Dissection of light-induced charge accumulation at a highly active iron porphyrin: insights in the photocatalytic CO$_2$ reduction
Résumé
Iron porphyrins are among the best molecular catalysts for the electrocatalytic CO$_2$ reduction reaction. Powering these catalysts with the help of photosensitizers comes along with a couple of unsolved challenges that need to be addressed with much vigor. We have designed an iron porphyrin catalyst decorated with urea functions (UrFe) acting as a multipoint hydrogen bonding scaffold towards the CO$_2$ substrate. We found a spectacular photocatalytic activity reaching unreported TONs and TOFs as high as 7270 and 3720 h$^{-1}$ , respectively. While the Fe$^0$ redox state has been widely accepted as the catalytically active species, we show here that the Fe(I) species is already involved in the CO$_2$ activation, which represents the rate-determining step in the photocatalytic cycle. The urea functions help to dock the CO$_2$ upon photocatalysis. DFT calculations bring support to our experimental findings that constitute a new paradigm in the catalytic reduction of CO$_2$
Domaines
Chimie
Fichier principal
Pugliese et al - 2022 - Dissection of Light-Induced Charge Accumulation -Accepted version-1.pdf (1.41 Mo)
Télécharger le fichier
Pugliese_anie202117530-sup-0001-misc_information.pdf (3.07 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|