Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Image Processing Année : 2010

Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery

Résumé

This paper studies a new Bayesian unmixing algorithm for hyperspectral images. Each pixel of the image is modeled as a linear combination of so-called endmembers. These endmembers are supposed to be random in order to model uncertainties regarding their knowledge. More precisely, we model endmembers as Gaussian vectors whose means have been determined using an endmember extraction algorithm such as the famous N-finder (N-FINDR) or Vertex Component Analysis (VCA) algorithms. This paper proposes to estimate the mixture coefficients (referred to as abundances) using a Bayesian algorithm. Suitable priors are assigned to the abundances in order to satisfy positivity and additivity constraints whereas conjugate priors are chosen for the remaining parameters. A hybrid Gibbs sampler is then constructed to generate abundance and variance samples distributed according to the joint posterior of the abundances and noise variances. The performance of the proposed methodology is evaluated by comparison with other unmixing algorithms on synthetic and real images.
Fichier principal
Vignette du fichier
Eches_4089.pdf (1.82 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03556819 , version 1 (04-02-2022)

Identifiants

Citer

Olivier Eches, Nicolas Dobigeon, Corinne Mailhes, Jean-Yves Tourneret. Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery. IEEE Transactions on Image Processing, 2010, 1 (6), pp.1403-1413. ⟨10.1109/TIP.2010.2042993⟩. ⟨hal-03556819⟩
20 Consultations
51 Téléchargements

Altmetric

Partager

More