Nonlinear unmixing of hyperspectral images using a generalized bilinear model - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Geoscience and Remote Sensing Année : 2011

Nonlinear unmixing of hyperspectral images using a generalized bilinear model

Résumé

Nonlinear models have recently shown interesting properties for spectral unmixing. This paper studies a generalized bilinear model and a hierarchical Bayesian algorithm for unmixing hyperspectral images. The proposed model is a generalization not only of the accepted linear mixing model but also of a bilinear model that has been recently introduced in the literature. Appropriate priors are chosen for its parameters to satisfy the positivity and sum-to-one constraints for the abundances. The joint posterior distribution of the unknown parameter vector is then derived. Unfortunately, this posterior is too complex to obtain analytical expressions of the standard Bayesian estimators. As a consequence, a Metropolis-within-Gibbs algorithm is proposed, which allows samples distributed according to this posterior to be generated and to estimate the unknown model parameters. The performance of the resulting unmixing strategy is evaluated via simulations conducted on synthetic and real data.
Fichier principal
Vignette du fichier
Halimi_5046.pdf (441.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03545147 , version 1 (27-01-2022)

Identifiants

Citer

Abderrahim Halimi, Yoann Altmann, Nicolas Dobigeon, Jean-Yves Tourneret. Nonlinear unmixing of hyperspectral images using a generalized bilinear model. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49 (11), pp.4153-4162. ⟨10.1109/TGRS.2010.2098414⟩. ⟨hal-03545147⟩
46 Consultations
65 Téléchargements

Altmetric

Partager

More