When do two rational functions have locally biholomorphic Julia sets? - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

When do two rational functions have locally biholomorphic Julia sets?

Résumé

In this note we address the following question, whose interest was recently renewed by problems arising in arithmetic dynamics: under which conditions does there exist a local biholomorphism between the Julia sets of two given one-dimensional rational maps? In particular we find criteria ensuring that such a local isomorphism is induced by an algebraic correspondence. This extends and unifies classical results due to Baker, Beardon, Eremenko, Levin, Przytycki and others. The proof involves entire curves and positive currents.
Fichier principal
Vignette du fichier
symmetry_arxiv1.pdf (504.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03521435 , version 1 (11-01-2022)
hal-03521435 , version 2 (17-01-2022)

Identifiants

  • HAL Id : hal-03521435 , version 1

Citer

Romain Dujardin, Charles Favre, Thomas Gauthier. When do two rational functions have locally biholomorphic Julia sets?. 2022. ⟨hal-03521435v1⟩
113 Consultations
90 Téléchargements

Partager

More