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Abstract. Non-negative and bounded-variable linear regression prob-
lems arise in a variety of applications in machine learning and signal
processing. In this paper, we propose a technique to accelerate existing
solvers for these problems by identifying saturated coordinates in the
course of iterations. This is akin to safe screening techniques previously
proposed for sparsity-regularized regression problems. The proposed strat-
egy is provably safe as it provides theoretical guarantees that the identified
coordinates are indeed saturated in the optimal solution. Experimental
results on synthetic and real data show compelling accelerations for both
non-negative and bounded-variable problems.

Keywords: Safe screening · linear regression · non-negative · bounded-
variable.

1 Introduction

Due to their fundamental importance in many fields, box-constrained linear
regression problems—including in the large sense the popular non-negative
least squares (NNLS) problem—have received considerable attention for several
decades [16,22,6]. They are in particular relevant for under-determined linear re-
gression, when the number of variables is larger than the number of measurements.
For example, it has been shown that for a variety of problems, the sole non-
negativity constraint can be as efficient as sparsity-based regularization [21],[3,
Proposition 4.1].

Several algorithms have been proposed to address such regression problems.
Let us in particular mention the seminal active set approach of [16] for NNLS,
which generalizes to bounded-variable least squares (BVLS) [22]. Accelerated
variants were proposed by [4,23]. Other methods for NNLS include projected
gradient and Newton methods [15,19], coordinate descent algorithms [11], or
interior point approaches [1]. They come with different strengths and limitations
and we refer the reader to [6] for a comparative discussion.

? Code is available at: https://github.com/cassiofragadantas/NN-BV_Screening

https://github.com/cassiofragadantas/NN-BV_Screening
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Contributions and outline In this work, we propose a generic strategy to ac-
celerate existing solvers for box-constrained linear regression. It relies on the
early identification of saturated coordinates (those attaining the box limits in
the solution vector) during the course of iterations, akin to safe screening tech-
niques for sparse-regularized regression problems [18,9]. The general optimization
problem addressed in the paper is formulated in Section 2. It takes as a special
case the safe squeezing approach of [10] for `∞-regularized problems (see the
details in Appendix A). In particular, our framework handles non-symmetric
bounds (including an infinite upper bound for the nonnegative case) and can deal
with a broad class of data-fidelity functions beyond least squares. Then, we show
in Section 3 how some saturated coordinates in the solution vector can be safely
identified from a primal-dual feasible pair of vectors. This allows us to derive a
generic dynamic safe screening procedure for box-constrained linear regression
problems. In Section 4, we focus on the dual update step. Although a standard
dual-scaling can be deployed for the bounded-variable case, it turns out to be
ineffective for the non-negative case. As such, we introduce a new dual update
strategy, termed as dual translation, to compute relevant feasible dual points.
Finally, numerical experiments are reported in Section 5. They demonstrate
how our proposed approach can significantly accelerate various solvers from the
literature.

Notations For n ∈ N, we denote by [n] the set {1, . . . , n}. The ith entry of a
vector z ∈ Rn is denoted zi (or sometimes [z]i to avoid ambiguities). Given a
subset of indices S ⊆ [n] with cardinality |S| = s, zS ∈ Rs denotes the restriction
of z to its entries indexed by the elements of S. For a matrix A ∈ Rm×n,
aj ∈ Rm stands for its jth column and AS ∈ Rm×s is the matrix formed
out of the columns of A indexed by the set S. Vector inequalities are taken
coordinate-wisely, i.e., a ≤ b means that ai ≤ bi,∀i. Given two vectors l ∈ Rn

and u ∈ Rn, we define the set [l,u] = [l1, u1] × · · · × [ln, un]. We use the
notation [z]+ (resp., [z]−) to refer to the positive (resp., negative) part operation
defined as max(0, zi) (resp., min(0, zi)) for all i ∈ [n]. For a convex function
f : Rn → (−∞,+∞], f∗(u) = supz∈Rn 〈z,u〉−f(z) denotes its Fenchel-Legendre
transform (or conjugate function).

2 Box-constrained linear regression

Given a matrix A ∈ Rm×n and a data vector y ∈ Rm, we consider the generic
box-constrained linear regression problem

x? ∈ argmin
x∈Rn

P (x) :=

m∑
i=1

f([Ax]i; yi) (1)

s. t. l ≤ x ≤ u

where l ∈ Rn and u ∈ R̄n with R̄ = R ∪ {∞} the Alexandroff extension of the
real number line. Given y, the function f(z; y) is assumed proper, lower semi-
continuous, convex, and differentiable with respect to (w.r.t.) z. We also assume
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it has Lipschitz gradient with constant 1/α. We define F (z; y) =
∑

i f(zi; yi),
referred to as loss function. In the rest of the paper, it will be treated as
a function of z only. Problem (1) encompasses both bounded-variable linear
regression (BVLR) when u ∈ Rn and non-negative linear regression (NNLR)3

when li = 0 and ui =∞ ∀i ∈ [n]. Moreover, our framework can also account for
mixed constraints where some entries of u are finite and the others are infinite.

3 Early identification of saturated variables

Building upon the Gap safe screening technique [18] for sparse linear regression,
we propose a generic approach (Algorithm 1) to accelerate solvers for (1) through
the early identification of saturated coordinates (i.e., identification of j ∈ [n] such
that x?j = lj or x?j = uj when uj <∞).

3.1 Dual problem

Let J u
∞ := {j ∈ [n] : uj = ∞} denotes the set of indices for which the upper

bound constraint in (1) is infinity. Then, the dual problem of (1) reads

θ? = argmax
θ∈FD

D(θ) (2)

where the dual objective function and the dual feasible set are given by (see
Appendix B)

D(θ) = −
m∑
i=1

f∗(−θi; yi)−
n∑

j=1

lj [A
Tθ]−j

−
∑

j∈[n]\J u
∞

uj [A
Tθ]+j , (3)

FD = {θ ∈ Rm : ∀j ∈ J u
∞, aT

j θ ≤ 0}. (4)

Note that the dual solution θ? is unique (thanks to the differentiability of f).
From (3) and (4), we see that when u ∈ Rn (BVLR), the dual problem is

unconstrained, that is FD = Rm. In contrast, when l = 0 and all the entries
of u are equal to ∞ (NNLR), the dual cost function simplifies as D(θ) =
−
∑m

i=1 f
∗
i (−θi; yi) and the dual feasible set reads FD = {θ ∈ Rm : ATθ ≤ 0}.

Remark 1. Note that if u = −l = δ1m, the second and third terms of (3) sum
up to δ‖ATθ‖1 and we obtain a form of Lasso problem. More generally, the dual
problem of BVLR can be seen as a further generalization of the Lasso, where the
penalization on the vector ATθ ∈ Rn is weighted by l (resp., u) for its negative
(resp., positive) entries.

3 We use the abbreviation LR (for linear regression) to emphasize that our framework
is more general than least-squares (LS) regression and can deal with a broader class
of functions f than the quadratic distance used in the LS case.
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3.2 Safe identification of saturated variables

From the primal (1) and dual (2) problems, the first-order primal-dual optimality
conditions for a primal-dual solution pair (x?,θ?) ∈ [l,u]×FD are given by (see
Appendix C):

∀i ∈ [m], θ?i = −f ′([Ax?]i; yi), (5)

∀j ∈ [n], aT
j θ

? ∈


(−∞, 0] if x?j = lj
[0,+∞) if x?j = uj
{0} if x?j ∈ (lj , uj)

. (6)

Let us emphasize that, for NNLR, the second case of (6) never occurs (as
x?j <∞ = uj).

Upon knowledge of the dual solution θ?, the optimality condition (6) (known
as sub-differential inclusion) constitutes a natural criterion to identify saturated
coordinates of the primal solution x?. More precisely, we have

∀j ∈ [n], aT
j θ

? < 0 =⇒ x?j = lj ,

∀j ∈ [n]\J u
∞, aT

j θ
? > 0 =⇒ x?j = uj .

(7)

Although this criterion cannot be used in practice as the dual solution θ? is not
known in advance, a relaxed version of it can be obtained with only a partial
knowledge of the location of θ?. More precisely, upon knowledge of a region
R ⊂ Rm such that θ?∈R—referred to as safe region—we can define a weaker
version of (7) as

∀j ∈ [n], max
θ′∈R

aT
j θ
′ < 0 =⇒ x?j = lj ,

∀j ∈ [n]\J u
∞, min

θ′∈R
aT
j θ
′ > 0 =⇒ x?j = uj .

(8)

Clearly, the smaller the regionR 3 θ?, the larger the number of saturated variables
that can be identified. A convenient and efficient choice for R is presented in the
next section.

3.3 The Gap safe sphere

The Gap safe sphere—initially proposed by [18] in the context of sparse linear
regression—is defined for any primal-dual pair (x,θ) ∈ [l,u]×FD by

B(θ, r), with r =

√
2 Gap(x,θ)

α
(9)

where the duality gap is given by

Gap(x,θ) = P (x)−D(θ). (10)

Let us recall that α in (9) is the inverse of the Lipschitz constant of the gradient
of f . Equivalently, this means that −f? (and hence D) is α-strongly concave. This
safe region leads to state-of-the-art screening performances due, in particular, to
two key properties.
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– A simple geometry which allows to simplify (8) as

∀j ∈ [n], aT
j θ < −r‖aj‖2 =⇒ x?j = lj ,

∀j ∈ [n]\J u
∞, aT

j θ > r‖aj‖2 =⇒ x?j = uj .
(11)

This significantly limits the computational overhead that is introduced when
testing the validity of this criterion (lines 11 and 12 in Algorithm 1).

– It vanishes when the duality gap tends to zero. In other words, if strong
duality holds (i.e., P (x?) − D(θ?) = 0), then the radius of the Gap safe
sphere vanishes as the iterates {xk,θk} converge to {x?,θ?}.

A proof that B(θ, r) is indeed a safe region (i.e., that θ? ∈ B(θ, r)) was
provided by [18, Theorem 6] in the context of sparse linear regression. Actually,
this proof can be directly applied to the linear regression problems with box
constraints considered in the present paper.

Remark 2. Note that the Gap safe sphere can also be defined using local strong
concavity bounds ofD computed on well-chosen subsets of the domain [9, Theorem
5]. This would allow to extend the applicability of Algorithm 1 (following [9])
to a more general class of functions f such as the β-divergences with β ∈ [1, 2),
that includes in particular the popular Kullback-Leibler divergence [7].

3.4 Resulting screening algorithm

The proposed safe screening approach for Problem (1) is presented in Algorithm 1.
It can be deployed with any iterative solver for (1), as indicated by the generic
notation

{x,η} ← PrimalUpdate(F (A ·+z; y); x,η).

This has to be understood as performing few iterations of a given primal solver on
F (A ·+z; y) from the initial point x. The vector η contains the hyperparameters
of the solver (e.g., step sizes) and we will make the role of z ∈ Rm explicit
hereafter.

In Algorithm 1, Θ : Rn → FD denotes a function that computes a dual
feasible point from the current primal point x. Details on how to define this
function will be provided in Section 4. The quantity A ⊆ [n] refers the preserved
set, which is the complement of the set of screened coordinates. Starting from
A = [n], it is dynamically reduced (line 15) by removing the components that are
surely identified as being saturated in the solution vector x∗ (lines 11 and 12),
according to the safe rule (11). At the same time, these identified saturated
components in x are permanently set to their optimal value (line 13), and their
contribution to the vector of measurements is stored in z ∈ Rm (line 14).

It follows that the computation of

Ax = AAxA + AAcxAc = AAxA + z (12)

can be reduced from O(mn) to O(m(|A| + 1)) in the next calls to the primal
solver. As such, the more saturated components are identified, the larger is the
speed improvement in the next calls to the primal solver.
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Algorithm 1 Generic screening procedure for Problem (1)

1: Initialize A = [n], x ∈ [l,u], εgap > 0
2: Set η according to the solver,
3: Compute α > 0, a strong concavity bound of D
4: Initialize z = 0
5: repeat
6: — Solver update restricted to the preserved set —
7: {xA,η}←PrimalUpdate(F (AA ·+z;y);xA,η)
8: — Dynamic safe screening —
9: θ ← Θ(x) ∈ FD . Dual update

10: r ←
√

2 Gap(x,θ)/α . Safe radius
11: Sl←{j∈A | aT

j θ < −r‖aj‖2} . Lower-saturated set
12: Su←{j∈A\J u

∞|aT
j θ>r‖aj‖2} . Upper-saturated set

13: xSl ← lSl , xSu ← uSu . Set of saturated entries
14: z← z + ASl∪SuxSl∪Su . Update saturated part
15: A ← A\(Sl ∪ Su) . Update preserved set
16: until Gap(x,θ) < εgap

Remark 3. The introduction of the variable z in Algorithm 1 is convenient to
present a generic algorithm that encompasses the complete class of functions f
considered in this work. Yet, this additional variable can be discarded for some
loss functions. For example, when F (Ax; y) = ‖Ax−y‖22, line 14 can be replaced
by y ← y −ASl∪SuxSl∪Su , thus avoiding the use of z as well as the addition
operation in (12).

It is worth mentioning that the acceleration of the primal iterates provided
by the screening procedure has to be balanced with the computational overhead
of the screening step itself. This mainly concerns the cost of computing the
inner products aT

j θ at lines 11 and 12 which, all together, have a complexity of
O(|A|m). Fortunately, provided a suitable choice of the dual update function Θ(x)
(see Section 4), most standard primal solvers already require the computation of
these inner products. They can thus be reused for free in the screening step.

Finally, let us emphasize that Algorithm 1 can be simplified in the NNLR
case as shown in Algorithm 2. Indeed, as J u

∞ = [n], we always have Su = ∅.
Moreover, because l = 0, the vector z remains always zero.

4 Computing a dual feasible point

A crucial step of the proposed screening procedure lies in the computation of a
dual feasible point (function Θ : Rn → FD at line 9 of Algorithm 1). One can see
from the definition of the Gap safe sphere in (9) that the closer Θ(x) is to θ?, the
smaller the safe region is likely to be. Moreover, the computation of Θ(x) should
be cheap in order to minimize the computational load of the screening step. In
this section, we present ways of defining Θ so as to meet these two desirable
properties. Without loss of generality, we focus only on the BVLR and NNLR
cases, the case with mixed constraints being easily deduced from the latter two.
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Algorithm 2 Screening procedure for NNLR

1: Initialize A = [n], x ≥ 0, εgap > 0
2: Set η according to the solver,
3: Compute α > 0, a strong concavity bound of D
4: repeat
5: — Solver update restricted to the preserved set —
6: {xA,η}←PrimalUpdate(F (AA·;y);xA,η)
7: — Dynamic safe screening —
8: θ ← Θ(x) ∈ FD . Dual update
9: r ←

√
2 Gap(x,θ)/α . Safe radius

10: Sl←{j∈A | aT
j θ < −r‖aj‖2} . Lower-saturated set

11: xSl ← 0 . Set of saturated entries
12: A ← A\Sl . Update preserved set
13: until Gap(x,θ) < εgap

4.1 Dual update for BVLR

As pointed out in Section 3.1, the dual problem of BVLR is unconstrained, i.e.,
FD = Rm. As such, any point θ ∈ Rm is admissible to be a center for the Gap
safe sphere. Following the dual scaling idea [18], we propose to define Θ as

Θ(x) := −∇F (Ax; y). (13)

The notation ∇F (Ax; y) refers to the gradient of the function F (·; y) evaluated
in Ax. Note that here no scaling of this gradient is required as FD = Rm. The
rationale behind this choice is twofold. First, we get from the primal-dual link (5)
that Θ(x)→ θ? as x→ x?. Second, for any first-order primal solver,

∇P (x) = AT∇F (Ax; y) = −ATΘ(x) (14)

is computed during the primal update step. This vector contains nothing else than
the inner products needed for the screening test (lines 11 and 12 of Algorithm 1)
and can thus be reused for free.

4.2 Dual update for NNLR

Computing a dual feasible point for the NNLR problem is more involved than for
BVLR. Here, FD = {θ ∈ Rm : ATθ ≤ 0} and dual scaling is no longer possible
since,

z /∈ FD =⇒ (ρz) /∈ FD ∀ρ > 0. (15)

In other words, if −∇F (Ax; y) is not a feasible dual point (i.e., ∃j such that
−aT

j∇F (Ax; y) > 0), then any scaled version of it remains not feasible.
Instead, assuming that Int(FD) 6= ∅ (i.e., that the interior of FD is nonempty,

see Remark 4), we propose a dual translation strategy (by analogy with dual
scaling) defined, for any vector t ∈ Int(FD), as

Θ(x) := Ξt(−∇F (Ax; y)) (16)
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where Ξt is the translation in the direction of vector t

Ξt(z) := z +

(
max
j∈[n]

(aT
j z)+

|aT
j t|

)
t. (17)

Proposition 1 shows that this Θ indeed maps x onto FD and leads to the desired
convergence property. Moreover, similarly to (14), this dual translation allows
one to reuse in the screening test some quantities computed during the primal
update. Note that the additional inner products ATt can be pre-computed, which
keeps ATΘ(x) as cheap as with the standard dual scaling procedure.

Proposition 1 (Validity of the dual translation). Let Θ be defined as
in (16). Then, for any primal point x ∈ Rn

≥0, we have Θ(x) ∈ FD. Moreover,
Θ(x)→ θ? as x→ x?.

Proof. It is sufficient to show that ∀z ∈ Rm, Ξt(z) ∈ FD, i.e., ATΞt(z) ≤ 0.

Denoting ε = maxk∈[n]
(aT

kz)
+

|aT
kt|

, we get, by definition of Ξ that, ∀j ∈ [n]

aT
j Ξt(z) = aT

j (z + εt) = aT
j z + εaT

j t

= aT
j z +

(
max
k∈[n]

(aT
kz)+

|aT
kt|

)
aT
j t

≤ aT
j z +

aT
j z

|aT
j t|

aT
j t = 0

where we used the fact that t ∈ Int(FD), i.e., aT
j t < 0 ∀j ∈ [n]. Finally, by

continuity of ∇F (A·; y) we get that

−∇F (Ax; y)→ −∇F (Ax?; y) =
(5)
θ? as x→ x?.

Then, the continuity of Ξt together with Ξt(θ
?) = θ? (as θ? ∈ FD) proves that

Θ(x)→ θ? as x→ x?.

Remark 4 (Comment on Int(FD) 6= ∅). One may wonder to what extend such a
condition is restrictive in practice. From the expression of FD in (4), we get that
Int(FD) 6= ∅ is equivalent to

∃ω ∈ Rm s.t. ATω < 0. (18)

In other words, the columns of A must belong to the interior of a half space of Rm

containing the origin on its boundary. Hence, if Int(FD) = ∅ (i.e., (18) fails), we
have 0 ∈ conv{aj}nj=1 and the NNLS problem is ill-posed as it admits infinitely

many solutions. If furthermore 0 ∈ Int
(
conv{aj}nj=1

)
, we have cone{aj}nj=1 =

Rm meaning that the non-negativity constraint is useless [21]. Note that the
latter case corresponds to FD = {0}. To conclude, relevant NNLS problems
satisfy Int(FD) 6= ∅.
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It remains to discuss how one can determine a direction t ∈ Int(FD). Although
there is no systematic approach for a general A ∈ Rm×n, this can be achieved
on a case-by-case basis for many relevant matrices A.

Proposition 2. The following types of matrix A ensure that Int(FD) 6= ∅.
Moreover, a vector t ∈ FD can be easily computed.

1. A ∈ Rm×n with rank(A) = n ≤ m. Then, for any b ∈ Rn
<0, all the solutions

of ATt = b (there exists at least one) satisfy t ∈ Int(FD).
2. A ∈ Rm×m orthogonal (i.e., ATA = I). Then, any negative linear com-

bination of the columns of A, i.e., t =
∑

j∈[n] βjaj for β ∈ Rn
<0, satisfies

t ∈ Int(FD).
3. A ∈ Rm×n

≥0 with non-negative entries and no column with only zeros. Then,
any negative vector t ∈ Rm

<0 satisfies t ∈ Int(FD).
4. A ∈ Rm×n such that ATA contains a column (say the jth) with all entries

positive. Then, t = −aj satisfies t ∈ Int(FD).

Proof. We prove each case independently.
1. The existence of solutions for ATt = b comes from the fact that the columns

of AT span Rn (as rank(A) = n). Then, as b ∈ Rn
<0, we have ATt = b < 0 and

thus t ∈ Int(FD).
2. Due to the orthogonality of A, we have that ∀i 6= j, aT

i aj = 0. Hence, for
any β ∈ Rn

<0, we have

∀i ∈ [n], aT
i

∑
j∈[n]

βjaj

 = βi‖ai‖22 < 0

which shows that t =
∑

j∈[n] βjaj ∈ Int(FD).

3. Given that ∀i ∈ [n], ai ∈ Rm
≥0\{0}, we have, for any negative vector

t ∈ Rm
<0, that ∀i ∈ [n], aT

i t < 0 which shows that t ∈ Int(FD).
4. Direct consequence of the assumption on A.

5 Experiments

In this paper, we restrict ourselves to the popular bounded-variable (l < u <∞)
and non-negative (l = 0 < u =∞) least squares problems, i.e., f(z; y) = 1

2 (z−y)2.
In this case, the conjugate function is given by f∗(θ; y) = 1

2 ((y+ θ)2− y2). In the

NNLS experiments, we assumed A ∈ Rm×n
≥0 , which corresponds to traditional

scenarios. As such, unless otherwise stated, the dual translation vector is set to
t = −1 (according to Proposition 2).

We use projected gradient descent [19] and the Chambolle-Pock primal-dual
algorithm [5] to solve the BVLS problem. For NNLS, we consider both the
coordinate descent (CD) method of [11] and the lsqnonneg routine of MATLAB
(a variant of the original active set algorithm of [16]) denoted simply Active Set
hereafter. The algorithms are stopped when the duality gap falls below 10−6. For
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Fig. 1. Speedup w.r.t. saturation ratio for a BVLS problem of size m = 4000, n = 2000,
solved with projected gradient descent. The matrix A ∈ Rm×n and vector y ∈ Rm have
been generated according to aij ∼ N (0, 1) and yi ∼ N (0, 1). The saturation ratio is
controlled by varying the size of the box b[−1,1].

all baselines without screening, the duality gap has been computed offline so as
not to impact the measured execution times.

Section 5.1 reports results that illustrate how screening performance varies
with specific experimental parameters. Then, Section 5.2 is devoted to the
evaluation of the proposed screening with real datasets.

5.1 Understanding screening behaviour

Influence of the saturation ratio. Figure 1 presents the typical evolution
of the speedup factor achieved with screening as a function of the saturation
ratio (i.e., s/n where s ∈ N is the number of saturated components in x?). As
expected, the higher the number of saturated components, the best the screening
performance. Yet, there is a critical value of the saturation ratio under which the
computational overhead of screening dominates the acceleration of the primal
update, leading to an overall “speedup” below 1.

Influence of the problem parameters. We report in Tables 1 and 2 execution
times for NNLS and BVLS problems respectively with increasing size and fixed
saturation ratio. For both active set and coordinate descent algorithms, we
observe that the screening performance (i.e., the speed improvement) increases
with the size and the level of indeterminacy of the problem. Speedups are obtained
consistently and independently of the problem instance (BV or NN) and the
chosen solver. Most tested solvers benefit from speedups of around five times,
except for the Active Set solver which, by its own nature, is less prone to screening
approaches (as they already manipulate reduced sets of coordinates).
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Table 1. Execution times and speedup for a NNLS problem with fixed number of rows
m = 2000 and different number of columns n. For each instance of the problem, the
matrix A ∈ Rm×n

≥0 has been generated using aij = |η| with η ∼ N (0, 1). The data vector
y ∈ Rm

≥0 has been obtained as y = Ax̄ + ε where x̄ ∈ Rn
≥0 is such that ‖x̄‖0/n = 0.05

with non-zero entries x̄j distributed like aij and ε ∈ Rm is such that εi ∼ N (0, 1).

n Baseline [s] Screening [s] Speedup

C
o
o
r
d
.

D
e
sc

e
n
t 1000 2.19 0.71 3.08

2000 10.2 2.09 4.87
4000 64.28 9.52 6.75
6000 146.12 18.63 7.84

A
c
t
iv
e

S
e
t

1000 0.11 0.09 1.25
2000 0.16 0.13 1.23
4000 0.33 0.25 1.31
6000 0.36 0.26 1.38

Table 2. Execution times and speedup for a BVLS problem with m = 1000 and same
setup as in Table 1, except that x̄j ∼ U(0, 1) with bounds l = 0 and u = 1.

n Baseline [s] Screening [s] Speedup

P
r
o
j.

G
r
a
d
. 500 9.41 1.71 5.49

1000 27.98 4.33 6.47
2000 127.21 18.82 6.76
3000 347.05 48.46 7.16

P
r
im

a
l

d
u
a
l

500 0.26 0.08 3.41
1000 0.84 0.19 4.52
2000 2.92 0.59 4.97
3000 5.20 0.95 5.48

Influence of choice of the dual point. In Figure 2, we report for a NNLS
problem the screening ratio (i.e., the number of identified saturated components
relatively to the size n) as a function of the iteration number, for different choices
of the dual translation vector t ∈ Int(FD). Clearly, the choice of t affects the
screening performance. Although the existence of an optimal choice remains an
open question, the reported results allow for some intuition. Indeed, denoting a+

(resp., a−) the column of A ∈ Rm×n
≥0 that correlates the most (resp., the least)

with all other columns, we can see that setting t = −a+ leads to significantly
better screening performance than t = −a−. Other relevant choices for this
example are t = −1 (used in all remaining NNLS examples) and t = − 1

n

∑
j aj .

This suggests the conjecture that a relevant t should be close to the “central axis”
of cone{aj}nj=1.
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Fig. 2. Screening performance with different choices for the translation vector t on a
NNLS problem with the NIPS papers dataset (described in Section 5.2).

Limits of screening: oracle dual point. To evaluate the practical limits of
the proposed screening approach, we perform experiments in which a perfect
dual update is performed artificially. The results in Figure 3 show that, although
significant acceleration is already obtained with the usual dual update, there
is still room for improvement. The gap to the optimal bound could be reduced
in practice with better dual point estimations. In the NNLS case specifically,
this could be achieved by defining better dual directions or maybe even with a
completely different approach than the proposed dual translation (see, e.g. [17]).

5.2 Performance in applicative scenarios

BVLS for hyperspectral unmixing. In this experiment, the data vector y
is the observed light reflectance spectrum vector of a random pixel from the
Cupitre hyperspectral image [14]. The columns of A ∈ R188×342

≥0 are set as the
reflectance spectra of pure materials from the USGS High Resolution Spectral
Library [8], using the same pre-processing as in [2]. The goal of the regression
problem is thus to identify and determine the proportions (so-called abundances)
of the materials that compose y. Physical observation constraints dictate that
the abundances should lie in the interval [0, 1], leading to a BVLS problem [2].

The convergence and screening ratio curves of the projected gradient algorithm
with and without screening are presented in Figure 4. We observe that, as
the screening ratio progressively grows, the iterations become faster and the
convergence curve eventually detaches from the baseline.

NNLS for archetypal analysis. The NIPS papers dataset contains word
counts from 2484 papers published at the NIPS conference between 1988 to 2003
[12]. We removed any all-zero columns or rows from the original data matrix and
normalized its columns. The input data y ∈ R2483

≥0 is taken as a random sample

of the dataset and all remaining samples form the columns of A ∈ R2483×14035
≥0 .
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Fig. 3. Duality gap convergence (top) and screening ratio (bottom) through time for
the simulation setups described in Tables 1 and 2. Left: BVLS problem with primal-
dual solver. Right: NNLS problem with coordinate descent solver. The dashed curves
correspond to the screening approach artificially informed with an optimal dual point
(θ?), which reaches a speedup of 12.8 (left) and 27.8 (right).

The convergence and screening ratio curves of the active set and coordinate
descent algorithms are depicted in Figure 5. While we observe a substantial
acceleration for the coordinate descent, its counterpart for the active set method
is more subdued. Yet, in both cases, the proposed screening strategy allows to
accelerate the considered solvers.

6 Conclusion

In the paper we extended the recently fruitful safe screening framework to the
intrinsically distinct family of box-constrained problems. Instead of identifying
zero coordinates induced by a sparse regularization term, we manage to safely
identify saturated coordinates induced by the constraints. The main technical
challenge in the proposed approach lies in the choice of a dual feasible point
which is non-trivial when the box limit is allowed to be unbounded (an example
being the widespread NNLS problem). We proposed the simple and efficient dual
translation procedure to tackle this problem and suggested some practical choices
for the translation direction. Determining an optimal translation direction is
actually a challenging problem that deserves further studies—inasmuch as the
quality of the dual point can decisively influence the screening performance.
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Fig. 4. Convergence and screening ratio for the BVLS hyperspectral experiment.
Speedups of 2.79 and 2.30 are achieved respectively for the projected gradient (left)
and primal-dual (right) solvers.

Fig. 5. Convergence and screening ratio for the NNLS NIPS papers experiment.
Speedups of 2.44 and 1.12 are achieved respectively for the coordinate descent (left)
and the active set (right) solvers.
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A Relation to `∞-regularization

A particular case of (1), obtained by setting u = −l = c1, c > 0, is the `∞-
constrained optimization problem

x? ∈ argmin
x∈Rn

m∑
i=1

f([Ax]i; yi) (19)

s. t. ‖x‖∞ ≤ c.

The penalized counterpart of the above problem leads to the `∞-regularized
linear regression problem considered by [10]

x? ∈ argmin
x∈Rn

m∑
i=1

f([Ax]i; yi) + λ‖x‖∞, (20)

where the `∞-norm penalization is controlled by the parameter λ > 0, to which
corresponds a certain value of parameter c in the previous constrained formulation.
Note that, in [10], only the least-squares case is addressed.

B Dual problems derivation

As a direct application of the Fenchel duality formalism [20, Theorem 31.3] and
the coordinate-wise separability property of the convex conjugate [13, Ch. X,
Prop. 1.3.1] we have the following pair of generic primal-dual problems

x? ∈ argmin
x∈Rn

F (Ax;y)︷ ︸︸ ︷
m∑
i=1

f([Ax]i; yi) +Ω(x), (21)

θ? = argmax
θ∈Rm

−
m∑
i=1

f∗(−θi; yi)︸ ︷︷ ︸
F∗(−θ;y)

−Ω∗(ATθ), (22)

where Ω(x) = 1x∈[l,u]. To complete the demonstration, we need to calculate the
conjugate function Ω∗ of Ω.

From the definition of the conjugate function and the separability of Ω, we
have

Ω∗(w) = sup
x∈Rn

〈x,w〉+Ω(x)

=
∑
j∈[n]

sup
xj∈[lj ,uj ]

xjwj

=
∑

j∈[n]\J u
∞

sup
xj∈[lj ,uj ]

xjwj +
∑

j∈J u
∞

sup
xj>lj

xjwj .



18 C. F. Dantas et al.

The first term is a sum of sup of linear functions over compact sets. As such,
each sup is attained on the boundary. If wj < 0, the sup is attained at xj = lj
whereas if wj > 0, it is attained at xj = uj . Overall, the value of each sup is
given by lj(wj)

− + uj(wj)
+.

The second term is a sum of sup of linear functions over umbounded sets.
Each sup is either attained at xj = lj if wj < 0 or equals +∞ if wj > 0. Each
sup is thus equal to lj(wj)

− + 1wj≤0.
Combining all these expressions, we obtain

Ω∗(w) =
∑
j∈[n]

lj(wj)
− +

∑
j∈[n]\J u

∞

uj(wj)
+ + 1w≤0, (23)

which, with (22), completes the proof.

C First-order optimality conditions

First-order optimality conditions for the generic primal-dual pair (21)-(22) are
given by [20, Theorem 31.3]:

θ? = −∇F (Ax?; y), (24)

ATθ? ∈ ∂Ω(x?). (25)

For F (Ax; y) =
∑m

i=1 f([Ax]i; yi) and Ω(x) =
∑n

j=1Ωj(xj) coordinate-wise
separable, it simplifies to:

∀i ∈ [m], θ?i = −f ′([Ax?]i; yi), (26)

∀j ∈ [n], aT
j θ

? ∈ ∂Ωj(x
?
j ). (27)

Finally, the proof is completed with the expression of the sub-differential of
Ωj(xj) = 1xj∈[lj ,uj ],

∂Ωj(xj) =

 (−∞, 0] if xj = lj
[0,+∞) if xj = uj
{0} if xj ∈ (lj , uj)

where the second case only occurs when uj <∞.
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