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Nonlinear Unmixing of Hyperspectral Images
Using a Generalized Bilinear Model
Abderrahim Halimi, Yoann Altmann, Nicolas Dobigeon, Member, IEEE, and

Jean-Yves Tourneret, Senior Member, IEEE

Abstract—Nonlinear models have recently shown interesting
properties for spectral unmixing. This paper studies a generalized
bilinear model and a hierarchical Bayesian algorithm for unmix-
ing hyperspectral images. The proposed model is a generalization
not only of the accepted linear mixing model but also of a bi-
linear model that has been recently introduced in the literature.
Appropriate priors are chosen for its parameters to satisfy the
positivity and sum-to-one constraints for the abundances. The
joint posterior distribution of the unknown parameter vector is
then derived. Unfortunately, this posterior is too complex to obtain
analytical expressions of the standard Bayesian estimators. As a
consequence, a Metropolis-within-Gibbs algorithm is proposed,
which allows samples distributed according to this posterior to be
generated and to estimate the unknown model parameters. The
performance of the resulting unmixing strategy is evaluated via
simulations conducted on synthetic and real data.

Index Terms—Bayesian algorithm, bilinear model, Gibbs sam-
pler, hyperspectral imagery, Markov chain Monte Carlo (MCMC)
methods, spectral unmixing.

I. INTRODUCTION

OVER the last few decades, spectral unmixing has been
receiving considerable attention in the signal and image

processing literature (see, for instance, [1] and the references
therein). Unmixing hyperspectral images is based on the as-
sumption that a pixel spectrum is a combination of pure con-
stituent spectra, or endmembers, and a set of corresponding
fractions, or abundances, that indicate the proportion of each
endmember present in the pixel. The mixture model associated
with spectral unmixing imagery can be linear or nonlinear,
depending on the hyperspectral image under study. Linear
mixtures known as macrospectral mixtures are interesting when
the detected photons interact mainly with a single component
on the scene before they reach the sensor. Conversely, nonlinear
mixture models result from the interaction of photons with
multiple components. Linear mixing models (LMMs) have
motivated a lot of research works in the geoscience community
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[2]–[6]. However, nonlinear models constitute a new interesting
field of research for hyperspectral imagery [7], [8]. In partic-
ular, nonlinear models have shown interesting properties for
abundance estimation, e.g., for scenes including mixtures of
minerals [9], orchards [10], or vegetation [11]–[13].

This paper studies a generalized bilinear model (GBM) for
nonlinear unmixing of hyperspectral images due to multipath
effects. This model is a generalization not only of the usual
LMM but also of a bilinear model that has been recently intro-
duced by Fan et al. in [9]. Spectral unmixing includes two main
steps. The first step (referred to as endmember extraction) con-
sists of extracting endmembers from the hyperspectral image.
This extraction can be achieved in a supervised manner when
prior information about the image is available. For instance,
one might recognize classes of pure materials in the image
and select the associated endmembers to create a learning set
containing samples belonging to the different classes. When
this information is not available, an automatic endmember
extraction algorithm (EEA) has to be considered. Automatic
EEA include the pixel purity index [14], the N-FINDR [15],
and the vertex component analysis (VCA) [16]. They assume
that the data set contains at least one pure pixel for each
endmember (which is not always a realistic assumption) and
extract the purest pixels from the image. The second step, called
inversion, consists of estimating the corresponding abundances
under positivity and sum-to-one constraints. Many different
algorithms have been proposed in the literature to estimate the
abundances for the LMM. These algorithms are based on the
least square principle [3], maximum likelihood estimation [17],
or Bayesian algorithms [18], [19]. Estimating the abundances
for nonlinear models is a more challenging problem. Almost all
algorithms for the unmixing of nonlinear models are based on
the least square estimators as in [8], [9], and [13]. Some other
methods based on support vector machines (SVMs) [20] and
neural networks [21] have also been recently investigated.

This paper studies a Bayesian algorithm to estimate the
abundance coefficients and the noise variance of the GBM.
Appropriate prior distributions are chosen for the unknown
GBM parameters. The joint posterior distribution of these
parameters is then derived. However, the classical minimum
mean square error (MMSE) and maximum a posteriori (MAP)
estimators cannot be easily computed from this joint posterior.
A classical way of alleviating this problem is to generate
samples distributed according to the posterior using Markov
chain Monte Carlo (MCMC) methods. These methods can also
be used to estimate the model hyperparameters via hierarchical
Bayesian inference. For that purpose, prior distributions for
the hyperparameters have to be defined, introducing a second
level of hierarchy into the Bayesian formulation. As in any



Bayesian algorithm, the joint posterior distribution can be also
used to compute confidence intervals for the parameter and hy-
perparameter estimates. Note that these hierarchical Bayesian
algorithms have already been applied successfully to linear
unmixing of hyperspectral images in [18] and [22]–[24].

This paper is structured as follows. Section II presents the lin-
ear and bilinear models considered in this study. The different
components of the Bayesian algorithms associated with these
models are studied in Section III. Section IV introduces the
Metropolis-within-Gibbs sampler which will be used to gen-
erate samples according to the joint posterior of the unknown
parameters and hyperparameters. Section V analyzes the qual-
ity of the proposed unmixing procedure. Section VI investigates
the behavior of the proposed algorithm when applied to a single
synthetic pixel. The simulation results obtained with synthetic
data are presented in Section VI, whereas simulation results
on real images are presented in Section VIII. Conclusions and
future works are finally reported in Section IX.

II. UNMIXING MODELS

A. LMM

The physical assumption underlying the LMM is that each
incident photon interacts with one Earth surface component
only and that the reflected spectra do not mix before entering the
sensor [1], [10]. In this case, the L-spectrum y = [y1, . . . , yL]

T

of a mixed pixel can be expressed as a mixture of R endmem-
bers mk with additive noise [18]

y =

R∑
k=1

αkmk + n = Mα+ n (1)

where M is the L×R matrix whose columns are the L× 1
endmember spectra mk = [m1,k, . . . ,mL,k]

T, k = 1, . . . , R,
α = [α1, . . . , αR]

T is the R× 1 fractional abundance vector,
and n = [n1, . . . , nL]

T is an additive white noise sequence.
The additive noise is classically assumed to be an independent
and identically distributed zero-mean Gaussian sequence with
variance σ2, denoted as n ∼ N (0L, σ

2IL), where IL is the
identity matrix of dimension L× L. As mentioned in the
literature [1], [25], the abundances have to satisfy the following
positivity and sum-to-one constraints:

αk ≥ 0 ∀k ∈ {1, . . . , R} and
R∑

k=1

αk = 1. (2)

B. Bilinear Mixing Model

Nonlinear mixture models account for the presence of multi-
ple photon interactions by introducing additional “interaction”
terms in the LMM [10]. The bilinear model considers second-
order interactions between endmembers #i and #j (for i,
j = 1, . . . , R and i �= j) such that the observed mixed pixel y
can be written as

y = Mα+

R−1∑
i=1

R∑
j=i+1

βi,jmi �mj + n

where � is the Hadamard (term-by-term) product operation

mi �mj =




m1,i

...
mL,i


�




m1,j

...
mL,j


 =




m1,im1,j

...
mL,imL,j


 .

It is interesting to mention here that different bilinear models
have been proposed in the literature. These models differ by the
additivity constraints imposed on the abundances. For instance,
the model proposed in [13], referred to as “Nascimento model,”
is based on the following constraints:

R∑
k=1

αk +
R−1∑
i=1

R∑
j=i+1

βi,j = 1

whereas the model studied in [9], referred to as “Fan model”
(FM), is defined by

R∑
k=1

αk = 1 βi,j = αiαj .

The GBM studied in this paper assumes that the observed
mixed pixel can be written as

y = Mα+
R−1∑
i=1

R∑
j=i+1

γi,jαiαjmi �mj + n (3)

with the following constraints for the different parameters:

αk ≥ 0 ∀k ∈ {1, . . . , R} and
R∑

k=1

αk = 1

0 ≤ γi,j ≤ 1 ∀i∈{1, . . . , R− 1} ∀j∈{i+1, . . . , R}.
(4)

Note that γi,j is a coefficient that controls the interactions
between endmembers #i and #j in the considered pixel. An
important property of the GBM is that it reduces to LMM for
γi,j = 0 ∀i = 1, . . . , R− 1, j = i+ 1, . . . , R, and to FM for
γi,j = 1 ∀i = 1, . . . , R− 1, j = i+ 1, . . . , R. The unknown
parameter vector θ associated with the GBM includes the
abundance vector α, the nonlinearity coefficient vector γ =
[γ1,2, . . . , γR−1,R]

T, and the noise variance σ2. To understand
the physics related to this model, assume that there are only
two components “tree” and “soil” present in the observed pixel.
The hyperspectral sensor will receive signals backscattered by
the tree and the soil independently, corresponding to the terms
α1m1 and α2m2. However, it will also receive interaction
terms resulting from multiple scattering of photons between
the two components “tree” and “soil” (which can be seen as
multipath terms). For instance, if the signal is first backscattered
by the tree and then backscattered by the soil, the hyperspectral
sensor will receive an interaction term γ12α1α2m1m2. It
makes sense to assume γ12 ≤ 1 since the path associated to the
two reflections on the tree and the soil is longer than the direct
paths associated to the tree only and soil only signals (result-
ing in smaller amplitudes). Note that higher order interaction
terms are also received by the hyperspectral sensor. However,
experiments conducted in [10] have shown that these higher



order terms can be neglected. The reader is invited to consult
[9], [10], and [13] for more details.

III. HIERARCHICAL BAYESIAN MODEL

This section introduces the hierarchical Bayesian model used
to estimate the unknown parameter vector θ = (αT ,γT, σ2)T

associated with the GBM.

A. Likelihood

The observation model defined in (3) and the Gaussian
properties of the noise sequence n yield

f(y|θ) =
(

1

2πσ2

)L
2

exp

[
−‖y − µGBM‖2

2σ2

]
(5)

where µGBM = Mα+
∑R−1

i=1

∑R
j=i+1 γi,jαiαjmi �mj

and ‖ · ‖ denotes the standard l2 norm such that ‖x‖2 = xTx.

B. Parameter Prior Distributions

This section details the prior distributions associated with the
parameter vector θ.

1) Abundance Prior: The sum-to-one constraint can be en-
compassed by expressing one abundance αk∗ as a function of
the others

αk∗ = 1−
∑
k �=k∗

αk.

As a consequence, the positivity and sum-to-one constraints
(4) are satisfied if α\k∗ = [α1, . . . , αk∗−1, αk∗+1, . . . , αR]

T

belongs to the following simplex:

S\k∗ =


α\k∗ |αk≥0 ∀k �=k∗ and

∑
k �=k∗

αk≤1


 . (6)

The prior chosen for α\k∗ is a uniform distribution on the
simplex S\k∗ since there is no additional information about this
parameter vector. For any α\k∗ ∈ S\k∗ , the abundance vector
can be computed as follows:

α =


α1, . . . , αk∗−1, 1−

∑
k �=k∗

αk, αk∗+1, . . . , αR



T

which shows that the abundance vector can be determined as
a function of α\k∗ ∈ S\k∗ . The resulting abundance vector

has a singular probability density function (pdf) f(α) whose
support is

Sα =

{
α|αi ≥ 0, i = 1, . . . , R and

R∑
i=1

αi = 1

}
. (7)

2) Nonlinearity Parameter Prior: The parameters γi,j are
supposed to be positive as in [10] and [13] and less than one,
reflecting the fact that the interaction abundances are always
smaller than the product of the individual abundances. Since
there is no other information about the nonlinearity parameters,
each coefficient γi,j is assigned a uniform prior on the interval
[0, 1]. Assuming the parameters γi,j are a priori independent,
the prior pdf of γ can be written as

f(γ) =
R−1∏
i=1

R∏
j=i+1

I[0,1](γi,j) (8)

where I[0,1](.) is the indicator function defined on [0, 1].
3) Noise Variance Prior: It is very common to assign a

conjugate inverse gamma prior to the noise variance parameter

σ2|ζ1, ζ2 ∼ IG
(
ζ1
2
,
ζ2
2

)
(9)

where ζ1 and ζ2 are two hyperparameters. For simplicity, we
set ζ1 = 2 and ζ2 = ζ, in order to have a single adjustable
hyperparameter ζ. This simplifying assumption has previously
been applied successfully, e.g., in [18].

4) Hyperparameter Prior: A noninformative Jeffreys’ prior
is chosen for the hyperparameter ζ, which reflects the absence
of knowledge about this hyperparameter [26]

f(ζ) ∝ 1

ζ
IR+(ζ). (10)

C. Posterior distribution of θ

The posterior distribution of the parameter vector θ can be
computed as follows:

f(θ|y) ∝
∫

f(y|θ)f(θ|ζ)f(ζ) dζ (11)

where ∝ means “proportional to,” f(y|θ) is the likelihood
function defined in (5), and f(θ|ζ) = f(α)f(γ)f(σ2|ζ) (as-
suming a priori independence between all the parameters).
After substituting the likelihood and the priors in (11) and inte-
grating out with respect to the hyperparameter ζ, the posterior
of θ|y can be written as

f(θ|y) ∝ 1

σL+2
exp

[
−‖y − µGBM‖2

2σ2

]
f(γ)f(α). (12)

The MMSE and MAP estimators associated with the pos-
terior (12) are not easy to determine mainly because of the
positivity and sum-to-one constraints contained in f(α). The
next section presents a Metropolis-within-Gibbs algorithm that
allows samples distributed according to the joint distribution
f(θ|y) to be generated. These samples are then used to estimate
the unknown parameters.



IV. METROPOLIS-WITHIN-GIBBS ALGORITHM

A. Generating Samples According to f(α,γ, σ2|y)
The principle of the Gibbs sampler is to generate samples ac-

cording to the conditional distributions relative to the posterior
distribution. When a conditional distribution cannot be sampled
directly, an alternative consists of sampling according to a
proposal distribution (whose support includes the support of the
target distribution). The candidate is then accepted or rejected
with an appropriate probability. The resulting algorithm whose
sketch is described in Algorithm 1 (see the Appendix A) is
classically referred to as Metropolis-within-Gibbs algorithm.
In the considered unmixing problem, to simulate according to
f(α,γ, σ2|y), the Gibbs sampler iteratively generates samples
distributed according to the conditional distributions:

1) f(αk|γ, σ2,y,α\{k,k∗}) ∀k �= k∗;
2) f(γi,j |α, σ2,y,γ\(i,j)) ∀i �= R ∀j ∈ {i+ 1, . . . , R};
3) f(σ2|y,α,γ)

that are derived in the Appendix A, where the following nota-
tions have been used:

α
(t)
i:j =

(
α
(t)
i , . . . , α

(t)
j

)
α

(t)
\{k,k∗} =

(
α

(t)
1:k−1,α

(t−1)
k+1:k∗−1,α

(t−1)
k∗+1:R

)
γ
(t)
\(i,j) =

{
γ
(t)
1,2, . . . , γ

(t)
i,j−1, γ

(t−1)
i,j+1, . . . , γ

(t−1)
R−1,R

}
.

The interested reader is invited to consult [27] for more
details about Gibbs and Metropolis-within-Gibbs samplers,
including the proofs of convergence of these algorithms.

B. Approximating the Bayesian Estimators

The Gibbs sampler introduced earlier generates a collection
of NMC samples

Xθ =
{
σ2(t),α

(t)
\k∗ ,γ

(t)
}
t=1,...,NMC

that are asymptotically distributed according to the joint pos-
terior f(σ2,α\k∗ ,γ|y) in (12). Moreover, after a short burn-in
period Nbi, the sequences

Xσ2 =
{
σ2(t)
}
t=1,...,NMC

Xα\k∗ =
{
α

(t)
\k∗

}
t=1,...,NMC

Xγ =
{
γ(t)
}
t=1,...,NMC

form Markov chains whose stationary distributions are
f(σ2|y), f(α\k∗ |y), and f(γ|y), respectively [27]. Conse-
quently, the MMSE estimators of these parameters can be
approximated by empirical averages over the last Nr = NMC −
Nbi outputs of the sampler. More precisely, the MMSE es-
timates of the noise variance σ2, the abundances αk (k =
1, . . . , R), and the nonlinearity parameters γi,j (i = 1, . . . , R−
1, j = i+ 1, . . . , R) are computed as follows:

x̂(MMSE) = E[x|y] ≈ 1

Nr

Nr∑
t=1

x(Nbi+t) (13)

where x is the parameter of interest.

V. UNMIXING PERFORMANCE

This section introduces the criteria used to evaluate the
quality of the unmixing strategy. The quality of the unmixing
strategy for synthetic images can be measured by comparing
the estimated and actual abundances by using the root mean
square error (RMSE) [28]

RMSE =

√√√√ 1

nR

n∑
p=1

‖α(p)− α̂(p)‖2 (14)

where α(p) and α̂(p) are the actual and estimated abundance
vectors of the pth pixel of the image and n is the number
of pixels. The relative RMSE (RRMSE) can also be used by
computing for each material

RRMSEj =

√
1
n

n∑
p=1

(αj(p)− α̂j(p))
2

1
n

n∑
p=1

αj(p)
.

In the case of real hyperspectral images, the reconstruction
error (RE) is classically used to evaluate the quality of an
unmixing method [1], [21]

RE =

√√√√ 1

nL

n∑
p=1

‖ŷ(p)− y(p)‖2

where L is the number of spectral bands and y(p) and ŷ(p)
are the measured and estimated spectra for the pixel #p. The
following spectral angle mapper (SAM) is also used to estimate
the performance of the unmixing procedure [1]:

SAM =
1

n

n∑
p=1

θ [y(p), ŷ(p)]

where

θ [y(p), ŷ(p)] = arccos

(
〈y(p), ŷ(p)〉

‖y(p)‖ ‖ŷ(p)‖

)

and arccos(·) is the inverse cosine operator.

VI. SIMULATION RESULTS ON A SYNTHETIC PIXEL

Many simulations have been conducted to validate the pro-
posed unmixing algorithm. The first experiment considers a
synthetic pixel defined as a GBM combination of three pure
components (green grass, olive green paint, and galvanized
steel metal) extracted from the ENVI software library. The
abundances have been fixed to α1 = 0.3, α2 = 0.6, and α3 =
0.1 and the nonlinearity coefficients as γ1,2 = 2/3, γ1,3 = 1/3,
and γ2,3 = 2/3. The observed spectrum has been corrupted by
additive white Gaussian noise with variance σ2 = 2.8× 10−3

corresponding to a signal-to-noise ratio SNR = 15 dB, with
SNR = L−1σ−2‖y − n‖2. The unmixing algorithm has been
run using Nbi = 300 burn-in iterations and Nr = 700 iterations
to compute the different estimates following the MMSE prin-
ciple (13). The MMSE estimates of the abundances and the



Fig. 1. (Cross) MMSE estimates and (vertical bars) standard deviations of
(top) α1, α2, α3 and (bottom) γ1,2α1α2, γ1,3α1α3 and γ2,3α2α3 versus
SNR. (a) Abundances of endmembers. (b) Abundances of endmember products.

corresponding standard deviations are represented as functions
of the SNR in Fig. 1. These results have been obtained by
running 30 Markov chains for each value of SNR. They are
in good agreement with the actual values of abundances (red
lines), particularly for high SNRs [note that the actual spec-
trometers, like Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS), provide images with SNR levels that are higher than
20 dB when the water absorption bands have been removed].
The small deviations between the MMSE estimates and the
actual values of the nonlinear abundances γ1,2α1α2, γ1,3α1α3,
and γ2,3α2α3 are mainly due to the resemblance between the
pure endmembers and some of the “endmember products”
mi �mj . However, the effect of these deviations can be easily
neglected since they are of small amplitudes.1 The convergence
issues related to this single pixel unmixing have been addressed
in [29].

VII. COMPARISONS

Four synthetic images (10 × 10 pixels) have been
generated using linear and/or nonlinear models to evalu-

1Note that different scales have been used in the plots of Fig. 1, which makes
the errors more visible for the nonlinear abundances.

TABLE I
MIXING MODELS USED TO GENERATE THE SYNTHETIC IMAGES

ate the performance of the proposed method. The three
endmembers considered before have been used to gener-
ate mixtures according to the different models reported in
Table I. Note that the 4th image has been generated using
a hybrid model, i.e., half of the pixels have been generated
with the standard LMM and half of the pixels have been
generated with the GBM. The abundance vectors α(p) (p =
1, . . . , 100) have been generated uniformly on the simplex with
a cutoff threshold fixed to 0.8, i.e., αk(p) ≤ 0.8, k = 1, . . . , R.
This means that there is no pure pixel in the generated im-
ages. The nonlinearity coefficients are uniformly drawn in the
set [0, 1] for the GBM. All images have been corrupted by
an additive Gaussian noise of variance σ2 = 2.8× 10−3. To
evaluate the influence of the endmember extraction step on
the unmixing algorithm accuracy, two scenarios have been
considered.

1) The first scenario considers that the actual endmembers
are used to unmix the synthetic images.

2) The second scenario uses an EEA to identify spectra used
in the inversion step (here, the VCA [16]). This scenario
will allow one to measure the influence of the absence of
pure pixels in the images.

Note that VCA is an algorithm that looks for the simplex of
largest volume inside the data. It relies on the standard LMM
and exploits the fact that the endmembers are the vertices of a
simplex. However, it is possible to assume that the endmembers
are still extreme spectra when small nonlinearities occur (see
[28] and [29] for more details).

The performance of the proposed algorithm is compared with
the performance of other unmixing strategies specifically ded-
icated to other linear and/or nonlinear models. The algorithm
proposed in [9] for a bilinear model denoted FM and introduced
in Section II-B is applied on the four synthetic images. Two
linear unmixing algorithms, proposed in [3] and [18], have been
also considered. The strategy proposed in [18] defines priors for
the abundances satisfying additivity and positivity constraints
and estimates the unknown model parameters using Bayesian
inference. Finally, the fully constrained least square (FCLS)
algorithm [3] formulates the linear unmixing of hyperspectral
images as a constrained optimization problem.

A. Performance With Actual Endmembers (First Scenario)

Table II reports the REs and SAMs obtained by unmixing the
four images with the different algorithms. Obviously, the most
appropriate algorithm to unmix a given image is the algorithm
based on the corresponding model. However, it can be also
noticed that the proposed GBM coupled with the proposed
algorithm is able to handle all mixing models efficiently. In-
deed, it provides good results for all images. Another means
of evaluating the performance of the unmixing for synthetic
images is to compute the RMSE between the estimated and



TABLE II
UNMIXING ALGORITHM PERFORMANCES WITH ACTUAL AND ESTIMATED ENDMEMBERS (FIRST AND SECOND SCENARIOS): RE AND SAM

TABLE III
UNMIXING ALGORITHM PERFORMANCES WITH ACTUAL

ENDMEMBERS (FIRST SCENARIO)

TABLE IV
UNMIXING ALGORITHM PERFORMANCES WITH ESTIMATED

ENDMEMBERS (SECOND SCENARIO)

actual abundances, as defined by (14). These RMSE values are
depicted in Table III, which shows that the GBM is a good
compromise between all of the models.

B. Performance With Estimated Endmembers
(Second Scenario)

The influence of the endmember extraction step has been
evaluated by unmixing the synthetic images with endmem-
bers recovered by VCA. Note that there is no pure pixel
in these images, as explained previously. Consequently, the
inversion procedures applied on the images rely on approx-
imated endmembers. The REs and SAMs obtained with the
different algorithms on the four images are reported in Table II.
The corresponding abundance RMSE values are shown in
Table IV. Since the endmembers used to estimate the abun-
dances are approximated, a degradation with respect to Tables II
and III can be observed. However, the GBM and its associated
Bayesian algorithm are more robust to the imperfect knowledge
of endmembers. This robustness can be explained by the intrin-
sic flexibility of the proposed GBM when compared to the other
models.

Table V shows the RRMSEs between the actual and esti-
mated abundances (using the GBM) for image 4. The RRMSEs
obtained for the abundances α1, . . . , α3 are smaller than those
obtained for the nonlinearity coefficients γ1,2, . . . , γ2,3. This
can be explained by the fact that each γi,j is multiplied by the

TABLE V
RELATIVE RMSE FOR THE GBM-BASED UNMIXING OF IMAGE 4

TABLE VI
COMPUTATIONAL TIMES OF THE UNMIXING ALGORITHMS WITH ACTUAL

AND APPROXIMATED ENDMEMBERS (IN SECONDS)

factor αiαj to obtain the corresponding abundance of the end-
member product mi �mj . Consequently, when the abundance
product α̂iα̂j is small, the estimated nonlinearity coefficient
γ̂i,j can differ from its actual value without introducing a sig-
nificant difference in the RE. Table VI shows the computational
times of MATLAB implementations on a 1.66-GHz dual-core
PC of the studied algorithms. The proposed algorithm exhibits
a higher computational complexity when compared to the other
algorithms. However, it provides better unmixing performance
than the other unmixing strategies.

VIII. SPECTRAL UNMIXING OF AVIRIS IMAGES

This section illustrates the performance of the proposed
algorithm when applied to a real hyperspectral data set. The
real images used in this section are described in Section VIII-A.
The endmembers that are present in the two considered scenes
are extracted in Section VIII-B. The abundance estimation is
finally presented in Section VIII-C, whereas the quality of the
unmixing is studied in Section VIII-D.

A. Description of the Hyperspectral Data

The first hyperspectral image has received much attention
in the remote sensing community [25], [30]. This image was



Fig. 2. R = 3 endmember spectra obtained by VCA for (top) Moffett Field
and (bottom) Cuprite.

acquired over Moffett Field, CA, in 1997 by the AVIRIS. The
proposed unmixing algorithm has been applied on a 50 × 50
subimage. This area of interest has L = 203 spectral bands after
removing water absorption bands and is mainly composed of
three components: water, soil, and vegetation [18].

The second image was acquired also by AVIRIS over the
Cuprite mining site, Nevada, in 1997. The image of interest
(which is of size 50 × 50) has 189 spectral bands. The geologic
characteristics of this area, dominated by muscovite, alunite,
and cuprite, have been investigated in [31].

B. Endmember Determination

The first step in the unmixing procedure is endmember
determination. The endmember spectra can be determined by
averaging the pixel spectra on appropriate regions of interest
when preliminary knowledge is available. However, when no
a priori knowledge is available, a fully automatic procedure is
required. The extraction of endmembers from the AVIRIS im-
ages has been performed by VCA. As explained in Section VII,
using an EEA that looks for the vertices of a simplex is allowed
to perform nonlinear unmixing. The obtained spectra for the
Moffett Field and Cuprite images are shown in Fig. 2. These
spectra have been identified using prior knowledge regarding
the Moffett field image (which is known to be composed of
vegetation, soil, and water) and by using the U.S. Geological
Survey spectral library when analyzing the Cuprite image.

C. Abundance Estimation

The abundances of each image have been estimated by
running the proposed Bayesian unmixing method on each pixel
of the AVIRIS images (using the endmember spectra resulting
from Section VIII-B). The unmixing procedure has been per-
formed by considering the R = 3 corresponding endmember
spectra shown in Fig. 2. The MMSE estimates of the abun-
dances have been computed by averaging the Nr = 700 last
generated samples obtained after Nbi = 300 burn-in iterations.
The image fraction maps, estimated by the proposed method
and relative to the linear contribution of the endmembers, are

Fig. 3. Fraction maps estimated according to GBM for Moffett Field.

Fig. 4. Fraction maps estimated according to LMM for Moffett Field.

Fig. 5. Fraction maps estimated according to GBM for Cuprite.

shown in Fig. 3 (top). Note that a white (black) pixel indicates a
large (small) proportion of the corresponding materials. These
pictures are in good agreement with the abundances obtained
when considering a linear model, as shown in Fig. 4.

The proposed algorithm also provides maps for the possible
interactions between the materials. These maps are shown in
Fig. 3 (bottom). The interactions between vegetation and water
are located in the vegetation area, whereas the interactions
between vegetation and soil occur in the soil area. The inter-
actions between soil and water are essentially located in the
coastal area, which is the zone of contact between these two
components.

Figs. 5 and 6 show the results obtained with the Cuprite
image by considering GBM and LMM unmixing algorithms.
The maps corresponding to the material abundances are similar



Fig. 6. Fraction maps estimated according to LMM for Cuprite.

TABLE VII
UNMIXING PERFORMANCE FOR AVIRIS IMAGES

OBTAINED WITH DIFFERENT MODELS

for the two models. However, the GBM provides three other
maps for nonlinearity coefficients. The interaction terms are
located in regions where two components are present.

D. Quality of the Unmixing

The RE and SAM criteria introduced in Section V have been
used to evaluate the quality of unmixing. Table VII shows the
results obtained when unmixing the AVIRIS images using the
LMM, FM and GBM. The results obtained for Moffett Field
indicate that the GBM is well adapted to this image. Comparing
these results with those obtained for synthetic images leads to
the following conclusions.

1) Moffett Field is composed of linear and nonlinear mix-
tures of the endmembers.

2) The nonlinearity present in the image is captured well by
the FM and the GBM.

3) The similarity between the results of Tables II and VII
shows that the actual and estimated endmembers are
similar which indicates the presence of pure pixels in the
Moffett Field image.

4) The best unmixing model for this image is the GBM.

Unmixing the Cuprite image by the GBM provides better
results than with LMM. These results are similar to those
obtained in Table II (second scenario) for image 3, which leads
to the following conclusions.

1) The nonlinearities present in Cuprite follow the GBM.
2) The endmembers are not well extracted, which can be

explained by the absence of pure pixels in the image.
3) The best unmixing model for this image is the GBM.

Finally, to illustrate the importance of considering nonlin-
earities when performing unmixing, three maps of RE related
to the Moffett Field image are shown in Fig. 7. The first
RE map has been obtained when considering the LMM. The
two others have been obtained by computing the difference
between this LMM-based RE map and the corresponding REs

Fig. 7. RE maps obtained for Moffett Field.

obtained when considering FM and GBM. The last two RE
maps show that FM and GBM significantly reduce the REs in
the areas corresponding to the interactions between vegetation
and soil. This means that they allow the mixture to be better
approximated when nonlinearity occurs. The obtained figure
also shows that the GBM outperforms the LMM for all pixels
in the RE sense.

IX. CONCLUSION

This paper studied a generalized bilinear model (GBM) to
model the interactions between the macroscopic components of
a hyperspectral image. A hierarchical Bayesian algorithm was
proposed to estimate the abundances and nonlinearity coeffi-
cients of this nonlinear model. Appropriate priors were chosen
to ensure that the abundances satisfy positivity and sum-to-
one constraints. The posterior distribution of the unknown pa-
rameter vector was then derived. The corresponding Bayesian
estimators were approximated from samples generated using
MCMC methods. A detailed comparative analysis of this bilin-
ear model with other linear and nonlinear models showed that
the proposed mixture model better approximates the existing
interactions between pure spectral components. Future investi-
gations include the consideration of spatial correlation between
pixels of the hyperspectral image using the proposed GBM.

APPENDIX A
GIBBS SAMPLER FOR THE GENERALIZED

BILINEAR MODEL

A. Generating Samples According to f(γi,j |α, σ2,y,γ\(i,j))

The conditional distribution of γi,j |α, σ2, y, γ\(i,j) for
i = 1, . . . , R− 1 and j = i+ 1, . . . , R is

γi,j |α, σ2,y,γ\(i,j) ∼ N[0,1]

(
pT
i,jei,j

‖pi,j‖2
,

σ2

‖pi,j‖2

)

where

{
pi,j = mi �mj

ei,j = y −Mα−
∑R−1

l=1,l �=i

∑R
p=l+1,p �=j γlpαlαpml �mp

and N[0,1](·, ·) denotes the Gaussian distribution truncated on
the set [0, 1]. The simulation of samples according to this
truncated Gaussian distribution can be performed efficiently by
using the method proposed in [32] and detailed in [29].



B. Generating Samples According to f(αk|γ, σ2,y,α\{k,k∗})

The conditional pdf of αk|γ, σ2, y, α\{k,k∗} is given by

f(αk|γ, σ2,y,α\{k,k∗})

∝ exp

[
−
∥∥gk,k∗ − αkhk,k∗ + α2

kqk,k∗
∥∥2

2σ2

]
I[0,α+

k ]
(αk)

(15)

where 


α+
k = 1−

∑
j �=k αj

gk,k∗ = y − sk,k∗ − u′
k,k∗

hk,k∗ = mk � vk,k∗ −mk∗ �wk,k∗ −mk∗

qk,k∗ = γk,k∗pk,k∗

with

sk,k∗ = tk,k∗ + (1− λk,k∗)mk∗ +mk∗ �wk,k∗ + uk,k∗

tk,k∗ =
∑

i/∈{k,k∗} αimi

uk,k∗ =
∑

i/∈{R,k,k∗}
∑

j∈{i+1,...,R}\{k,k∗} γi,jαiαjpi,j

u′
k,k∗ =

∑
i/∈{k,k∗}

∑
j/∈{k,k∗} γi, k

∗αiαjpi,k∗


wk,k∗ =
∑

i/∈{k,k∗} γi,k∗αimi

zk,k∗ =
∑

i/∈{k,k∗} γk,iαimi

λk,k∗ =
∑

i/∈{k,k∗} αi

vk,k∗ = 1L + zk,k∗ + γk,k∗mk∗ − γk,k∗λk,k∗ mk∗

1L = [1, . . . , 1]T of size L× 1.

The conditional distribution (15) is not easy to sample. As a
consequence, at iteration t of the sampler, the kth component of
the vector α\{k∗} is updated using a Metropolis–Hastings step.

A candidate α
(�)
k is generated according to a proposal distri-

bution π(α
(�)
k ). This candidate is accepted or rejected with the

probability ρ defined in Algorithm 2. The proposal used in this
paper is a Gaussian distribution truncated on [0, 1] whose mean
ωk,k∗ is the mode of the pdf f(αk|y, σ2,α\{k,k∗}) (see [29]
for more details). The variance of the proposal distribution has
to ensure an appropriate exploration of the target distribution
support. Our experiments have shown that an interesting value
for this variance is (2σ2/hT

khk), leading to

α
(�)
k ∼ N[0,1]

(
ωk,k∗ ,

2σ2

hT
khk

)
. (16)

The resulting algorithm sketch is summarized in
Algorithm 2.

Algorithm 1 Gibbs sampler
1: Initialization
2: Initialize parameters k∗ = R, σ2(0), α(0)

k (∀k �= k∗)

3: α(0)
k∗ = 1−

∑R−1
i=1 α

(0)
i

4: Sample generation
5: for t = 1 : Nbi +Nr do
6: Choose a random k∗ from {1, . . . , R}
7: for k = 1 : R and k �= k∗ do
8: Sample α

(t)
k ∼ f(αk|σ2(t−1),y,γ,α

(t)
\{k,k∗}) using

Algorithm 2

9: end for
10: Set α(t)

k∗ = 1−
∑

i�=k∗ α
(t)
i

11: Sample γ1,2 ∼ f(γ1,2|σ2(t−1),y,γ
(t)
\(1,2),α

(t))

12:
...

...
...

13: Sample γR−1,R∼f(γR−1,R|σ2(t−1),y,γ
(t)
\(R−1,R),α

(t))

14: Sample σ2(t) ∼ f(σ2|y,γ(t),α(t))
15: end for

Algorithm 2 Sampling αk with “Metropolis-within-Gibbs”
1: draw a candidate α

(�)
k from the proposal π(α(�)

k ) in (16),
2: compute the acceptance probability

ρ=min


1,

f
(
α
(�)
k |σ2(t−1),y,γ,α

(t)
\{k,k∗}

)
f
(
α
(t−1)
k |σ2(t−1),y,γ,α

(t)
\{k,k∗}

) π
(
α
(t−1)
k

)
π
(
α
(�)
k

)



3: sample w ∼ U[0,1]

4: if w < ρ then
5: α

(t)
k = α

(�)
k

6: else
7: α

(t)
k = α

(t−1)
k

8: end if

C. Generating Samples According to f(σ2|y,α,γ)

Looking carefully at the joint posterior distribution (12), the
conditional distribution of σ2|y, α, γ can be determined

σ2|y,α,γ ∼ IG
(
L

2
,
‖y − µGBM‖2

2

)
.
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