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Bayesian Estimation of Linear Mixtures Using
the Normal Compositional Model. Application
to Hyperspectral Imagery

Olivier Eches, Nicolas Dobigeon, Member, IEEE, Corinne Mailhes, Member, IEEE, and
Jean-Yves Tourneret, Senior Member, IEEE

Abstract—This paper studies a new Bayesian unmixing algo-
rithm for hyperspectral images. Each pixel of the image is modeled
as a linear combination of so-called endmembers. These endmem-
bers are supposed to be random in order to model uncertainties
regarding their knowledge. More precisely, we model endmembers
as Gaussian vectors whose means have been determined using
an endmember extraction algorithm such as the famous N-finder
(N-FINDR) or Vertex Component Analysis (VCA) algorithms.
This paper proposes to estimate the mixture coefficients (referred
to as abundances) using a Bayesian algorithm. Suitable priors
are assigned to the abundances in order to satisfy positivity and
additivity constraints whereas conjugate priors are chosen for
the remaining parameters. A hybrid Gibbs sampler is then con-
structed to generate abundance and variance samples distributed
according to the joint posterior of the abundances and noise vari-
ances. The performance of the proposed methodology is evaluated
by comparison with other unmixing algorithms on synthetic and
real images.

Index Terms—Bayesian inference, hyperspectral images, Monte
Carlo methods, normal compositional model, spectral unmixing.

1. INTRODUCTION

HE spectral unmixing problem has received considerable
T attention in the signal and image processing literature (see
for instance [1] and references therein). Most unmixing proce-
dures for hyperspectral images assume that the image pixels are
linear combinations of a given number of pure materials with
corresponding fractions referred to as abundances. More pre-
cisely, according to the linear mixing model (LMM) presented
in [1], the L-spectrumy = [y1, ..., yr]T of a mixed pixel is as-
sumed to be a mixture of R spectram,., r = 1... R, corrupted
by additive white Gaussian noise

R
y=ZmraT+n

r=1

ey
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where m,. = [m,.1, ..., m, 1]’ denotes the spectrum of the rth
material, c,. is the fraction of the rth material in the pixel, R is
the number of pure materials (or endmembers) present in the
observed scene, and L is the number of available spectral bands
for the image. Supervised algorithms assume that the R end-
member spectra m,. are known, e.g., extracted from a spectral
library. In practical applications, they can be obtained by an end-
member extraction procedure such as the well-known N-finder
(N-FINDR) algorithm developed by Winter [2] or the Vertex
Component Analysis (VCA) presented by Nascimento [3]. Due
to physical considerations, the abundances satisfy the following
positivity and sum-to-one constraints:

a.>0,Vr=1,... R,

R
@)
=1
TZ::I *

The LMM has some limitations when applied to real images [1].
In particular, the ratio between the intra-class variance (within
endmember classes) and the inter-class variance (between end-
members) allows one to question the validity of the determin-
istic spectrum assumption [4]. Moreover, the endmember ex-
traction procedures based on the LMM can be inefficient when
the image does not contain enough pure pixels. This problem,
outlined in [3], is illustrated in Fig. 1. This figure shows 1) the
dual-band projections [on the two most discriminant axes iden-
tified by a principal component analysis (PCA)] of R = 3 end-
members (red stars corresponding to the vertices of the red tri-
angle), 2) the dual-band domain containing all linear combina-
tions of the R = 3 endmembers (i.e., the red triangle), and 3) the
dual-band simplex estimated by the N-FINDR algorithm using
the black pixels. As there is no pixel close to the vertices of the
red triangle, the N-FINDR estimates a much smaller simplex (in
blue) than the actual one (in red).

A new model referred to as normal compositional model
(NCM) was recently proposed in [4]. The NCM allows one
to alleviate the problems mentioned above by assuming that
the pixels of the hyperspectral image are linear combinations
of random endmembers (as opposed to deterministic for the
LMM) with known means (e.g., resulting from the N-FINDR
or VCA algorithms). This model allows more flexibility re-
garding the observed pixels and the endmembers. In particular,
the endmembers are allowed to be further from the observed
pixels which is clearly an interesting property for the problem
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Fig. 1. Scatterplot of dual-band correct (red/light gray) and incorrect (blue/dark
gray) results of the N-FINDR algorithm.

illustrated in Fig. 1. The NCM assumes that the spectrum of a
mixed pixel can be written as follows:

R
y= Z £ 0, (3)
r=1

where the e, are independent Gaussian vectors with known
means, e.g., extracted from a spectral library or estimated by an
appropriate method such as the VCA algorithm. Note that there
is no additive noise in (3) since the random nature of the end-
members already models some kind of uncertainty regarding
the endmembers. This paper assumes that the covariance matrix
of each endmember is proportional to the identity matrix. As a
consequence, the endmember variances do not vary from one
spectral band to another.!

In this paper, a new Bayesian unmixing algorithm is derived
for the NCM to estimate the abundance coefficients in (3)
under the constraints in (2). Appropriate prior distributions are
chosen for the NCM abundances to satisfy the positivity and
sum-to-one constraints, as in [7]. A conjugate inverse Gamma
distribution is defined for the endmember variance. The hy-
perparameter of this model can be fixed using appropriate
prior information, or estimated jointly with the other unknown
parameters. A classical procedure consists of assigning a vague
prior to this hyperparameter resulting in a hierarchical Bayesian
model [8, p. 392]. The parameters and hyperparameter of this
hierarchical Bayesian model can then be estimated by using
the full posterior distribution. Unfortunately the joint posterior
distribution for the NCM is too complex to derive the standard
minimum mean square error (MMSE) or maximum a poste-
riori (MAP) estimators. The complexity of the posterior can be
handled by the expectation—maximization (EM) algorithm [4],

Note that more sophisticated models with different variances in the spectral
bands could be investigated. However, the simplifying assumption of a common
variance in all spectral bands has been considered successfully in many studies

[51, [6].

[9]. However, this algorithm can have “serious shortcomings
including the convergence to a local maximum of the posterior”
[10, p. 259]. These shortcomings can be bypassed by consid-
ering Markov Chain Monte Carlo (MCMC) methods that allow
one to generate samples distributed according to the posterior
of interest (here the joint posterior of the abundances and the
endmember variance). This paper generalizes the hybrid Gibbs
sampler developed in [7] and shows that it can be used effi-
ciently for the NCM. Note that other Bayesian algorithms have
been also proposed for multispectral and hyperspectral image
analysis. In [11], Moussaoui et al. have coupled Bayesian blind
source separation with independent component analysis to
investigate the composition of the Mars surface. This approach,
relied on MCMC methods, has allowed them to handle the
spectral unmixing problem in an unsupervised framework.
In [12], classification and segmentation of hyperspectral im-
ages have been addressed using a Bayesian model with a
Potts—Markov field to take into account spatial constraints.
More recently, Snoussi introduced in [13] an MCMC algorithm
to extract the cosmic microwave background power spectrum
in astrophysical data.

The paper is organized as follows. Section II derives the pos-
terior distribution of the unknown parameter vector resulting
from the proposed Bayesian model. Section III studies the hy-
brid Gibbs sampling strategy that is used to generate samples
distributed according to the NCM posterior. Sections IV and V
extend the proposed result to endmembers with different vari-
ances. Simulation results conducted on synthetic data are pre-
sented in Section VI. In particular, some comparisons between
the proposed Bayesian strategies and classical unmixing algo-
rithms are presented in this section. Results obtained with these
algorithms on a real image are finally presented in Section VII.
Conclusions are reported in Section VIII.

II. HIERARCHICAL BAYESIAN MODEL

This section studies the likelihood and the priors inherent
to the proposed NCM for the spectral unmixing of hyperspec-
tral images. A particular attention is devoted to defining abun-
dance prior distributions satisfying positivity and sum-to-one
constraints.

A. Likelihood

The NCM assumes that the endmember spectra e,
r = 1,..., R, are independent Gaussian vectors with known
mean vectors m, = [my1,...,m. ], 7 = 1,...,R.
Moreover, we first assume that the covariance matrix of each
endmember can be written 021 1, where Iy, is the L x L identity
matrix and o2 is the endmember variance in any spectral band,
ie., &:lm,,0%> ~ N(m,,o?I1) where N'(m,X) denotes the
multivariate Gaussian distribution with mean vector m and
covariance matrix X. Using (3) and the a priori independence
between the endmember spectra, the likelihood of the observed
pixel y can be written as

- ly = 1 (at) |
f (yla®,0%) = 2roZe @) 7P <‘T(a+)>

“



where ||z|| = VzTz is the standard ¢* norm, at =

[a1,...,ag]t, and

c (a+) = Z ozz. 5)

R
1% (a+) = Zmrar;
r=1

Note that the mean and variance of this Gaussian distribution
depend both on the abundance vector at contrary to the clas-
sical LMM.

B. Parameter Priors

1) Abundance Prior: Because of the sum-to-one constraint
inherent to the mixing model, the abundance vector can be
rewritten as a™ = [a”, aR]T, where ag = 1 — Zf:_f Q.
Moreover, to satisfy the positivity constraint, the abundance

sub-vector « has to live in a simplex defined by

g:{a

A uniform distribution on this simplex is chosen as prior distri-
bution for the partial abundance vector a

R—1
a,,207vr:1,...,R—17Za,,§1}. (6)
r=1

fla) x 1s(a) @)

where o« means “proportional to” and 1g(-) is the indicator
function defined on the set S

1, fa€es;
0, otherwise.

15(e) = { ®)

This prior ensures the positivity and sum-to-one constraints of
the abundance coefficients and reflects the absence of other prior
knowledge regarding these parameters. Note that any abundance
could be removed from et and not only the last one . For
symmetry reasons, the algorithm proposed in Section III will
remove one abundance coefficient from a™ uniformly drawn in
{1,..., R}. Here, this component is supposed to be a g to sim-
plify notations. Moreover, for sake of conciseness, the notations
(@) and c(a) will be used in the sequel to denote the quantities
in (5), where ap has been replaced by 1 — Zfz_ll .

2) Endmember Variance Prior: The prior distribution for the
variance o2 is a conjugate inverse Gamma distribution

0|6 ~ IG(v,6) )

where v and § are two adjustable hyperparameters (referred to
as shape and scale parameters [8, p. 582]. This paper classically
assumes v = 1 (asin[14] or [15]) and estimates ¢ using a hierar-
chical Bayesian algorithm. Hierarchical Bayesian algorithms re-
quire to define prior distributions for the hyperparameters. This
paper assumes that the prior of ¢ is the non-informative Jeffreys’
prior defined by

F(8) o 10 (8).

3 (10)

This prior reflects the lack of knowledge regarding the hyperpa-
rameter §.

C. Posterior Distribution of the Parameters

The joint posterior distribution of the unknown parameter
vector @ = {a@, o} and hyperparameter § can be derived using
the hierarchical structure

(8, 6ly) o f(y]0)f(8]6)f(6)

where f(y|f) and f(6) have been defined in (4) and (10), re-
spectively. Assuming independence between the unknown pa-
rameters, the prior distribution of 8 is f(8]5) = f()f(c?|6),
yielding

Y

f(075|y)o<exp<_w _ 5) M (12)

20%c(a) (at)t/2gL+2’

The posterior distribution (12) is too complex to derive the
MMSE or MAP estimators of the unknown parameter vector
of interest, i.e., the vector of abundances a™. An interesting
alternative is to generate samples distributed according to the
posterior and to use the generated samples to approximate the
Bayesian estimators [8]. Section III studies a hybrid Gibbs
sampler that generates abundances and variances distributed
according to the full posterior (12).

III. HYBRID GIBBS SAMPLER

This section studies a hybrid Metropolis-within-Gibbs sam-
pler that generates samples according to the posterior f (6, 6|y).
The sampler iteratively generates @ according to f(aly, o?),
o2 according to f(o?|y, ,§), and § according to f(§|0?), as
detailed below. The overall hybrid Gibbs sampler algorithm is

summarized in Algorithm 1.

ALGORITHM 1: Hybrid Gibbs sampler for hyperspectral
unmixing using the NMC

1) Initialization:
+ Sample 6(*) from the probability density function (pdf)
in (10),
+ Sample 02" from the pdf in (9),
2) Iterations: Fort = 1,2,...,do
+ Sample o) from the pdf in (14) using
Metropolis-within-Gibbs step,
« Sample o) from the pdf in (16),
« Sample 6®* from the pdf in (17),

(0)

A. Generation According to f(aly,o?)
The Bayes’ theorem yields

flaly,o?) o f(yl) f(a) (13)



which easily leads to

flaly,o”)

Ly s@lPY
o () 50
(14)

Note that the conditional distribution of a is defined on the sim-
plex S. As a consequence, the abundance vector a™ satisfies
the positivity and sum-to-one constraints. The generation of «
according to (14) can be achieved using a Metropolis-within-
Gibbs algorithm. We have used the uniform prior distribution
(7) as proposal distribution for this algorithm.

B. Generation According to f (02|y,a, 6)

The conditional distribution of the variance o2 can be deter-
mined as follows:
F(o°ly,@,6) o< f(y10)f (7]6) - (15)

Consequently, 0|y, a,§ is distributed according to the fol-
lowing inverse-Gamma distribution:

L ly — w(a)|?
2

O~IG|l =41, ————+6]). 16
g |y7a, g <2 + ) 26(&) + ( )

C. Generation According to f (6|02)

The conditional distribution of § is

9 1
8o ~G |1, — (17)

o

where G(a, b) is the Gamma distribution with shape parameter
a and scale parameter b [8, p. 581].

IV. EXTENSION TO ENDMEMBER SPECTRA
WITH DIFFERENT VARIANCES

In the previous sections, all endmember spectra shared the
same variance o2. We propose here to extend the previous model
to the case where endmembers have different variances. This ad-
ditional degree of freedom can be particularly interesting when
different levels of confidence are given to the mean vectors m,
(r =1,..., R) identified by the N-FINDR or VCA algorithms.
Thus, a new vector 6 = [07,...,0%] T is introduced, where o2
is the rth endmember variance. This assumption leads to

erlm,,o? NN(mT,UfIL) . (18)

A. Identifiability Issue

1) General Theory: If the prior distributions chosen for o2
(r = 1,..., R) are not sufficiently informative, identifiablity
issues may occur. In order to clarify this identifiability problem,
assume that R endmembers are involved in the mixture, leading

to the following log-likelihood:

K(y, @)
C(a,0)

L
log f (ylo. @) = — log Co) — (19)

where K(y,a) = 1/2|ly—p(a)|® and C(a,0) =
SF 0202, Looking for the values of the vector ¢ which
maximize the log-likelihood, we equal its R partial derivatives
to zero

dlogf(Ylo) _ _ _Lof _ K(Ya)a] _ 0

o2 2C(a,0) [C(a,0)]2
: (20)
Ologf(Ylo) _ _ Loy _ K@y _

o3, - 2C(a,0) [Cla,0)]? —

which easily leads to
2K
Cla,0) = Zafaf =—.

Consequently, the likelihood f (y | o, @) has several maxima
located on the hyperplane H defined by

M {a: (o2,...,0%)"

C(a,0) = %} (21)

yielding identifiability problems.

However, this problem is alleviated when several pixels with
the same characteristics are considered. Assuming the variance
vector o is the same for P pixels (with P > 1), a linear system
of P equations is obtained

L 2.2 2K
Z Urar,l = L1
r=1

: (22)
-R 2 2 2K

Z UTQT,P = LP

r=1

where «,., denotes the abundance of the rth endmember in the
. T
pth pixel, K, = 1/2lly, — () [I*. @ = o1 ... vpo1,)

and y,, is the pth measured spectrum pixel (withp = 1,..., P).
This system can be rewritten as
2
Aoc=—K
I
with
2
a1y AR K,
A= K = : (23)
a%,P a%%,P Kp

Thus, the vector o maximizing the likelihood is unique provided
the rank of the matrix A is equal to R.

2) Examples: We illustrate the identifiability condition when
different numbers of pixels are generated from the mixture of
R = 2 endmembers. As an example, a pixel has been generated
with ¢ = [0.006,0.002]". Fig. 2 shows the corresponding log-
likelihood as a function of (0%, (7%) for P = 1 pixel. This figure
clearly shows that the maxima are reached for an infinity of
couples (07, 03) located on a hyperplane (here a line).

Fig. 3 shows the likelihood as a function of o for P = 2
pixels. A unique maximum can be observed since the rank of A
equals 2 for this example. The results depicted in Fig. 4 obtained
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Fig. 2. Likelihood for P = 1 pixel as a function of (o7, 532). (a) 3-D view. (b)
Top view.
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Fig. 3. Likelihood for P = 2 pixels as a function of (67, 03). (a) 3-D view.
(b) Top view.
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Fig. 4. Likelihood for P = 9 pixels as a function of (67, 032). (a) 3-D View.
(b) Top view.

for P = 9 pixels show that the likelihood is more peaky around
the true value of @ when more pixels are considered.

B. Hierarchical Bayesian Model

This section derives the hierarchical Bayesian model that can
be used to consider different endmember variances o2 (r =
1,..., R). Motivated by the considerations of the previous para-
graph, P pixel spectra are considered

=> e, p=1,....P (24)
where &, |m,.,02 ~ N (mr,ofIL), m, = [mp1,...,mep]"
represents the known mean vector of the endmember vector €,.,

T. .
ando = [0?,...,0%] isthe unknown variance vector. A stan-
dard matrix formulation yields
Y = FA (25)

where
Y11 Yyi,p
Y = : ) E = [517 7ER]
YL YyrL,p
and
1.1 ayp
A= (26)
QR1 QR P

)

The corresponding likelihood and prior distributions are de-
scribed next.
1) Likelihood: The likelihood function for the pixel #p is

1 ly, — 1 (ay) |
f(yp|ap70) X Wexp [_T%)]

with
E ar 'r'pa
a,) = E MOy ).
r=1

Assuming the pixel spectray, (p = 1,..., P) are a priori
independent, the joint likelihood for the set of P pixels can be
written

27)

P P 2
— o
H L/2 exp _Z ||1‘/p w(ay)l
s = 2¢(atp)
(28)
2) Prior Distributions: Independent uniform distributions on

the simplex defined in (6) are chosen as prior distributions for
the partial abundance vectors @, (p = 1,. .., P) yielding

A) o [] 1s(ay).

The prior distributions for the endmember variances are conju-
gate inverse Gamma distributions with a common hyperparam-
eter 0 [as in (9)]. A Jeffreys’ prior is assigned to the hyperpa-
rameter § as in (10).

f(Y|A, o)

(29)

V. MCMC ALGORITHM FOR ENDMEMBERS
WITH DIFFERENT VARIANCES

As in the previous case, a hybrid Metropolis-within-Gibbs
sampler will be used to generate samples asymptotically dis-
tributed according to the joint distribution of the abundance vec-
tors and endmember variances. The sampler iteratively gener-
ates a,, according to f (ap|yp7 a) for each pixelp = 1,..., P,
o2 according to f (oZ|o_,,Y, A, 6) for each endmembers r =
1,..., R (o_, denotes the variance vector & whose rth compo-
nent has been removed), and é according to f(4]o).



A. Abundance Generation

The conditional posterior distribution of the abundance vector
a,, does not depend on the other pixels and is expressed as

1 ly, — m(ay)|?
f (ap|yp,a‘) o [c(ap)]L/2 exp [ 2e(a,) ] 1s(ayp).
(30)
Generating a,, according to this posterior is achieved with a
Metropolis-within-Gibbs algorithm similar to the one described
in paragraph Section III-A.

B. Variance Generation

The generation according to f (02|o_,,Y, A) is achieved
by R Metropolis—Hastings moves. Each Metropolis—Hastings
move consists of drawing a variance o2 according to its condi-

tional distribution
f(ollo—., Y, A8) < f(Y|A,0)f (02|v,6)

. T .
with o_, = [o},...,0%_1,02,,,...,02] . Introducing
cla—y) = i, 02a2 straightforward computations lead to

(see the Appendix)

) 1 v+l P —1)2
f(UT|U—T7Y7A75)O( ﬁ H[ Oy 1p+c ]
T p—l
P
ly, — wley)I? 8
X exp -—|- GD
[ pz=:12 ora2p+c( D] o?

Sampling according to (31) is achieved thanks to a
Metropolis—Hastings step. The proposal distribution for
this algorithm is an inverse Gamma distribution

o ~IG (aq, Bs) (32)

where «, and 3, are adjustable parameters. These parameters
have been chosen in order to obtain the mean and the variance
of the distribution (16), which improves the acceptance rate of
the sampler.

C. Hyperparameter Generation

The conditional distribution of the hyperparameter 6 upon o
is the following Gamma distribution:

R
o~ G (R,Zﬁ).
r=1 T

A detailed step-by-step algorithm is presented in Algorithm 2.

(33)

ALGORITHM 2: Spectral unmixing using the NCM with
different endmember variances.

1) Initialization:
+ Sample the hyperparameter §(°) from the pdf in (10),

+ Sample 6(®) = a%(0)7 . .,012[2(0)} from the pdf in (9),

Reflectance

o o o o

N w B [$)]
d

o
256

Fig. 5. Endmember spectra: construction concrete (solid line), green grass
(dashed line).

+ For each pixel p, sample a®) according to a uniform

distribution on S,
2) Iterations: Fort = 1,2,...,do

e Forp=1,...,P,sample al()t) from the pdf in (31)
using Metropolis-within-Gibbs,

e Forr =1,...,R, sample 02( 2 from the pdf in (31)
using Metropohs within-Gibbs,

+ Sample 6® from the pdf in (17),

VI. SIMULATION RESULTS ON SYNTHETIC DATA

This section illustrates the performance of the two proposed
unmixing algorithms via simulations on synthetic data. The sim-
ulations have been conducted on pixels observed in L. = 276
spectral bands ranging from wavelength 0.4 ym to 2.5 pm (from
the visible to the near infrared).

A. NCM Algorithm With a Single Endmember Variance

The simulation depicted in this section have been obtained for
the NCM algorithm introduced in Section III. A synthetic mix-
ture of R = 2 endmembers is considered in this experiment.
This trivial example has the advantage of having few parame-
ters whose posteriors can be represented more easily. The means
of these endmembers m; and ms have been extracted from
the spectral libraries distributed with the ENVI package [16].
These spectra correspond to construction concrete and green
grass and are depicted in Fig. 5. The endmember variance is
0?2 = 0.01. The linear mixture considered in this section is
defined by a™ = [0.3,0.7]7. Fig. 6 shows the posterior dis-
tributions of the abundances generated by the proposed Gibbs
sampler with Nyic = 25000 iterations including Ny,; = 5000
burn-in iterations2. These distributions are in good agreement
with the actual values of the abundances. Fig. 7 shows the esti-
mated posterior distribution of o2 that is also in good agreement
with the actual endmember variance 02 = 0.01.

The proposed Gibbs algorithm has been also tested for dif-
ferent values of the signal-to-noise ratio (SNR). Fig. 8 shows
the abundance MAP estimates of a,. and the corresponding stan-
dard deviations as a function of the SNR. Note that the proposed
Bayesian algorithm allows one to derive confidence intervals for

2Classically, the first samples generated by the Gibbs sampler (belonging to
the so-called burn-in period) are not considered for parameter estimation.
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the different estimates. These confidence intervals are computed
from the samples generated by the Gibbs sampler. Note also that
the SNRs of the actual spectrometers like AVIRIS are not below
20 dB when the water absorption bands have been removed [17].
The results in Fig. 8 indicate that the proposed Bayesian algo-
rithm performs satisfactorily for these SNRs. Fig. 8 also shows
that the proposed estimates of «,. converge (in the mean square
sense) to the actual values of «,. when the SNR level increases.
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Fig. 9. Estimated posterior distribution of the variances for P = 3 pixels.
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Fig. 10. Estimated posterior distributions of the abundances for each pixel (top:
pixel 1, center: pixel 2, bottom: pixel 3).

B. NCM Algorithm With Different Variances

The performance of the algorithm introduced in Section IV is
illustrated with simulation results associated to synthetic data. In
these simulations, P = 3 pixels have been generated by mixing
R = 3 endmembers according to (24). The actual parameter
values are as follows.

e Pixel 1: af = [0.5,0.3,0.2]7, 02 = 0.004.

s Pixel 2: af = [0.4,0.1,0.5]7, 03 = 0.002.

s Pixel 3: ] = [0.1,0.3,0.6]7, 03 = 0.0035.

Fig. 9 shows the estimated posterior distributions of the vari-
ances 02 (r = 1,..., R) that are clearly centered around the
actual values. The histograms of the abundances generated for
each pixel by the proposed hybrid Gibbs sampler are depicted
in Fig. 10. These results are in good agreement with the actual
values of the abundances.

The performance of the algorithm based on different end-
member variances (described in Section IV) is compared to the



TABLE II
GLOBAL MSES OF EACH ABUNDANCE COMPONENT FOR
DIFFERENT UNMIXING ALGORITHMS ((X1072)

Bayesian NCM | Bayesian LMM | FCLS | MVC-NMF | NN-ICA
MSE? 7.8 13 9.1 7.7 18.2
MSE3 9.6 10.4 9.9 24.1 41.4
MSE3 8.5 23.2 10.2 45.4 45.2
MSE? 8.2 15.9 8.8 26.2 45.3
MSE2 10.2 14.8 11.5 12.5 46.8
MSE2 10.8 11.7 11.5 35.6 44.9
TABLE I

GLOBAL MSE OF THE ABUNDANCE VECTOR FOR THE NCM WITH UNIQUE
VARIANCE AND WITH DISTINCT VARIANCES

NCM with single variance
1.72 x 1072

NCM with multiple variances
1.54 x 1072

algorithm based on a single endmember variance (described in
Section III). P = 9 synthetic pixels, generated according to the
NCM with distinct variances, have been unmixed by the two dif-
ferent algorithms. The mean square errors (MSEs) of the abun-
dance vectors are then computed for these algorithms using 100
Monte Carlo runs. Table I summarizes the corresponding re-
sults. Taking into account several variances allows one to im-
prove the estimation performance for this example.

C. Comparison With Other Algorithms

This paragraph presents a comparison between the two algo-
rithms developed in this paper and other strategies previously
proposed in the literature. More precisely, we compare the fol-
lowing unmixing strategies:

e the proposed Bayesian NCM algorithm presented in

Section II;

¢ a Bayesian algorithm derived from the LMM [7];

* the fully constrained least-squares (FCLS) method [18];

* the minimum volume constrained nonnegative matrix fac-

torization (MVC-NMF) [19];
* the non-negative independent component analysis (NN-
ICA) [20].

The Bayesian NCM and the LMM-based algorithms of [7]
and [18] are coupled with the VCA algorithm as an endmember
extraction algorithm (EEA). Note that any other standard EEAs
(such as N-FINDR and pixel purity index [21]) could have been
used in place of VCA. P = 625 synthetic pixels are generated
according to the LMM with R = 6 endmembers, corrupted by
an additive Gaussian noise leading to an SNR equal to 20 dB.
To evaluate the robustness of the NCM to the absence of pure
pixels, the observations close to the endmember means (i.e.,
such that Hyp — mTH2 JL < 8,V p,r, with § = 6.0 x 1072)
have been removed from the synthetic image. The global MSE
of the rth estimated abundance is defined as

P
1 .
MSE? = 5 Z(ar,p —app)?

p=1

(34)

where &,.,, denotes the MMSE estimate of the abundance o .
Table IT shows the global MSEs for the five different unmixing

Fig. 11. Real hyperspectral data: Moffett field acquired by AVIRIS in 1997
(left) and the region of interest shown in true colors (right).

Water Soil Vegetation
§ 0.02 § 0.5 g 0.4 A
8 8 \ 8 “\
§ 0 - G & 0 N § 0
05 1 15 2 25 05 1 15 2 25 05 1 15 2 25
Wavelength(um) Wavelength(um) Wavelength(um)

Fig. 12. R = 3 endmember spectra obtained by the N-FINDR algorithm.

TABLE III
RECONSTRUCTION ERRORS FOR THE BAYESIAN NCM, THE
BAYESIAN LMM AND THE FCLS ALGORITHMS

NCM
e | 1.26

LMM
1.32

FCLS
1.28

strategies mentioned before (Bayesian NCM, Bayesian LMM,
FCLS, MVC-NMF and NN-ICA). The proposed Bayesian
NCM algorithm performs significantly better than the other
unmixing algorithms. The improved performance obtained
with the NCM is due to the robustness of this model (when
compared to the usual LMM) to the absence of pure pixels in
the image.

As a complementary study for this set of pixels, the global
reconstruction error defined by

(35)

is reported in Table III for the Bayesian NCM, the Bayesian
LMM and the FCLS algorithms3. Note that the Bayesian LMM
and FCLS algorithms require the a priori knowledge of deter-
ministic endmembers my, ..., mp contained in the matrix M.
Consequently, the actual endmember matrix M is also used for
computing the reconstruction error associated to the NCM algo-
rithm for fair comparison. As shown in Table III, the Bayesian
NCM yields the smaller reconstruction error.

3The MVC-NMF and NN-ICA algorithms have not been considered for this
comparison since they estimate the endmembers and abundances jointly. Thus,
small reconstruction errors for these algorithms do not indicate a good spectral
unmixing.
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Fig. 13. Top: fraction maps estimated by the LMM algorithm (from [19]). Middle: fraction maps estimated by the FCLS algorithm [18]. Bottom: fraction maps
estimated by the proposed algorithm (black (resp. white) means absence (resp. presence) of the material).

VII. SPECTRAL UNMIXING OF AN AVIRIS IMAGE

This section considers a real hyperspectral image of size
50 x 50 depicted in Fig. 11 to evaluate the performance of the
different algorithms. This image has been extracted from a
larger image acquired in 1997 by the Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) over Moffett Field, CA. The
data set has been reduced from the original 224 bands to
L = 189 bands by removing water absorption bands. First,
the image has been preprocessed by a PCA to determine the
number of endmembers present in the scene as explained in
[1]. Then, the N-FINDR algorithm has been applied to this
image to estimate the endmember spectra. The R = 3 extracted
endmembers (shown in Fig. 12) correspond to vegetation, water
and soil, and have been used as the mean vectors m1, ms and
ms.

A. NCM Algorithm With a Single Endmember Variance

The image fraction maps estimated by the algorithm proposed
in Sections II and I1I (for the R = 3 pure materials) are depicted
in Fig. 13 (bottom). Note that a white (resp. black) pixel in the
map indicates a large (resp. small) value of the abundance co-
efficient. Thus, the lake area (represented by white pixels in the
water fraction map and by black pixels in the other maps) can be

2 = -4 2 = -5
GMAP—1.5x10 cMAP—2.5x10

Posterior distribution of o2

Posterior distribution of 2

2.5 2 3 4
x 10

Fig. 14. Posterior distributions of the variance o for the pixels #(35,43) (left)
and #(43,35) (right) estimated by the proposed algorithm.

clearly recovered. These results have been compared to the frac-
tion maps estimated with the LMM Bayesian algorithm (pro-
posed in [7]) and the FCLS method [18]. As depicted in Fig. 13,
the fraction maps obtained with the three algorithms are clearly
in good agreement. Other results given by the MVC-NMF [19]
and the NN-ICA [20] are detailed in [22].

Some results regarding the estimation of the endmember vari-
ance o are also presented. Fig. 14 shows the estimated poste-
rior distributions of 2 for the pixels #(35,43) (left) and #(43,35)
(right) of the image as well as their MAP estimates.

The proposed Bayesian algorithm can be used to estimate the
probability of endmember presence defined as P, > n|m;],

x 10

5
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Fig. 15. Areas of water, soil, and vegetation analyzed for the probability of

presence.

TABLE 1V
PROBABILITY OF PRESENCE FOR EACH ENDMEMBER

Zone 1 Zone 2 Zone 3
n=098 | =09 | n=0.8
P[awater > 'rllmwater] 0.9922 0 0
Plawsoit > 1| Msoil] 0 0.5147 | 0.0556
P[avegetation > nlmveg] 0 0 0.2774
TABLE V
MMSE ESTIMATE OF 62(r = 1,..., R)
Soil Vegetation Water
MMSE estimates | 1 x 107* | 6.9x 1073 | 1 x 107*

where 7 is a given threshold. Three distinct zones of 6 X 6
pixels, depicted in Fig. 15, have been analyzed to estimate
these probabilities. The first region (zone 1) has been extracted
from the lake area and thus contains a majority of water pixels.
Conversely, the other two regions (zones 2 and 3) are coastal
areas containing soil and vegetation. Table IV shows the result
obtained for different thresholds in each analyzed area.

B. NCM Algorithm With Distinct Endmember Variances

This hyperspectral image has also been analyzed by the algo-
rithm detailed in Section IV to evaluate its performance. As the
algorithm requires more than one pixel, the image has been di-
vided into 256 blocks of 3 x 3 pixels. Thus, the analyzed area*
has been reduced to 48 x 48. The estimated variances for the
endmembers associated to the block centered around the pixel
#(35,43) are shown in Table V.

4Only the right and bottom edges of the image are not studied, which is a very
small area compared to the full size of the image.

VIII. CONCLUSION

A new hierarchical Bayesian unmixing algorithm was de-
rived for hyperspectral images. This algorithm was based on
the normal compositional model introduced by Eismann and
Stein [4]. The proposed algorithm generated samples dis-
tributed according to the joint posterior of the abundances, the
endmembers variances and one hyperparameter. These samples
were then used to estimate the parameters of interest. The
proposed algorithm has several advantages versus the standard
LMM-based algorithms. In particular, it allows one to extend
the standard model to the case where endmember spectra have
different variances. The simulation results on synthetic and real
data showed very promising results.

Perspectives include the generalization of the NCM algo-
rithm to more advanced models. For instance, the hyperspectral
images could be considered as a set of homogenous regions
surrounded by sharp boundaries. In this case, neighborhood
conditions for the abundances could be introduced to improve
unmixing.

APPENDIX
POSTERIOR DISTRIBUTION f(o2|o_,..Y, A, M)

By using the Bayes’ theorem, the posterior distribution
f(02|le_,,Y, A, M) can be written

f(ollo—r, Y, A, M) < [(Y|A,0,M)f (o2|v,8)  (36)
which leads to
P 1\ L2
f(o%lo_,,Y,A M) o ( >
( b= {7,
P 2
lly, — m(ay)l]
xexp | — —_—
p; 2c(ay)
1\"*! §
() ()
This conditional posterior distribution can be rewritten
f(oflo-r Y, A M)
1 v+1 P - —L/2
= H(J,,arvp—}—c(a,r))
T p=1
P 2
Y, — Ml 0
con(C3 B oHwIE 0
= (JTaT’P—f—c(a_r)) o2
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