Survey on Deep Learning-based Point Cloud Compression - Archive ouverte HAL
Article Dans Une Revue Frontiers in Signal Processing Année : 2022

Survey on Deep Learning-based Point Cloud Compression

Maurice Quach
Jiahao Pang
  • Fonction : Auteur
Dong Tian
  • Fonction : Auteur
Frédéric Dufaux

Résumé

Point clouds are becoming essential in key applications with advances in capture technologies leading to large volumes of data. Compression is thus essential for storage and transmission. In this work, the state of the art for geometry and attribute compression methods with a focus on deep learning based approaches is reviewed. The challenges faced when compressing geometry and attributes are considered, with an analysis of the current approaches to address them, their limitations and the relations between deep learning and traditional ones. Current open questions in point cloud compression, existing solutions and perspectives are identified and discussed. Finally, the link between existing point cloud compression research and research problems to relevant areas of adjacent fields, such as rendering in computer graphics, mesh compression and point cloud quality assessment, is highlighted.
Fichier principal
Vignette du fichier
2022_Frontiers_SP_Quach_et_al.pdf (1.92 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03579360 , version 1 (18-02-2022)

Identifiants

Citer

Maurice Quach, Jiahao Pang, Dong Tian, Giuseppe Valenzise, Frédéric Dufaux. Survey on Deep Learning-based Point Cloud Compression. Frontiers in Signal Processing, 2022, 2, ⟨10.3389/frsip.2022.846972⟩. ⟨hal-03579360⟩
828 Consultations
571 Téléchargements

Altmetric

Partager

More