and third order
Hermite polynomials. The non-equilibrium distribution function is
also expanded in Hermite polynomials and reconstructed by a
Recursive Regularized Bhatnagar-Gross-Krook (BGK) LBM,28,29

f neqi ¼ xi

að2Þ;neqab Hð2Þiab

2c4s
þ
að3Þ;neqabc Hð3Þiabc

6c6s

" #
: (6)

TABLE I. Literature review on the coupling between wall-modeled LES and
immersed boundary methods in the Navier–Stokes framework.

Reference Type Steady body Moving body

21 WMLES x
22 WMLES x
23 Reynolds Averaged

Navier Stokes (RANS)
x

24 WMLES x x
25 WMLES x
26 RANS x
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In the present approach, the non-equilibrium coefficients að2Þ;neqab
and að3Þ;neqabc are evaluated with the hybrid recursive collision model
introduced in Ref. 28. This model is used to enhance numerical stabil-
ity, as well as enforce a traceless lattice-Boltzmann tensor by removing
its trace. It is observed to yield accurate and robust results for a broad
range of applications and flow physics, e.g., Refs. 30–34.

In this approach, when an external force g is taken into account,
such as the immersed boundary force, the macroscopic momentum is
modified as

qu ¼
X
i

cif
eq
i þ

g
2

Dt : (7)

B. Shear-improved Smagorinsky subgrid model

To account for the unresolved scales of motion in the turbulent
case, a subgrid model is used, and more precisely, a variant of the
Smagorinsky model called the “shear-improved Smagorinsky” pro-
posed in Ref. 35. In this model, the calculation of the turbulent viscos-
ity is

�t ¼ ðC2
SDxÞ

2ðjSj � SÞ; (8)

with CS the Smagorinsky constant, Dx the local grid spacing, and jSj
the norm of the rate of strain tensor. The correcting term S is the
norm of the low-pass filtering (in time) of the rate of strain tensor.
This filtering is explained in detail in Ref. 35 and is independent of the
test case.

In the LBM, the turbulent viscosity is taken into account in the
calculation of the physical relaxation time sS,

sS ¼ � þ �t
c2s
þ 1
2
Dt; (9)

with � and �t the molecular viscosity and turbulent viscosity,
respectively.

III. IMPLEMENTATION OF THE WALL MODEL
IN THE LBM-IBM FRAMEWORK
A. Implementation of the immersed boundary
method

The immersed boundary force is a fictitious force which repre-
sents the effects of the solid on the flow. The solid boundary is
described by a set of Lagrangian markers Xk, whereas the Eulerian
fluid nodes are denoted by xi. Capital letters indicate the variables at
the Lagrangian points and u* is the predicted velocity without the
presence of a solid. The main advantage of the immersed boundary
method is that the motion of the solid can be described with a single
mesh and a moving frontier across this original mesh. Thus, there is
no need to deform the mesh nor recreate a new mesh during the com-
putation, which are well-known computationally expensive proce-
dures. The algorithm of the IB method, without any wall law, is
described in this section, as derived in Refs. 13 and 36.

(1) Update of the position of the lagrangian markers Xk and the
velocity of the solid Ud .

(2) Algorithm of the LBM without solids on the Eulerian fluid
nodes.

(3) Interpolation of q and u on the lagrangian markers Xk

I q½ �ðXkÞ ¼
X
xi

qðxiÞdðxi � XkÞDSi: (10)

(4) Computation of the immersed boundary force

GðXkÞ ¼
2
Dt
ðI q½ �U d � I qu*½ �Þ: (11)

(5) Spreading of the force on the surrounding Eulerian fluid nodes

gðxiÞ ¼ S G½ �ðxiÞ ¼
X
XK

GðXkÞdðxi � XkÞDSk: (12)

(6) Update of the velocity u [Eq. (7)] and the distribution function
fi [Eq. (3)] in the LBM.

G is the immersed boundary force expressed in the Lagrangian
space, and g is the same force expressed in the Eulerian space, used
in Eqs. (4) and (7). In the interpolation or spreading operators,
DSi ¼ DxDyDz is the cell surface expressed in the Eulerian space, and
DSk ¼ Dlk� is a local surface element expressed in the Lagrangian
space, with Dlk the local distance between two solid points and � a
boundary width usually set to unity, as done here. dðxÞ is a mollifier or
a smooth approximation of the Dirac delta function. It is the discrete
equivalent of the Dirac delta function which serves to transport infor-
mation from the Lagrangian space to the Eulerian space and vice versa.
Here, the mollifier function used in the interpolation and spreading
steps is defined as

dðrÞ ¼
1
2d

1þ cos
pr
d

� �� �
; jrj � d;

0; jrj > d;

8><
>: (13)

where d is the radius of the smoothed delta function, set to 3/2 here.

B. Combination of the wall model with the immersed
boundary

In order to deal with turbulent wall bounded flows, a turbulent
wall law is coupled with the immersed boundary method, following
the approach proposed by Shi et al.20 A fictitious node on the line nor-
mal to the wall is defined and located at an arbitrarily fixed distance to
the wall. This fictitious node, called Ref point in this work is located at
a distance of 2.5 Dx from the wall in the present work, where Dx is the
local grid size. The tangential velocity at the Ref point is calculated
using the immersed boundary interpolation operator. The point Q,
located at Dx=4 as indicated by Shi et al.,20 serves as an auxiliary point
instead of point S on the wall, to calculate the wall shear stress. In Fig.
1, the dotted square line represents the application field of the d molli-
fier function [Eq. (13)].

The algorithm for the wall law coupled to the immersed bound-
ary is given by:

(1) Computation of the normal to the boundary, using point Ref at
a distance 2.5 Dx, and point Q at a distance Dx=4.

(2) Interpolation of q and u on Ref.
(3) Computation of the friction velocity us with the power wall law.
(4) Computation of the wall shear stress and the immersed bound-

ary force on point Q.
(5) Spreading of the force from the point Q on the surrounding

Eulerian fluid nodes.
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The explicit power-law is well suited for a simplified near-wall
treatment at high Reynolds numbers using Cartesian grids. The use of
a wall model on a Cartesian grid is simplified by using a power-law
model because it does not require an iterative procedure to calculate
the friction velocity, contrary to the logarithmic law.19 The methodol-
ogy consists of first applying the wall model to a point where the veloc-
ity is predicted, thanks to the interpolation operator in our case, in
order to calculate the friction velocity from the wall model. For the
application of the power-law here, the reference point (Ref point
defined in Fig. 1) is used. The power law can be applied at the Ref
point

uþRef ¼
yþRef if yþRef � yþc ;

AðyþRef Þ
B if yþRef > yþc ;

8<
: (14)

with B¼ 1/7, A¼ 8.3, and yþc ¼ ycus=� ¼ 11:81. The wall shear stress
is then deduced as: sw ¼ qu2s and used in the immersed boundary
force at the point Q.

The immersed boundary force is decomposed in the local orthog-
onal coordinate system as G ¼ Gnen þ Gnen where Gn is the tangen-
tial component and Gn is the normal component, which are calculated
separately. en is the tangential vector and en is the normal vector to the
solid surface in Fig. 1. By integrating the momentum equation along
the normal direction to link the effective body force to the wall shear
stress, we findðDx=2

0
g:en dx ¼

ðDx=2

0

@u
@t
þ u:ruþrp� 1

Re
r2u

� �
:en dx: (15)

The integration is done between points S and Ref, more precisely
between 0 and Dx

2 , following the findings of Shi et al.20 showing that
the location of point Q at a distance of Dx=4:0 from the wall yields
good results for all the simulations in their work. Then, the previous
equation can be expressed in terms of the variables at the Lagrangian
points by integrating the viscous terms between the wall and Ref point,
and using the mean value theorem for integrals to calculate the other
terms

GnðQÞ ¼
@ðU :enÞ
@t

þU :rU :en þ
@P
@n

� �����
Dx=4

þ sw
Dx=2

�
sDx=2

Dx=2
: (16)

The capital letters indicate the variables at the Lagrangian points.
n indicates the coordinate along the tangential vector en. sw and sDx=2

are the shear stresses at the wall and at the distance Dx=2 from the
wall, respectively. As exposed in Ref. 20, for the wall-modeled LES of a
turbulent flow, the right-hand side of Eq. (16) can be approximated by
the dominant wall shear stress term as follows:

GnðQÞ ¼ 2
sw
Dx

; (17)

GnðQÞ ¼
2
Dt
ðI q½ �Ud

n � I qu*
n

� �
Þ: (18)

The tangential and normal components of the effective body
forces are both computed at the auxiliary point Q near the wall instead
of Point S on the wall. The Lagrangian points near the wall, denoted as
Q, are the new Lagrangian points introduced in this work as a surro-
gate wall. In the case of the moving boundary, the relative velocity
U ¼ URef � Ud is used in the wall law.

C. Drag force computation

To compute the aerodynamic forces acting on an immersed
object, two methods are classically used. The most widely used one,
referred to as the Near-Field method here, is based on the integration
of the pressure and viscous stresses acting on the surface of the object.
Depending on the surface mesh of the object and on the interpolations
used along the surface, the accuracy of this first method can be signifi-
cantly altered.

The second method relies on the integration of the momentum
equation on a far away surface enclosing the body, hence the name
“Far-Field method.” It is often used in the car industry to calculate the
aerodynamic forces.37,38 The main advantage of this second method is
that there is no need for an accurate description of the surface, and it
also allows one to decompose the drag into its physical compo-
nents.39,40 Nevertheless if the computation is unsteady, the far-field
method becomes cumbersome numerically because a volume integral
is needed at each time step.

In this work, as we use the immersed boundary method, it is
more convenient to compute directly the aerodynamic forces, denoted
as F, by integrating the immersed boundary force on the Lagrangian
space, denoted X or the Eulerian space, denoted C

F ¼
ð

X
GðXkÞdX ¼

ð
C

gðxiÞdC: (19)

IV. VALIDATION OF THE BASE LBM-IBM SOLVER

To validate our approach, we examine different test cases of
increasing complexity. First, the immersed boundary is assessed on a
static cylinder immersed in a flow at Reynolds number 100 and shows
good results on the comparison of the aerodynamic forces. The second
test case focuses on a cross-flow oscillating cylinder at Reynolds num-
ber 185, making it possible to use our approach in a moving solid con-
figuration. The oscillating frequency is based on the natural vortex
shedding frequency of the cylinder in order to observe the lock-in
phenomenon.

FIG. 1. Schematic diagram of the wall law.
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A. 2D laminar flow at Re¼ 100 around a fixed cylinder

The laminar flow around a cylinder at a Reynolds number 100 is
studied. The computational domain is quasi 2D and is composed of
approximately 200 000 nodes. There are 4 grid sizes shown in Fig. 2,
the ratio D=Dx is equal to 20, and the cylinder is located at 12D from
the inlet, 38D from the outlet, and at 8D from the top and bottom,
with D the cylinder diameter and Dx the minimum mesh size. The
HRR collision model is used, and the instantaneous velocity field is
shown in Fig. 3.

The results in Table II show a gap with literature results within
3.6%–10% difference on the mean drag, and 1%–3% on the Strouhal
number defined by St ¼ fD

V , where f is the vortex shedding frequency,
D is the diameter, and V is the reference velocity. An estimation of Cl’
close to literature results (0%–10%) is also obtained, which shows the
very good agreement of the present results with the literature.

B. 2D laminar flow at Re¼ 185 around an oscillating
cylinder

We now consider an unsteady configuration for the solid: the
flow around an oscillating cylinder at a Reynolds number of 185. The
motion of the cylinder center along the vertical direction is expressed
as ycylðtÞ ¼ �Ae sinð2pfetÞ based on Guilmineau and Queutey’s

study,41 where Ae is the oscillating amplitude and fe is the exciting fre-
quency. The oscillation amplitude is normalized by the cylinder diam-
eter and the following values are tested: 0.2, 0.3, 0.4, and 0.5. The
frequency ratio, i.e., fr ¼ fe=fo, ranges from 0.8 to 1.2, where fo is the
natural shedding frequency of a fixed cylinder at a Reynolds number
of 185. This test case serves as a reference case to study the phenome-
non of vortex switching: Ongoren and Rockwell42 experimentally
showed that the switch of vortex formation position occurs according
to the oscillation frequency. When the cylinder reaches the maximum
amplitude of oscillation, if the exciting frequency exceeds the natural
vortex shedding frequency, the vorticity concentration abruptly
switches to the opposite side of the cylinder and the vortex formed on
one side of the cylinder is shed on the opposite side.

The computational domain is quasi 2D and is composed of
approximately 340 000 nodes. There are 4 grid sizes, the ratio D=Dx is
equal to 20, and the cylinder is located at 12D from the inlet, 38D
from the outlet, and at 8D from the top and bottom, with D the cylin-
der diameter and Dx the minimummesh size.

In order to obtain the primary and secondary frequencies of the
vortex shedding cycle, a Fast Fourier transform operation is performed
on the time history of the lift coefficient Cl. The normalized vortex
shedding frequency fs by the natural shedding frequency fo as a func-
tion of as a function of the fr for different A/D¼ 0.3, where fs;P and fs;S
are the primary and secondary frequencies of fs, respectively, is shown
in Fig. 4.

FIG. 2. Computational mesh with refined zones around the cylinder.

FIG. 3. Instantaneous velocity field around a cylinder at Re¼ 100.

TABLE II. Results on the static cylinder at Re¼ 100.

Study Cd St C0l

Braza et al. (1986) 1.28 0.16 0.29
Zhou et al. (1999) 1.48 0.162 0.31
Shen et al. (2009) 1.38 0.166 0.33
Bourguet et al. (2014) 1.32 0.164 0.32
Gsell et al. (2021) 1.37 0.164 0.34
Present 1.42 0.166 0.33

FIG. 4. Normalized vortex frequency.
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The maximum error amplitude on the frequencies compared to
Pham et al.43 is around 3.5%, for fr¼ 1.1 and A/D¼ 0.3. The phenom-
enon of vortex switching is well captured as shown by the bifurcation
at fr¼ 1 in Fig. 4.

Regarding the time-averaged values, the drag coefficient for fr¼ 1
and A/D¼ 0.2 is compared to previous studies in the following table
(Table III):

The fluctuating components of the force can also be calculated
and compared to the reference data, for fr¼ 0.8 and A/D¼ 0.2, we
find Cd;RMS ¼ 0:046 against Cd;RMS ¼ 0:053 in Pham et al.43 This very
good agreement with reference data shows the accuracy of the pro-
posed method.

V. VALIDATION THE WMLES-LBM-IBM

This section is dedicated to the validation of the WMLES-LBM-
immersed boundary condition (IBC) approach. As a first case, the
well-known case of the flow around a steady square cylinder at
Reynolds 22 000 is addressed. In a second step, transversely oscillating
square cylinder configurations are considered.

A. Steady square cylinder case at Re¼22 000

This second test case focuses on the flow past a steady square cyl-
inder at a Reynolds number of 22 000 which is a very popular test case
in the field of LES of the flow around bluff bodies.44,45 Flow past a
square cylinder is a test case of great interest for many fields of applica-
tions, including prediction of wind loads on buildings46 or the VIV
phenomenon “vortex induced vibration (VIV),” which is one of the
main causes for structural fatigue and failure.

The instantaneous flow features are illustrated in Figs. 5 and 6 in
which pressure and velocity fields are displayed, respectively. As
expected for this flow configuration, it is seen that the shear layer sepa-
ration occurs at the leading edge corners and that the near wake is
made of small turbulent structures modulated by large-scale structures
associated with the alternated vortex shedding originating in the inter-
action between the two separated shear layers, according to Gerrard’s
theory. It is observed that the flow does not exhibit spurious wiggles
and that small scale structures are present in the flow, demonstrating
the accuracy and the robustness of the proposed method for LES.

A first quantitative validation is carried out by looking at global
integrated quantities (see Table IV), such as aerodynamics forces and
the topology of the time-averaged recirculation bubbles in the near
wake. A very good agreement with reference data is observed, showing
the accuracy of the present simulation.

A finer validation of the WMLES-LBM-IBM is done looking at
the separated shear layers on the top side of the cylinder (Figs. 7 and 8)
and in the near wake (see Fig. 9). It is observed that the separation
bubble on the top side of the cylinder is accurately predicted, since the
separated shear layer has a good thickness and that it is located at the

correct distance from the solid wall, showing that the wall model is
accurately implemented within the present LBM-IBM framework,
since viscous effects, wall pressure effects, and Kelvin–Helmholtz
instabilities are accurately predicted in the near wall region.

It is also seen in Fig. 9 that the mean velocity field is very accu-
rately predicted in the near wake, showing that separated shear layer
dynamics is very well captured on the top and bottom sides of the cyl-
inder and that the shear layer evolution downstream the trailing edge
corners is also well predicted.

B. Oscillating square cylinder case at Re¼22 000

We now consider a moving solid in a turbulent flow, simulated
by a Large Eddy Simulation Lattice-Boltzmann solver coupled to a
power wall law for the near wall turbulence. The square cylinders are
forced to oscillate in a prescribed sinusoidal motion at reduced velocity
Ur ¼ U=fD ¼ 7:7 ¼ 1=St0 (with U, f, and D the upstream velocity,

TABLE III. Results on the oscillating cylinder at Re¼ 185.

Study Cd

Guilmineau and Queutey (2002) 1.52
Chen et al. (2020) 1.55

Present 1.6

FIG. 5. Pressure field around the square cylinder at Re¼ 22 000.

FIG. 6. Velocity field around the square cylinder at Re¼ 22 000.
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the cylinder oscillation frequency, and the cylinder size, respectively),
which corresponds to the resonance point of the lock-in regime. Here,
St0 denotes the Strouhal number of the vortex shedding of the steady
cylinder case.47,48 In this regime, the cylinder wake is perfectly in phase

with the cylinder oscillation. In the case of a freely oscillating cylinder,
this regime is a stable one, the net energy transfer being from the cylin-
der to the fluid.49 Two amplitude ratios A/D¼ 0.05 and 0.1 based on a
cylinder height D are studied. At such small reduced amplitudes, the
main effect of the cylinder is to modify the dynamics of the separated
shear layers that develop on its top and bottom side, but there is no
direct large scale forcing of the amplitude of the vortex shedding.
Therefore, in such regimes, the capability of the present LBM-IBM
implementation of the wall model to recover both the generation of
vorticity but also the forcing of the separated shear layers by the solid
wall oscillations will be assessed.

The computational domain is 3D and composed of 3 763 752
nodes; the simulation is run on 352 processors. There are 5 grid sizes
(Fig. 2), and the ratio D=Dx is equal to 50.

Some global parameters related to aerodynamics forces are dis-
played in Table V. The decrease in the mean drag force when the oscil-
lating amplitude is increased has already been reported in Ref. 50.
They studied the turbulent flow around a circular cylinder at a
Reynolds number of 105 and observed that the inertial effects domi-
nate when the shedding frequency is locked to the body oscillation fre-
quency. This means that as the amplitude of the body oscillation
increases, the drag coefficient decreases because the highest pressures
are observed in the front and at the rear of the cylinder, almost cancel-
ing each other out which leads to a decreasing drag force. Table VI
shows the results obtained by Hirata et al.,50 keeping the oscillation

TABLE IV. Time-averaged global parameters for the flow around the steady square cylinder at Re¼ 22 000: mean drag coefficient Cd , dominant Strouhal number St, rms of the
drag coefficient Cd;RMS, and length of the time-averaged near wake recirculation region Lf ðDÞ.

Study Cd St Cd;RMS Lf ðDÞ

Lyn et al. (experiment, 1995) 2.11 0.13 � � � 1.37
Minguez et al. (experiment, 2011) 2.1 0.13 � � � � � �
Chen et al. (LES, 2020) 2.246 0.135 0.14 1.1
Cao and Tamura (LES, 2016) 2.11–2.30 0.126–0.138 0.086–0.273 1.03–1.25
Present 2.09 0.14 0.143 48 1.009

FIG. 7. Profiles of time and spanwise averaged streamwise velocity hui/U0 at
x/D¼�0.25. Comparison with experimental measurements (Lyn et al., 1995) and
LES (Cao et al., 2016).

FIG. 8. Profiles of time and spanwise averaged streamwise velocity hui/U0 at
x/D¼ 0. Comparison with experimental measurements (Lyn et al., 1995) and LES
(Cao et al., 2016).

FIG. 9. Profiles of time and spanwise averaged streamwise velocity hui/U0 at
x/D¼ 0.875. Comparison with experimental measurements (Lyn et al., 1995).
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frequency of the body constant with a value of St¼ 0.239, which corre-
sponds to the regime where the shedding frequency is locked to the
body oscillation frequency. They observe that as the amplitude of
oscillation increases the drag coefficient decreases.

The same phenomenon is observed here: the maximum drag
force is obtained for the fixed cylinder, and it decreases as the oscillat-
ing amplitude increases. We also notice that the order of magnitude of
the decrease in the drag force is similar to the results obtained by
Hirata et al.50

The fluctuating lift is observed to be a growing function of the
reduced amplitude, which is in agreement with experimental observa-
tions for this range of variations of A/D in the lock-in regime. The
computed values are coherent with experimental observations
reported in Refs. 47, 48, and 51 for oscillating square cylinders in the
turbulent regime as can be seen in Table VII for A/D¼ 0.1.

It is worth noting that experimental data exhibit a significant dis-
persion, but the present numerical results are within the experimental
uncertainty.

A deeper insight into the flow physics is obtained looking at the
time histories of the drag and lift coefficients (Figs. 10 and 11, respec-
tively). The turbulent character of the flow is observed to yield a non-
sinusoidal evolution of both drag and lift. The lift fluctuations are
observed to be mostly governed by large scales of the near-wake
region, i.e., the large-scale vortex shedding that occurs at the main
Strouhal number. Drag fluctuations are more sensitive to small scales
and details of the separated shear layers, and then exhibit a more com-
plex behavior but also a stronger sensitivity to the cylinder oscillations
in the present regime.

Bearman et al.47,48 showed that the phase angle between the cyl-
inder position and the lift is a growing function of A/D. The same

phenomenon can be observed in Fig. 11, showing that the present
model correctly reproduces the overall experimental behavior of the
oscillating square cylinder.

The overall satisfactory agreement of computed results in both
oscillating cylinder case shows that the present WMLES-LBM-IBM
can accurately capture the turbulent flow physics for moving bluff
bodies.

VI. CONCLUSIONS

An original WMLES-LBM-IBM has been proposed and assessed
on several test cases exhibiting both steady and moving solid bound-
aries. To the knowledge of the authors, this is the first time that such a
method is equipped with the Hybrid Recursive Regularized collision
model.

Validation results have demonstrated both the accuracy and the
robustness of the present method. More precisely, simple 2D laminar
test cases have shown the capability of the method to accurately

TABLE VI. Results on the oscillating circular cylinder taken from Ref. 50.

Cases from Hirata et al.50 Cd

A/D¼ 0.01 1.278
A/D¼ 0.05 1.095
A/D¼ 0.1 0.886

TABLE VII. Comparison of the fluctuating lift coefficient with experiments.

Cases Cl;RMS

Bearman and Obasaju, 198247 1.8
Obasaju et al., 198351 1.9

Present 2.073

FIG. 10. Time history of the drag coefficient and position of the cylinder for the
static and oscillating cases.

FIG. 11. Time history of the lift coefficient and position of the cylinder for the static
and oscillating cases.

TABLE V. Results on the oscillating square cylinder at Re¼ 22 000.

Case Ur Cd Cd;RMS Cl Cl;RMS

Fixed 0.0 2.09 0.143 48 0.02 0.65
A/D¼ 0.05 7.7 2.005 0.076 0.000 82 1.086
A/D¼ 0.1 7.7 1.905 0.104 0.008 2.073
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implement a solid wall boundary condition, even in the presence of geo-
metrical singularities such as sharp corners. Turbulent test cases have
demonstrated that the present method is robust and accurate, since it is
able to capture fine details of the generation of vorticity at the wall, but
also the interactions of the separated shear layer with the wall via viscous
and pressure effects, in both steady and oscillating cylinder cases.
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