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Abstract

In this paper, we develop an approach of global sensitivity analysis for com-
partmental models based on continuous-time Markov chains. We propose to mea-
sure the sensitivity of quantities of interest by representing the Markov chain as
a deterministic function of the uncertain parameters and a random variable with
known distribution modeling intrinsic randomness. This representation is exact
and does not rely on meta-modeling. An application to a SARS-CoV-2 epidemic
model is included to illustrate the practical impact of our approach.

Keywords: Compartmental models, continuous-time Markov chains, Gillespie
algorithm, stochastic models, deterministic, global sensitivity analysis.

1 Introduction

The increasing use of mathematical modeling leads to an enhanced complexity of com-
putational models. These models can be seen as mappings which take inputs and return
random or deterministic outputs. If the output is random, two evaluations of the model
at the same input generate different realizations: the model is said to be stochastic.
Otherwise, the model is deterministic.

Stochastic models are often used in epidemiology. Indeed, in order to study and
control the spread of infectious diseases in populations (humans, animals or plants),
stochastic compartmental models enable to describe epidemic dynamics by incorporat-
ing randomness associated with biological and contact events. They consist in dividing
the population into disjoint groups with respect to the different health statuses that are
considered. The groups form the compartments of the model. As health statuses of in-
dividuals change over time, there are transitions between compartments. These transi-
tions occur at random times and depend on numerous uncertain parameters (also called
the input hereafter). Even by fixing uncertain parameters, the number of individuals in
each compartment varies randomly over time. Therefore, the corresponding process is
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stochastic and under some modeling assumptions it is a continuous-time Markov chain
(CTMC).

Very often, transition parameters of CTMC are poorly known. In order to better
characterize and predict epidemic spread and assess corresponding control strategies,
it is important to identify key parameters of the infection spread accounting parame-
ter uncertainty. For this purpose, global sensitivity analysis (GSA) can be used. GSA
enables to assess influence of uncertain parameters on the model output. However, per-
forming GSA for stochastic model output is challenging. Unlike deterministic models,
stochastic models include two sources of uncertainty: parameter uncertainty and intrin-
sic randomness. Indeed, intrinsic randomness originates from latent random variables
that are generally assimilated to noise when performing sensitivity analysis. So far,
several approaches have been introduced.

The pragmatic approach for this purpose consists in performing GSA on both con-
ditional expectation and conditional variance of the model output with respect to uncer-
tain parameters. Both quantities are averaged quantities over the intrinsic randomness
of the stochastic model. In practice, this comes down to estimate Sobol’ indices (Sobol’
[1993]) for two deterministic models. This approach is often used in practice in vari-
ous applications, for instance in: Courcoul et al. [2011] to identify key parameters of a
model describing the spread of an animal disease in a cattle herd; Rimbaud et al. [2018]
for a model describing the spatio-temporal spread of plant pathogens; Richard et al.
[2021] for a SARS-CoV-2 spread model,
Cristancho Fajardo et al. [2021] for a theoretical metapopulation model. However, this
approach can suffer from inconsistent conclusions. Since GSA is performed separately
on conditional mean and conditional variance, a parameter can appear to be important
for a quantity and not for the other one. One can check this on the toy example given
by Y = X1 + X2Z with X1, X2, Z i.i.d. under standard normal distribution such
that X1, X2 are the inputs and Z stands for the intrinsic randomness variable. In this
example, the first-order indices of X1 and X2 of the conditional expectation are respec-
tively SX1 = 1 and SX2 = 0 whereas those of the conditional variance are SX1 = 0
and SX2 = 1. Moreover, in Mazo [2021] it is shown that the Monte-Carlo estimator
of first order Sobol’ indices for conditional mean with respect to input is biased. So,
estimation accuracy issues arise.

In addition, conditional expectations with respect to inputs require an averaging
over the intrinsic randomness variable since the law of the latter is unknown. This in-
duces a loss of information as this averaging affects inputs that interact with intrinsic
randomness. In order to avoid this loss, Hart et al. [2017] introduced new sensitivity
indices. For this purpose, Sobol’-Hoeffding decomposition is interpreted as a ran-
dom decomposition, where the randomness is due to the intrinsic noise; corresponding
Sobol’ indices can also be considered as random. The sensitivity indices proposed by
Hart et al. [2017] are then defined as expectations of the random Sobol’ indices. How-
ever, they do not fully reflect interactions between intrinsic randomness and uncertain
parameters.

Recently, new methods have been developed for stochastic models. They rely on a
paradigm shift in the way of dealing with intrinsic stochasticity. The stochastic model
is interpreted as a deterministic model with values in the set of probability distribu-
tions on the original output space. Fort et al. [2021] and da Veiga [2021] consider this
approach and define new sensitivity indices well-suited to deterministic models with
output valued in a set of probability distributions. This approach has the advantage
of setting a framework in which stochastic output models are deterministic but it does
not allow to assess the interactions between the intrinsic randomness and uncertain
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parameters.
Furthermore, it should be noted that even though stochastic models are less stud-

ied than deterministic ones, not all types of stochastic models have received the same
attention from the sensitivity analysis community. The most studied stochastic mod-
els are based on stochastic differential equation (see, e.g. Le Maître and Knio [2015],
Jimenez et al. [2017], Étoré et al. [2020]). For these types of models, methods based on
Polynomial Chaos Expansion meta-modeling have been proposed. Conversely, there
are few GSA methods for models based on jump processes (Poisson processes, Markov
chains, piecewise-deterministic jump processes). Generally, for these models, black-
box or meta-model based GSA are proposed (e.g. Marrel et al. [2012], Zhu and Sudret
[2021]).

In this paper, we focus on continuous-time Markov based models. We develop an
approach for performing GSA for such models. This approach consists first in rep-
resenting the model outputs as deterministic functions of a random vector of uncer-
tain parameters and intrinsic randomness with known probability distribution and then
in exploiting the resulting representation for GSA. This enables to put model output
under a deterministic form so that contribution of uncertain parameters and intrinsic
randomness as well as interaction of both can be assessed. Concretely, we study the
continuous-time Markov chain given by the stochastic process that counts over time
the number of individuals in each compartment of epidemic compartmental models.
We rely on Gillespie Stochastic Simulation Algorithm (Gillespie [1976]) allowing ex-
act simulation of Markov chains from which we derive a new representation. Fur-
thermore, we include a second representation, the random time change introduced by
Kurtz (Ethier and Kurtz [1986]) and studied in Navarro Jimenez et al. [2016] so as to
achieve comparison of GSA results between the two representations. We apply the two
approaches to a SARS-CoV-2 spread model.

The paper is organized as follows. In Section 2 we set the framework of stochastic
models and associated representations. The definition of Sobol’ indices is reminded
and dependence of GSA results on the choice of the representation is discussed. Sec-
tion 3 is dedicated to the description of representations of continuous-time Markov
chains. For this purpose, we describe compartmental models and we discuss two dif-
ferent representations: Gillespie and Kurtz. In Section 4, we present the application of
our approach to a SARS-CoV-2 spread model. This section includes a description of
the model, the GSA results and comparison elements between the results obtained with
the two different representations of the model introduced in Section 3.

2 The general approach

This section is devoted to introducing (Subsection 2.2) the concept of stochastic model
representation under a deterministic form. Under such a form, GSA methods for deter-
ministic models can be applied to perform sensitivity analysis. For this, the definition
of the so-called Sobol’ indices is briefly reminded in Subsection 2.1 in the context of
deterministic models with scalar or functional outputs. In Subsection 2.3, we discuss
the question of the dependence of GSA results to the choice of the representation of
the stochastic model.
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2.1 Global sensitivity analysis for deterministic functions

Let us consider a deterministic model g with input X = (X1, · · · , Xm) and out-
put Y = g (X) so that E

[

‖g (X) ‖2
]

< +∞ and X1, · · · , Xm are mutually in-
dependent. For such a model, the definition of first-order and total Sobol’ indices
(Homma and Saltelli [1996]) is reminded according to two frameworks: a scalar out-
put Y = g (X) ∈ R and a functional output g (X) =
(q(t,X); t ∈ {t0, · · · , T }) for which dynamical and aggregated Sobol’ indices are in-
troduced.

In scalar case, first-order and total Sobol’ indices (Sobol’ [1993]) associated to each
input Xj , j = 1, · · · ,m are defined as:

SXj
=

Var (E [g (X) | Xj ])

Var (g (X))
,

ST
Xj

= 1−
Var (E [g (X) | X1, · · · , Xj−1, Xj+1, · · · , Xm])

Var (g (X))
.

In the functional case, we focus on two types of indices: dynamical Sobol’ indices
and aggregated Sobol’ indices. Considering each random variable q(t,X), sensitivity
indices such as first-order Sobol’ indices and total Sobol’ indices can be obtained as
in scalar case for each time t as E

[

q(t,X)2
]

is finite. Regarding aggregated Sobol’
indices, note that output g(X) is multidimensional so that according to Lamboni et al.
[2011] and Gamboa et al. [2014], first-order and total Sobol’ indices associated to each
input Xj , j = 1, · · · ,m are respectively given by:

GSIXj
=

Trace [Var (E [g (X) | Xj ])]

Trace [Var (g (X))]
,

GSITXj
= 1−

Trace [Var (E [g (X) | X1, · · · , Xj−1, Xj+1, · · · , Xm])]

Trace [Var (g (X))]
,

where Var (E [g (X) | Xj ]) and Var (g (X)) are the variance-covariance matrices of the
random vectors E [g (X) | Xj ] and g(X), respectively.

2.2 Deterministic representations of stochastic models

In the following, a stochastic model g is defined as a random function taking θ ∈ Θ ⊂
R

p as input and producing an output g(θ) which is a random variable with values in a
set Y . If f : Θ×Z −→ Y is a deterministic function and Z is a random element valued
in a set Z such that (X, g (X)) and (X, f (X, Z)) are identically distributed, then the
couple (f, Z) is said to be a deterministic representation of the stochastic model g. An
example of stochastic model with two representations is provided in Example 1.

Example 1 (Toy example). Let U ∼ U ([0, 1]) independent of (X, Z, Z1, Z2) ∼
N (0R4 , Id4). Consider the stochastic model g with input X and output g(X) =
X + Z . This model can be represented by using f(X, Z1, Z2) = X + 1√

2
(Z1 + Z2)

or f ′(X, U) = X + Φ−1(U), where Φ is the cumulative distribution function of the

standard normal distribution.

The function f is not necessarily explicit. It can correspond to an algorithm. Propo-
sition 1 (see Appendix B for the proof) provides a sufficient condition for a couple
(f, Z) to be a representation of a stochastic model g.
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Proposition 1. Assume that X and Z are independent and that for all θ ∈ Θ, the prob-

ability distributions of g(θ) and f(θ, Z) are identical. Then (f, Z) is a deterministic

representation of the stochastic model g.

Representing stochastic models under deterministic form is useful in GSA. If both
the probability distribution of Z and the function f are known, then the stochastic
model becomes a deterministic model with inputs (X, Z). Hence, all the standard
methods of GSA such as those presented in Subsection 2.1 can be applied. Therefore,
contribution of Z and its interaction with uncertain parameters can be assessed.

However, as already discussed (see Example 1), a stochastic model may admit sev-
eral representations. Indeed, the way to simulate a random variable is not unique, lead-
ing to different stochastic simulators. Considering two distinct representations (f, Z)
and (f ′, Z ′) of the same stochastic model necessarily yields that the joint probability
distributions of (X, f(X, Z)) and (X, f ′(X, Z ′)) are identical. However, the intrinsic
randomness elements Z and Z ′ and functions f and f ′ may differ from one representa-
tion to the other. A natural question is then whether GSA results depend on the chosen
representation. The answer is yes; this point is discussed in Subsection 2.3.

2.3 Dependence of global sensitivity analysis on model representa-

tion

In Subsection 2.2, it appears that representation always preserves the probability distri-
bution of (X, g(X)). Our aim in this section is to prove that the results of GSA depends
on the choice of representation.

Let us consider (f, Z) and (f ′, Z ′) two distinct representations of the stochastic
model g with input X = (X1, · · · , Xm) and output g(X). By definition, (X, g(X)) ∼
(X, f(X, Z)) ∼ (X, f ′(X, Z ′)). If u is a subset of {1, · · · ,m}, then:
E [f(X, Z) | Xu] = E [f ′(X, Z ′) | Xu] almost surely with Xu = {Xj, j ∈ u} (see
Mazo [2021]). So, it yields:

Var (E [f(X, Z) | Xu])

Var (f(X, Z))
=

Var (E [f ′(X, Z ′) | Xu])

Var (f ′(X, Z ′))
.

It implies that closed Sobol’ indices associated to Xu, u ⊆ {1, · · · ,m} are representation-
free, i.e. they do not depend on the chosen representation. A straightforward con-
sequence is the invariance of first-order Sobol’ indices associated to each Xj, j =
1, · · · ,m, and of the total Sobol’ index associated to Z with respect to the choice of
the representation.

However, E [f(X, Z) | (Xu, Z)] and E [f ′(X, Z ′) | (Xu, Z
′)] may have different

probability distributions. Indeed, since (f, Z) 6= (f ′, Z ′), the way each function f or
f ′ combines its relative intrinsic randomness variable with input X to generate outputs
is different. So, differences can appear on some quantities such as conditional expecta-
tions with respect to a group of random variables that includes the intrinsic randomness
variable. This is illustrated in Example 2.

Example 2. Let X be a random variable independent of Z and Z ′ where Z and Z ′ are

i.i.d. under N (0, 1). Define two functions: f(X,Z) = XZ and f ′(X,Z ′) = X2Z ′.
If X is distributed such that P (X = −1) = P (X = 1) = 1

2 then (X, f(X,Z)) ∼
(X, f ′(X,Z ′)). So (f, Z) and (f ′, Z ′) represent the same stochastic model but:

E [f(X,Z) | Z] = 0 E [f ′(X,Z ′) | Z ′] = Z ′.
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First-order Sobol’ indices of intrinsic randomness in the two representations are given

by:

SZ(f) =
Var (E [f(X,Z) | Z])

Var (f(X,Z))
= 0 while SZ(f

′) =
Var (E [f ′(X,Z ′) | Z ′])

Var (f ′(X,Z))
= 1.

And total Sobol’ indices of X in the two representations are different: ST
X(f) = 1 −

SZ(f) = 1 and ST
X(f ′) = 1 − SZ(f

′) = 0. Consequently, first-order Sobol’ index

associated to intrinsic randomness depends on the choice of the representation.

Via a counter-example (see Example 2) and theoretical elements, we showed that
GSA results depend on the choice of the representation. This point is illustrated in
Section 4 in the context of GSA of continuous-time Markov chain based models, which
are the models of interest in this paper.

3 Deterministic representations of CTMC stochastic com-

partmental models

In this section, we discuss two different representations for CTMC stochastic com-
partmental models. The section is organized as follows. In Subsection 3.1, we pro-
vide a description of the CTMC under study by using graph formalism to represent
compartmental models. In Subsection 3.2, we present the representation detailed in
Navarro Jimenez et al. [2016] and then we introduce a new representation based on
Gillespie Stochastic Simulation Algorithm (SSA).

3.1 CTMC stochastic compartmental models

Consider a closed population that includes N individuals (i.e. N remains constant over
time). Assume that an epidemic outbreaks within this population. Individuals can be
susceptible or at various stages of infections. So, at each time, each individual is in a
certain health status. Then, individuals are grouped according to their health status. The
resulting groups form a partition (compartment). Let V be the set of compartments.
As health status of each individual can change over time, transitions can take place
between compartments. A transition always involves two different compartments, say
α, β ∈ V such that α 6= β. A pair of compartments (α, β) between which transitions
are possible defines a type of transition occurring in the direction α → β. So, the pair
(α, β) forms an arrow. An individual can move from a compartment α to another β
only if there is an arrow from α to β. To each arrow is associated a vector uα,β ∈
{−1, 0,+1}cardV whose components are zero except at the components corresponding
to α and β which are equal to −1 and +1 respectively. Denote E the set of arrows and
nE its cardinal. The couple G = (V,E) is a directed graph with vertices V and edges
E.

The intensities of transitions between compartments depend on the specific pa-
rameters θ of the epidemic. As θ is generally unknown, let Θ ⊂ R

d be the set of
all possible parameters θ. We are interested in the dynamics of the number of in-
dividuals in each compartment over time, which are stochastic since transitions oc-
cur at random times. Let W θ

α(t) denote the number of individuals in compartment
α at time t and suppose that the initial state ξ0 ∈ {0, · · · , N}card V of the process
W θ :=

{ (

W θ
α (t)

)

α∈V
; t ≥ 0

}

is known. Assume that for each θ ∈ Θ, the stochastic

process W θ is a homogeneous continuous-time Markov chain with state space E de-
fined as the the smallest subset of {0, · · · , N}cardV that contains all the vectors of the
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form ξ0 +
∑n

i=1 uα(i),β(i) where n ∈ N and
(

α(i), β(i)
)

∈ E for all i = 1, · · · , n. The
generatorQθ of W θ is characterized by nonnegative rate functions gα,β defined by:
gα,β(θ, ξ) = limε→0

1
ε
P
(

W θ(s+ ε) = ξ + uα,β |W θ(s) = ξ
)

for ξ ∈ E and s ≥ 0
so that the element of the generator at the row correspoding to ξ ∈ E and column
corresponding to ξ′ ∈ E is given by:

Qθ(ξ, ξ
′) =











gα,β(θ, ξ) if ξ′ = ξ + uα,β

−
∑

(α′,β′)∈E
gα′,β′(θ, ξ) if ξ′ = ξ

0 otherwise.

Every transition ξ → ξ + uα,β of type (α, β) ∈ E occurs at rate gα,β(θ, ξ).

Example 3. Let us consider the classical SIR model:

S I R

β
N
WIWS γIWI

There are three compartments V = {S, I, R} and two types of transitions: infec-

tion (S, I) and removal (I, R) so that E = {(S, I), (I, R)}. Infection is characterized

by transition vector uS,I = (−1,+1, 0) and rate function gS,I = β
N
WIWS . Removal

has transition vector uI,R = (0,−1,+1) and rate function gI,R = γIWI .

Commonly, Gillespie direct method is used to simulate continuous-time Markov
chains. Algorithm 1 provides instructions intended to simulating paths of the process
W θ for a given θ ∈ Θ.

Algorithm 1: Gillespie SSA (direct method)

Data: ξ0, {gα(j),β(j) , j = 1, · · · , nE},{uα(j),β(j) , j = 1, · · · , nE}, T
inputs : θ
output: W = {W (t); t ∈ [0, T ]}
initialization;
t← 0, W (t)← ξ0;
while t < T do

λ←
∑nE

j=1 gα(j),β(j) (θ,W (t));
Draw τ with exponential distribution with mean 1/λ;
for j = 1 to nE do

pj ← gα(j),β(j) (W (t), θ) /λ;
end

Draw U with standard uniform distribution;
Pick l ∈ {1, · · · , nE} with distribution (p1, · · · , pnE

) using U ;
W (t+ τ)←W (t) + uα(l),β(l) ;
t← t+ τ ;

end

3.2 Deterministic representations

Assume that the random vector X models the parameter uncertainty. Then, con-
sider the stochastic model (X,WX). For simplicity, let denote WX by W. We
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seek deterministic representations (f, Z) of (X,W), i.e. such that the probability
distribution of Z is known. For this aim, thanks to Proposition 1, it is sufficient
to find Z independent of X and f such that: for all θ ∈ Θ, W θ ∼ f(·, θ, Z) =
{f(t, θ, Z); t ∈ [0, T ]}. In the following, we discuss two representations of (X,W).
We present the random-time change representation studied in Le Maître et al. [2015]
and Navarro Jimenez et al. [2016] and introduce the new representation based on Gille-
spie algorithm.

3.2.1 Random time change representation

The random time change representation is based on the random time change decom-
position of the process W θ for each θ ∈ Θ. This decomposition has been introduced
by Ethier and Kurtz [1986]. Consider the vector ZK = (Zα,β)(α,β)∈E

of independent
unit-rate Poisson processes Zα,β(·). Kurtz [1982] showed that there exists a function
fK satisfying

fK(t, θ, ZK) = ξ0 +
∑

(α,β)∈E

Zα,β

(∫ t

0

gα,β
(

θ, fK(s, θ, zK)
)

ds

)

uα,β ,

which defines a continuous-time Markov chain with initial state ξ0 and generator Qθ .
So, fK(·, θ, ZK) ∼ W θ for all θ ∈ Θ. In addition, ZK does not depend on Θ. By
construction, X and ZK are independent. Hence (fK , ZK) defines a representation of
(X,W).

For each (α, β) ∈ E, Zα,β stands for the intrinsic noise of the reaction or type
of transition (α, β). So, ZK includes intrinsic noise of each reaction channel or type
of transition. Since the Poisson processes Zα,β , (α, β) ∈ E that compose ZK are
mutually independent, then this representation enables to assess contribution of intrin-
sic noise of each reaction channel or type of transition as well as that of the whole
intrinsic randomness ZK . Le Maître et al. [2015] and Navarro Jimenez et al. [2016]
used this representation to perform GSA for chemical reaction network models in
order to estimate contribution of uncertain parameters and reaction channel intrinsic
noises. In practice, simulation of this representation relies on the Modified Next Re-
action Method (MNRM) developed by Anderson [2007] and provided in Algorithm 2
(Navarro Jimenez et al. [2016]).
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Algorithm 2: Modified Next Reaction Method

Data: ξ0,{gα(j),β(j) , j = 1, · · · , nE},{uα(j),β(j) , j = 1, · · · , nE}, T
inputs : θ, Z = (RG1, · · · , RGnE

)
output: W = {W (t), t ∈ [0, T ]}
initialization;
for j = 1 to nE do

Draw rj from RGj ;
tj ← 0, t+j ← − log(rj);

end

t← 0, W (t)← ξ0;
while t < T do

for j = 1 to nE do

Evaluate aj = gα(j),β(j) (θ,W (t)) and dtj =
t
+
j
−tj

aj

end

Set s = argminjdtj ;
W (t+ dts)←W (t) + uα(s),β(s) ;
t← t+ dts;
for j = 1 to nE do

tj ← tj + aj · dts
end

Get rs from RGs and set t+s ← t+s − log(rs)
end

3.2.2 Gillespie representation

Gillespie SSA is widely used to simulate Markov chains. Especially, in epidemiology,
many CTMC model simulators are based on this algorithm. Both Gillespie SSA and the
Modified Next Reaction Method generate statistically exact paths of CTMC including
W θ: they are stochastically equivalent. However, representations of (X,W) derived
from these two algorithms can lead to different sensitivity analysis results correspond-
ing to different information as the interpretation of intrinsic as noise is not the same for
both representations. In the following, we introduce a representation of (X,W) based
on Gillespie SSA.

Gillespie SSA simulates two processes: the jump process that provides the jump
times of W θ and the embedded chain that describes successive states of W θ . Given
two independent sequences of i.i.d. standard uniform variables U1 = (U1

1 , U
1
2 , · · · )

and U2 = (U2
1 , U

2
2 , · · · ), assume that the jump process is simulated from U1 and the

embedded chain from U2. In practice, U1 and U2 are respectively assimilated to two
numbers RG1 and RG2 which are used as a seed for the random number generator
so that setting seed to a value enables to stream random numbers. The resulting algo-
rithm that is detailed in Algorithm 3 is a modification of the Gillespie SSA provided in
Algorithm 1:
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Algorithm 3:

Data: ξ0, {gα(j),β(j) , j = 1, · · · , nE},{uα(j),β(j) , j = 1, · · · , nE}, T
inputs : θ, Z = (RG1, RG2)
output: W = {W (t); t ∈ [0, T ]}
initialization;
t← 0, W (t)← ξ0, i← 1;
while t < T do

for k = 1 to 2 do

Pick Uk
i from RGk;

end

λ←
∑nE

j=1 gα(j),β(j) (θ,W (t));
t∗ ← − log(U1

i )/λ;
for j = 1 to nE do

pj ← gα(j),β(j) (W (t), θ) /λ;
end

Pick l such that
∑l−1

j=1 pj ≤ U2
i <

∑l
j=1 pj ;

W (t+ t∗)←W (t) + uα(l),β(l) ;
t← t+ t∗;
i← i+ 1;

end

Let ZG be the vector
(

U1,U2
)

. If fG
(

t, θ, ZG
)

denotes the output of Algorithm
3 at time t for input (θ, ZG), then the following result holds:

Proposition 2. Denote L ([0, 1]) the space of sequences on [0, 1]. The function:

fG : R+ ×Θ×L ([0, 1])
2 −→ E

(t, θ, zG) 7−→ fG(t, θ, z
G)

is such that the continuous-time Markov chainsW θ and fG(·, θ, ZG) :=
{

fG
(

t, θ, ZG
)

; t ≥

0
}

have the same finite-dimensional distributions.

The proof of Proposition 2 is detailed in Appendix B. Note that ZG does not depend
on θ so that ZG and X are independent. Therefore, Propositions 1 and 2 ensure that
(fG, Z

G) is a representation of (X,W). The random vector ZG =
(

U1,U2
)

stands
for the intrinsic randomness variable. ZG includes two intrinsic noises U1 and U2

that correspond to intrinsic noises of the jump time process and the embedded discrete
chain.

Algorithm 3 aggregates all the types of transition processes to generate the se-
quence of jump times and the discrete chain. So, intrinsic noise associated to each type
of transition (α, β) ∈ E cannot be identified with this algorithm. Therefore, it is not
possible to assess contribution of intrinsic noises of type of transition processes. To
overcome this insufficiency, we can rely on the first reaction method studied by Gille-
spie (1976) to build a representation allowing to separate the intrinsic noises associated
to each type of transition processes.

For this purpose, let ZG be the random vector (Uα,β , (α, β) ∈ E)where eachUα,β

is a sequence of i.i.d. standard uniform variables and assume that each component of
ZG is identified to a number RGj with j = 1, · · · , nE . A modification of Gillespie
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first reaction method algorithm in a similar way as Gillespie direct method yields Al-
gorithm 4:

Algorithm 4:

Data: ξ0, {gα(j),β(j) , j = 1, · · · , nE},{uα(j),β(j) , j = 1, · · · , nE}, T
inputs : θ, Z = (RG1, · · · , RGnE

)
output: W = {W (t); t ∈ [0, T ]}
initialization;
t← 0, W (t)← ξ0, i← 1;
while t < T do

for j = 1 to nE do

Pick U i
α(j),β(j) from RGj ;

Evaluate dtj =
− log

(

Ui

α(j),β(j)

)

g
α(j) ,β(j) (θ,W (t))

end

Set l = argminjdtj ;
W (t+ dtl)←W (t) + uα(l),β(l) ;
t← t+ dtl;
i← i+ 1

end

If fG
(

t, θ, ZG
)

denotes the output of Algorithm 4 at time t and input (θ, ZG), it
yields:

Proposition 3. Denote L ([0, 1]) the space of sequences on [0, 1]. The function:

fG : R+ ×Θ×L ([0, 1])
nE −→ E

(t, θ, zG) 7−→ fG(t, θ, z
G)

is such that the continuous-time Markov chainsW θ and fG(·, θ, ZG) :=
{

fG
(

t, θ, ZG
)

; t ≥

0
}

have the same finite-dimensional distributions.

Proposition 3 provides a new representation of (X,W) since X and ZG are inde-
pendent. This representation allows to separate intrinsic randomness into independent
intrinsic noises of type of transition processes. The proof of Proposition 3 is detailed
in Appendix B.

The intrinsic randomness captures all the variability of the model which does not
depend on epidemic parameters. From an epidemiological point of view, it encom-
passes the random behavior of individuals and their social interactions, as well as the
biological variability between individuals with respect to infection.

4 Application to an epidemic model

In this section, we implement our method on a parsimonious SARS-CoV-2 spread
model inspired by the literature (Cazelles et al. [2021]). We perform variance-based
GSA using the two representations: the one analyzed in Navarro Jimenez et al. [2016]
and based on the random time change (described in Section 3.2.1) and the new one we
introduced in Section 3.2.2 based on the modification of Gillespie algorithm provided
in Proposition 3. The model considered in this section, although not necessarily the
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most refined from the point of view of application, remains very relevant. Moreover, it
should be noted that our approach is generic and can therefore be applied to any other
compartmental model.

4.1 Description of the model of SARS-CoV-2 spread

The compartmental model in Figure 1 is used to describe the spread of SARS-CoV-
2 within a closed population with size N . This model includes seven compartments
corresponding to seven health states and nine transitions between these states. Indeed,
in this model, an individual can be susceptible (S), exposed (E) (i.e. infected but not
yet infectious), asymptomatic infectious (A), symptomatic infectious (I), hospitalized
(H), recovered (R) or dead (D). Two modeling assumptions can be mentioned. First,
infection is neglected within hospitals so that hospitalized individuals cannot infect.
Secondly, it is assumed that recovered individuals get perfectly immunized, so they
cannot be susceptible after recovering. This assumption is valid on short time intervals.

S E

I

A

H

R

D

β
N
(WI +WA)WS

γE(1− p(E,A))WE

γI(1− p(I,H) − p(I,D))WI

γE · p(E,A)WE

γAWA

γIp(I,H)WI

γIp(I,D)WI

γH(1− p(H,D))WH

γHp(H,D)WH

Figure 1: Compartmental model of the spread of SARS-CoV-2 within a population,
comprising seven health states (S,E,A,I,H,R,D) and corresponding transition rates. Wα

with α ∈ {S,E,A, I,H,R,D} denotes the number of individuals in compartment α.
.

We are interested in the process
{

(WS(t),WE(t),WA(t),WI(t),WH(t),WR(t),

WD(t)) ; t ∈ [0, T ]
}

that takes values in E ⊂ {0, · · · , N}7 and counts over time the
number of individuals in each compartment, where N is the size of the population and
T ∈ (0,+∞] is the final time of the study. The set of compartments is given by V =
{S,E,A, I,H,R,D}. The different types of transitions and their characteristics (rate
function gα,α′ and transition vector uα,α′ , where (α, α′) denotes a type of transition of
the model) are described in Table 1.
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Type of transition (α, α′) Type Rate function (gα,α′) Transition vector (uα,α′)

(S,E) infection β
N
·WS · (WA +WI) (−1, 1, 0, 0, 0, 0, 0)

(E,A)
asymptomatic

infection activation
γE · p(E,A) ·WE (0,−1,+1, 0, 0, 0, 0)

(E, I)
symptomatic

infection activation
γE · (1− p(E,A)) ·WE (0,−1, 0,+1, 0, 0, 0)

(A,R)
recovery of an
asymptomatic

γA ·WA (0, 0,−1, 0, 0,+1, 0)

(I, R)
recovery of a
symptomatic

γI · (1− p(I,H) − p(I,D)) ·WI (0, 0, 0,−1, 0,+1, 0)

(I,H)
hospitalization

of a symptomatic
γI · p(I,H) ·WI (0, 0, 0,−1,+1, 0, 0)

(I,D)
death of a

symptomatic
γI · p(I,D) ·WI (0, 0, 0,−1, 0, 0,+1)

(H,R)
recovery of a
hospitalized

γH · (1− p(H,D)) ·WH (0, 0, 0, 0,−1,+1, 0)

(H,D)
death of a

hospitalized
γH · p(H,D) ·WH (0, 0, 0, 0,−1, 0,+1)

Table 1: Description of the model transitions between states {S,E,A, I,H,R,D}.

Rate functions depend on the vector parameter θ =
(

β, γE , γA, γI , γH , p(E,A), p(I,H), p(I,D), p(H,D)

)

.
The interpretation of each of these parameters and their ranges of variation in the sen-
sitivity analysis are provided in Table 2.

Parameter Name Parameter Role Nominal value Range of variation
β transmission rate 2 (0.35, 4)

1/γE mean sojourn duration in E 4.6 days (2, 7)
1/γA mean sojourn duration in A 2.1 days (1, 3)
1/γI mean sojourn duration in I 4 days (3, 5)
1/γH mean sojourn duration in H 10 days (7, 12)

p(E,A)
probability for an exposed to

become asymptomatic
0.6 (0.3, 0.7)

p(I,H)
probability for a

symptomatic to be hospitalized
0.15 (10−3, 0.2)

p(I,D)
probability for a

symptomatic to die
0.05 (10−3, 0.1)

p(H,D)
probability for a hospitalized

to die
0.08 (0.001, 0.1)

Table 2: Model parameter nominal values and their range of variation in the sensitivity
analysis (values are plausible with current knowledge e.g. Knock et al. [2021]).

The process under study is: W θ = {(Wα(t))α∈V
; t ∈ [0, T ]}. Let Θ be the set of

all possible values of θ. For all θ ∈ Θ, W θ is assumed to be a continuous-time Markov
chain.

Let denote pI the vector (p(I,H), p(I,D)). For GSA purposes, we focus on the group
of inputs pI instead of p(I,H) and p(I,D) separately for two reasons. The first reason is
related to the assumption of mutual independence of inputs that is necessary for Sobol’-
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Hoeffding decomposition. Since p(I,H) and p(I,D) are correlated, they are grouped as
one input in order to ensure input independence. The second reason is that we are inter-
ested in the global influence of the probability distribution (p(I,H), p(I,D), 1−p(I,H)−
p(I,D)) that is represented by pI . Therefore, in the context of sensitivity analysis, there
are eight parameter inputs considered: β, γE , γA, γI , γH , p(E,A), pI , p(H,D). Let us
model the uncertainty by introducing the random vectorX =

(

β, γE, γA, γI, γH,p(E,A),pI,p(H,D)

)

such that components are mutually independent with uniform distributions on intervals
specified in Table 2. Specifically, the vector input pI is drawn from a multidimensional
uniform on [10−3, 0.2]× [10−3, 0.1].

We study two types of outputs that are our quantities of interest (QoIs): a scalar
QoI and a functional one. The scalar QoI considered is the extinction time Yext of
the epidemic. Yext is defined as the first time when there are no more individuals E
able to get infected or individuals A or I able to maintain infection by infecting new
susceptible individuals:

Yext = inf{t ≥ 0 : WE(t) +WA(t) +WI(t) = 0}.

Note that for all θ ∈ Θ, Yext is well-defined, i.e. Yext < +∞. Indeed, by considering
the compartmental model described in Figure 1, after a finite number of transitions,
the stochastic process will necessarily reach an absorbing state where there is no indi-
vidual in compartments E,A and I . A boxplot of n = 2000 simulations of Yext with
parameter inputs set to nominal values given in Table 2 is showed in Figure S1.

The functional QoI is given by the dynamic of the number of symptomatic infec-
tious individuals:

YI = {WI(t), t ∈ [0, T ]}.

The quantities Yext and YI are functions of the random field W = {WX(t), t ∈
[0, T ]}, so they inherit its representations.

By relying on Subsection 3.2, we obtained two representations of W: the Gillespie
representation (X,W) ∼

(

X, fG
(

X, ZG
))

whereZG =
(

U1, · · · ,U9
)

is a vector of
nine independent sequences (one for each type of transition) of i.i.d. standard uniform
variables and the Random time change representation (X,W) ∼

(

X, fK
(

X, ZK
))

where ZK =
(

Z1, · · · , Z9
)

is a vector of nine independent unit-rate Poisson pro-
cesses. For sensitivity analysis, intrinsic randomness variables ZG and ZK are treated
as one input each. We are interested in the global influence of (X, Z) where Z denotes
ZG or ZK depending on the representation.

4.2 Numerical setting for sensitivity analysis

We consider a population of N = 2005 individuals including five exposed individuals
at the start of the epidemics t = 0, so that for all θ ∈ Θ the CTMC W θ has the initial
state:

ξ0 = (WS(0) = 2000,WE(0) = 5,WA(0) = 0,WI(0) = 0 ,

WH(0) = 0,WR(0) = 0,WD(0) = 0) .

For the quantity of interest Yext, the final time T of the study is set to T = +∞.
In practice, this means that trajectories of W θ are simulated until they reach absorbing
states, i.e. extinction. Concerning YI , T is set to T = 60 days. This choice is motivated
by the outputs of YI obtained with the nominal values of parameters and displayed in
Figure S2. This figure shows that trajectories do not much vary after 60 days and about
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two-thirds of them reach extinction right after T = 60 days which is the 32th percentile
of extinction times (see boxplot of Figure S1). Therefore, YI is studied on the interval
[0, 60] that is discretized into 1000 equidistant time points for GSA purposes.

Regarding sensitivity index estimation, we drawn n = 2000 samples of each input
with respect to uniform distributions over ranges specified in Table 2. The parameter
space exploration is performed by using Latin Hypercube Sampling as the dimension
of Θ is quite large. We simulate W θ through Algorithm 2 for random time change
representation and Algorithm 4 for Gillespie representation. In both cases, the intrinsic
randomness variable is a vector of nine components. Nine integers are drawn inde-
pendently and uniformly in {1, · · · , 109} to serve as seeds for the random number
generator with the aim to stream random numbers.

In practice, simulations are carried out with R. We use the R package DiceDesign

(Dupuy et al. [2015]) for Latin Hypercube Sampling. Sensitivity indices are estimated
by using functions soboljansen and sobol2007 of the R package sensitivity (Iooss et al.
[2021]). The function soboljansen is used for total Sobol’ index estimation while
sobol2007 is used for first-order Sobol’ index estimation.

4.3 Sensitivity index estimation

GSA is performed for the two outputs. For Yext, first-order and total Sobol’ indices of
the nine inputs are estimated. For each representation, 50 replications of these indices
are provided. Regarding YI , dynamical and aggregated Sobol’ indices are estimated.

4.3.1 Sensitivity analysis results for Yext
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Figure 2: Boxplots of 50 replications of first-order Sobol’ indices (a) and total Sobol’
indices (b) for Yext with respect to Gillespie representation (red) and Random time
change representation (RTC) (blue). Each index estimation is obtained with n = 2000
samples of inputs.
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Figure 2 suggests that, considering first-order indices, only two parameters influence
the variability of Yext: β and γE . Also, there is no significant difference in the input
sensitivity indices between the two model representations. Regarding total indices, re-
sults point out strong interactions between inputs. Thus, one can notice that almost all
the inputs have non-zero total effects except p(H,D) in the case of the Gillespie repre-
sentation. Two main points can be emphasized: first, the total Sobol’ index estimations
of Z for the two representations are very close. Indeed, the total Sobol’ index of Z
is theoretically the same for the two representations (see Section 2.3). That is why
estimations are equal up to sampling errors. Secondly, there are significant differences
between the estimations for Gillespie and Random time change representations, and
the three most influential inputs (more than 25% of variance each) are: β, γE and Z .
The intrinsic randomness interacts strongly with uncertain parameters. This explains
the difference that appears between main and total effects.

The ranking of inputs with respect to total Sobol’ indices for Gillespie representa-
tion yields β, Z, γE , γA, γI , p(E,A), pI , γH , p(H,D) while that of Random time change
representation is β, γE , Z, γA, p(E,A), γI , pI , γH , p(H,D). From one representation to
another, rankings of inputs γE , Z, γI , p(E,A) have switched. So, in practice, GSA con-
clusions relative to ranking depend on representation.

In order to confirm statistically the difference between indices, we carry out asymp-
totic statistical tests of comparison of means of two samples. For each input, the test
consists in comparing the total Sobol’ indices renormalized by the total variance (i.e.
numerator of total Sobol’ index formula defined in Subsection 2.1) obtained for the
two representations. The samples derive from the total Sobol’ index samples used for
the boxplots in Figure 2.

The null hypothesis (H0) is rejected for inputs γE , γA, γI , γH , pEA, pI and pHD

with p-values less than 2.2 × 10−16 but not for inputs β and Z as their corresponding
p-values 0.75 and 0.85 are greater than 5%. There is no surprise that the test for β is
inconclusive since boxplots overlap (see Figure 2b).

Results provided in Subsection 4.3 reveal that differences can occur between GSA
responses for the two representations. In particular, for total Sobol’ indices of uncer-
tain parameters, intrinsic randomness distributions are explicitly involved in formulas
and consequently estimations for the two representations do not seem to be distributed
around the same theoretical value. Even though these differences may legitimately ex-
ist, they can have significant repercussions in practice. For this model, we could indeed
choose to adopt Gillespie representation as interactions with intrinsic noise are much
less important for this representation. However, the most important message to keep
in mind is that the intrinsic randomness varies from one representation to another, thus
different representations yield different information. And in practice, this can impact
GSA conclusions and even resulting decisions.

4.3.2 Sensitivity analysis results for YI

Dynamical Sobol’ indices

As showed in Figure 3, both dynamical first-order and total Sobol’ index estimation in-
dicate that the most important input over time is β, followed by γE , and p(E,A), except
at the very beginning of the epidemic where γE is the most important parameter. These
conclusions are valid for both representations. First-order and total Sobol’ indices of Z
are the highest from the start until day 5, meaning that the intrinsic stochasticity influ-
ence exceeds that of uncertain parameters at the beginning of epidemics. This reflects
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the fact that intrinsic stochasticity rules the dynamics especially at the beginning of
outbreaks when the number of infectious is low.

Gillespie representation Random time change representation

(a) (b)

0.00

0.25

0.50

0.75

1.00

0 20 40 60

F
ir

s
t−

o
rd

e
r 

S
o

b
o

l’
 i

n
d

ic
e

s

0.00

0.25

0.50

0.75

1.00

0 20 40 60

Inputs

beta

gamma_E

gamma_A

gamma_I

gamma_H

p_EA

p_I

p_HD

Z

(c) (d)

0.00

0.25

0.50

0.75

1.00

0 20 40 60

Time (days)

T
o

ta
l 

S
o

b
o

l’
 i

n
d

ic
e

s

0.00

0.25

0.50

0.75

1.00

0 20 40 60

Time (days)

Inputs

beta

gamma_E

gamma_A

gamma_I

gamma_H

p_EA

p_I

p_HD

Z

Figure 3: Dynamical first-order and total Sobol’ indices for YI with respect to Gillespie
representation (a) & (c) and Random time change representation (b) & (d). At each of
the 1000 discretization time points in [0, 60], first-order Sobol’ indices are estimated
with n = 2000 samples of inputs.

Aggregated Sobol’ indices

The aggregated Sobol’ indices enable to summarize over the whole time interval the
impact of inputs. So, for both first-order and total indices, the transmission parameter
β remains the most important input, followed by γE , p(E,A) and Z . The impact of
Z is again noticeable when considering total effects, due to its interactions with other
inputs.
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Figure 4: Aggregated first-order (a) and total (b) Sobol’ indices for YI with respect to
Gillespie representation (red) and Random time change representation (blue). Indices
are obtained with the 1000 discretization time points in [0, 60] and n = 2000 samples
of inputs.

With the aim of validating the differences between total Sobol’ indices for the two
representations, statistical tests are carried out as in the case of the scalar output Yext

by using samples that allowed to generate boxplots of Figure 4. The null hypothesis
that states the equality between total Sobol’ indices of input parameters for the two
representations is rejected with p-values smaller than 2.2× 10−16 except parameters β
and γE for which the p-values are respectively 2.24×10−4 and 2.6×10−14. The test for
Z does not reject the null hypothesis with a p-value of 0.76. Overall, the conclusions
of these tests perfectly match with the theoretical analysis detailed in Subsection 2.3.

5 Conclusions

In this work, we developed an approach of sensitivity analysis for stochastic compart-
mental models described by continuous-time Markov chains. This approach consists
in separating intrinsic randomness from parameter uncertainty by building exact de-
terministic representations of the model outputs as functions of uncertain parameters
and explicit intrinsic randomness. For this purpose, we rely on Gillespie SSA to pro-
pose a deterministic representation of continuous-time Markov chains. We present two
versions of the new Gillespie SSA based representation: the direct method (see Propo-
sition 2) and the first reaction method (see Proposition 3). The latter representation
enables to highlight the impact of intrinsic noise of each type of transition or reaction
channel of the model. Regarding the representation based on direct method, it has the
advantage to be computationally faster and most commonly used in practice.
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This approach is applied to a stochastic compartmental model of SARS-CoV-2
spread and is compared to an approach based on random time change analyzed in
Navarro Jimenez et al. [2016]. GSA is performed for two quantities of interest. The
first QoI studied is the extinction time of epidemics. The Gillespie and random time
change representations reveal that the transmission parameter (β) is the most important
input and that the intrinsic randomness (Z) much interacts with uncertain parameters.
The second QoI is functional and given by the dynamics of number of symptomatic in-
fectious individuals. For both representations, sensitivity analysis highlights again the
main role of transmission parameter (β) and incubation mean duration parameter (γE)
and the slight influence of the intrinsic randomness (Z), except at the very beginning of
the epidemic. Estimating Sobol’ indices of intrinsic randomness allowed to point out
not only the different phases of the epidemic, regarding the influence of the intrinsic
randomness, but also its global influence on the whole epidemic dynamic.

Overall, our approach allows to estimate sensitivity indices for the main effect of
intrinsic randomness as well as for its interactions with uncertain parameters. This
additional information is complementary to the one on the influence of uncertain pa-
rameters. We also highlighted the fact that GSA results depend on the chosen rep-
resentation. In practice, this impacts conclusions resulting from GSA. Nevertheless,
the different results between the representations provide interesting information; for
instance, choosing a representation which has lower interaction between the intrinsic
randomness and the uncertain parameters. This may allow to estimate uncertain pa-
rameter values with a better accuracy.

In future research, the approach proposed in this study could be extended to com-
partmental models based on non-Markovian stochastic processes based on Sellke con-
struction (Sellke [1983]).

Appendix

A Some simulations of QoIs Yext and YI

Case of Yext

For uncertain parameters set to nominal values (see Table 2), we simulate n = 2000
outputs of Yext. The outcomes are presented under the form of boxplot in Figure S1.
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Figure S1: Boxplot of n = 2000 outputs of Yext
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Case of YI

Figure S2 shows 20 trajectories of the number of symptomatic infectious individuals
corresponding to 20 outputs of the model for parameters set to nominal values (see
Table 2).
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(b) Random time change representation

Figure S2: 20 trajectoires of number of symptomatic infectious per representations

B Proofs

Proof of Proposition 1

The proof is provided for a case of stochastic process so that it can be adapted to real
or multidimensional output stochastic models. Assume that for all θ ∈ Θ, g(θ) is a
stochastic process {g(θ, t), t ≥ 0} over a discrete state space E . Let A1, · · · , Ad and
B be Borel sets. Assume X has a distributionµ. Consider 0 ≤ t1 ≤ · · · ≤ td. Note that

P (X ∈ B, g (X, t1) ∈ A1, · · · , g (X, td) ∈ Ad) = E

[

1X∈BE

[

∏d

i=1 1g(X,ti)∈Ai
| X

]]

.

Since E

[

1X∈BE

[

∏d
i=1 1g(X,ti)∈Ai

| X
]]

=
∫

B
E

[

∏d
i=1 1f(ti,θ,Z)∈Ai

]

µ(dθ) then

P (X ∈ B, g (X, t1) ∈ A1, · · · , g (X, td) ∈ Ad) is equal to
P (X ∈ B, f(t1,X, Z) ∈ A1, · · · , f(tp,X, Z) ∈ Ad).

Construction of Gillespie representation and Proof of Proposition 2

For all θ ∈ Θ, W θ is a CTMC on the finite state space E with generatorQθ . The jump
sequence {Tn;n ≥ 0} of W θ is defined as:














T0 = 0

Tn+1 − Tn ∼ Exp
(

∑

(α,β)∈E
gα,β(θ,W

θ(Tn))
)

Conditionally to {W θ(Tn), n ≥ 0}, (Tn+1 − Tn) are mutually independent

The sequence {W θ(Tn);n ≥ 0} is the embedded chain of W θ i.e. a discrete-time
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Markov chain on E with initial state ξ0 and transition probabilities given by:

∀ ξ, ξ′ ∈ E , pξ,ξ′ = P
(

W θ(Tn+1 = ξ′ |W θ(Tn) = ξ
)

=















gα′,β′(θ,ξ)
∑

(α,β)∈E
gα,β(θ,ξ)

if ∃ (α′, β′) ∈ E : ξ′ − ξ = uα′,β′

0 otherwise.

(1)

Therefore, W θ can be rewritten under the form:

W θ(t) =

+∞
∑

n=0

W θ(Tn) · 1[Tn,Tn+1[(t).

Consider a discrete-time Markov chain Dθ = {Dθ
n;n ≥ 0} with transition probabili-

ties (pξ,ξ′)(ξ,ξ′)∈E×E defined in Eq. (1) and initial state ξ0. If the sequence {τn;n ≥ 0}
satisfies:















τ0 = 0

τn+1 − τn ∼ Exp
(

∑

(α,β)∈E
gα,β(θ,D

θ
n)
)

Conditionally to Dθ, (τn+1 − τn) are mutually independent

(2)

then the stochastic processHθ =
{
∑+∞

n=0 D
θ
n·1[τn,τn+1[(t); t ≥ 0

}

defines a continuous-
time Markov chain with generatorQθ, state space E and initial state ξ0. Since E is finite
then:

∀ θ ∈ Θ, W θ f.d.d.
= Hθ. (3)

Equation (3) implies that the two processes are stochastically equivalent. The discrete
chain Dθ and sequence {τn;n ≥ 0} can be arbitrarily chosen. Let us construct an
example of Dθ and sequence {τn;n ≥ 0} using two independent sequences U1 =
(

U1
1 , U

1
2 , · · ·

)

and U2 =
(

U2
1 , U

2
2 , · · ·

)

of i.i.d. standard uniform variables.
Note that E is finite as V is finite. Recall that nE the cardinal ofE. So, we order the

elements ofEwith respect to an arbitrarily order: E = {(α(1), β(1)), · · · , (α(nE), β(nE))}.
Let us introduce the function:

φθ : E × [0, 1] −→ E

(ξ, v) 7−→ ξ +

nE
∑

k=1

uα(k),β(k) × 1
v∈

[

∑k−1
j=1 pξ,ξ+u

α(j),β(j)
,
∑

k
j=1 pξ,ξ+u

α(j),β(j)

[

(4)

The discrete chain built by the recursion:
{

D0 = ξ0

Dθ
n = φθ

(

Dθ
n−1, U

1
n

)

, n ≥ 1
(5)

is a Markov chain with transition probabilities (pξ,ξ′)(ξ,ξ′)∈E×E . Furthermore, the se-
quence:







τ0 = 0

τn+1 − τn = −
log(U2

n)
∑

(α,β)∈E
gα,β(θ,Dθ

n)

(6)
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satisfies conditions of Eq. (2.) Therefore the discrete chain in Eq. (5) and the se-
quence in Eq. (6) define a CTMC stochastically equivalent to W θ in the sense of finite
dimensional distributions.

Let define the function:

Φθ : L ([0, 1]) −→ EN

u = (u1, u2, · · · , ) 7−→ Φθ(u) =
(

ξ0, φ
θ(ξ0, u1), φ

θ(φθ(ξ0, u1), u2), · · ·
)

By constructionΦθ
(

U1
)

= {Φθ
n

(

U1
)

= Dθ
n, n ≥ 0}. If λn =

∑

(α,β)∈E
gα,β

(

θ,Φθ
n

(

U1
))

then the following function:

fG : R+ ×Θ×L ([0, 1])
2 −→ E

(t, θ, z1, z2) 7−→ fG(t, θ, z1, z2) =

∞
∑

n=0

Φθ
n (z1)1t∈

[

∑

n
j=1

− log(z2,j)

λj−1
,
∑n+1

j=1

− log(z2,j )

λj−1

[

is such that fG(, θ, ZG) is stochastically equivalent to W θ with ZG =
(

U1,U2
)

.
Moreover, since X and ZG are independent and fG(, θ, Z

G) ∼W θ then the equiv-
alence (X,W) ∼

(

X, fG(·,X, ZG)
)

is proved in the same way as in Proposition 1.

Second construction of Gillespie representation and Proof of Propo-

sition 3

We consider the vector of sequences of i.i.d. standard random variables: (Uα,β , (α, β) ∈ E)

where Uα,β =
(

U1
α,β, U

2
α,β , · · ·

)

. Given the following recursive system:















Dθ
0 = ξ0

snα,β = −
log(Un

α,β)
gα,β(θ,Dθ

n−1)
∀(α, β) ∈ E

Dθ
n = Dθ

n−1 + uα,β1sn
α,β

=min{sn
α,β

;(α,β)∈E}

(7)

(Uα,β , (α, β) ∈ E) is a vector of sequences of i.i.d. standard random variables

where Uα,β =
(

U1
α,β, U

2
α,β , · · ·

)

. We have the following system:















Dθ
0 = ξ0

snα,β = −
log(Un

α,β)
gα,β(θ,Dθ

n−1)
∀(α, β) ∈ E

Dθ
n = Dθ

n−1 + uα,β1sn
α,β

=min{sn
α,β

;(α,β)∈E}

1. Set Un = {Un
α,β; (α, β) ∈ E}. {Un;n ≥ 1} is a sequence of i.i.d. random

vectors with distribution
⊗nE

i=1 U ([0, 1]). Given the function:

ϕθ : E × [0, 1]nE −→ E
(

ξ, u = un
α,β; (α, β) ∈ E

)

7−→ ξ + uα,β1

sn
α,β

=min{−
log(un

α,β)
gα,β(θ,ξ)

;(α,β)∈E}

it yields Dn = ϕθ (Dn−1, Un). So, {Dθ
n, n ≥ 0} defines a Markov chain with

initial state ξ0. Let us find the transition probabilities of this chain. Let ξ′ and ξ
be two states such that ξ′ 6= ξ. We shall discuss two cases.
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• Case 1: ξ′ 6= ξ + uα,β for all (α, β) ∈ E. In this case, we have:

P
(

Dθ
n+1 = ξ′ | Dθ

n = ξ
)

= P

(

ξ′ = ξ + uα,β1sn
α,β

=min{sn
α,β

;(α,β)∈E} | D
θ
n = ξ

)

= P

(

ξ′ = ξ + uα,β1sn
α,β

=min{sn
α,β

;(α,β)∈E}
)

= 0

• Case 2: ∃ (α̂, β̂) ∈ E such that ξ′ = ξ + u
α̂,β̂

. In this case, we have:

P
(

Dθ
n = ξ′ | Dθ

n−1 = ξ
)

= P

(

ξ′ = ξ + uα,β1sn
α,β

=min{sn
α,β

;(α,β)∈E} | D
θ
n−1 = ξ

)

= P

(

u
α̂,β̂

= uα,β1sn
α,β

=min{sn
α,β

;(α,β)∈E} | D
θ
n−1 = ξ

)

= P

(

sn
α̂,β̂

= min{snα,β; (α, β) ∈ E} | Dθ
n−1 = ξ

)

= P

(

sn
α̂,β̂
≤ snα,β ; (α, β) ∈ E \ (α̂, β̂) | Dθ

n−1 = ξ
)

= E



exp



−sn
α̂,β̂
×

∑

(α,β)∈E\(α̂,β̂)

gα,β (θ, ξ)



 | Dθ
n−1 = ξ





=
g
α̂,β̂

(θ, ξ)
∑

(α,β)∈E
gα,β (θ, ξ)

It turns out that {Dθ
n, n ≥ 0} has transition matrix (pξ,ξ′)(ξ,ξ′)∈E×E .

2. It is straightforward since {Un
α,β; (α, β) ∈ E} are i.i.d. and snα,β are exponential

variables.

3. The construction of fG is similar to the one of the proof of Proposition 2 by using
ZG = (Uα,β , (α, β) ∈ E) and φθ = ϕθ .
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