Accelerating Non-Negative and Bounded-Variable Linear Regression Algorithms with Safe Screening - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Accelerating Non-Negative and Bounded-Variable Linear Regression Algorithms with Safe Screening

Résumé

Non-negative and bounded-variable linear regression problems arise in a variety of applications in machine learning and signal processing. In this paper, we propose a technique to accelerate existing solvers for these problems by identifying saturated coordinates in the course of iterations. This is akin to safe screening techniques previously proposed for sparsity-regularized regression problems. The proposed strategy is provably safe as it provides theoretical guarantees that the identified coordinates are indeed saturated in the optimal solution. Experimental results on synthetic and real data show compelling accelerations for both non-negative and bounded-variable problems.
Fichier principal
Vignette du fichier
NN-BV_Screening.pdf (1009.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03564336 , version 1 (11-02-2022)
hal-03564336 , version 2 (19-06-2023)

Identifiants

Citer

Cassio F. Dantas, Emmanuel Soubies, Cédric Févotte. Accelerating Non-Negative and Bounded-Variable Linear Regression Algorithms with Safe Screening. 2023. ⟨hal-03564336v2⟩
284 Consultations
159 Téléchargements

Altmetric

Partager

More