Exploiting deterministic algorithms to perform global sensitivity analysis for continuous-time Markov chain compartmental models with application to epidemiology - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Exploiting deterministic algorithms to perform global sensitivity analysis for continuous-time Markov chain compartmental models with application to epidemiology

Résumé

In this paper, we develop an approach of global sensitivity analysis for compartmental models based on continuous-time Markov chains. We propose to measure the sensitivity of quantities of interest by representing the Markov chain as a deterministic function of the uncertain parameters and a random variable with known distribution modeling intrinsic randomness. This representation is exact and does not rely on meta-modeling. An application to a SARS-CoV-2 epidemic model is included to illustrate the practical impact of our approach.
Fichier principal
Vignette du fichier
Exploiting_deterministic_algorithms.pdf (620.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03565729 , version 1 (14-02-2022)
hal-03565729 , version 2 (12-12-2023)
hal-03565729 , version 3 (10-01-2024)
hal-03565729 , version 4 (26-01-2024)
hal-03565729 , version 5 (18-03-2024)
hal-03565729 , version 6 (22-07-2024)

Identifiants

Citer

Henri Mermoz Kouye, Gildas Mazo, Clémentine Prieur, Elisabeta Vergu. Exploiting deterministic algorithms to perform global sensitivity analysis for continuous-time Markov chain compartmental models with application to epidemiology. 2022. ⟨hal-03565729v1⟩
1199 Consultations
320 Téléchargements

Altmetric

Partager

More