Possibilistic Preference Elicitation by Minimax Regret - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Possibilistic Preference Elicitation by Minimax Regret

Résumé

Identifying the preferences of a given user through elicitation is a central part of multi-criteria decision aid (MCDA) or preference learning tasks. Two classical ways to perform this elicitation is to use either a robust or a Bayesian approach. However, both have their shortcoming: the robust approach has strong guarantees through very strong hypotheses, but cannot integrate uncertain information. While the Bayesian approach can integrate uncertainties, but sacrifices the previous guarantees and asks for stronger model assumptions. In this paper, we propose and test a method based on possibility theory, which keeps the guarantees of the robust approach without needing its strong hypotheses. Among other things, we show that it can detect user errors as well as model misspecification.
Fichier principal
Vignette du fichier
UAI_2021.pdf (723 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03521623 , version 1 (24-01-2022)

Identifiants

  • HAL Id : hal-03521623 , version 1

Citer

Loïc Adam, Sébastien Destercke. Possibilistic Preference Elicitation by Minimax Regret. 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021), Jul 2021, Online, United States. pp.718-727. ⟨hal-03521623⟩
69 Consultations
53 Téléchargements

Partager

More