Possibilistic Preference Elicitation by Minimax Regret
Résumé
Identifying the preferences of a given user through elicitation is a central part of multi-criteria decision aid (MCDA) or preference learning tasks. Two classical ways to perform this elicitation is to use either a robust or a Bayesian approach. However, both have their shortcoming: the robust approach has strong guarantees through very strong hypotheses, but cannot integrate uncertain information. While the Bayesian approach can integrate uncertainties, but sacrifices the previous guarantees and asks for stronger model assumptions. In this paper, we propose and test a method based on possibility theory, which keeps the guarantees of the robust approach without needing its strong hypotheses. Among other things, we show that it can detect user errors as well as model misspecification.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|