Slice Function Placement Impact on the Performance of URLLC with Multi-Connectivity
Résumé
Network slicing has emerged as a promising technical solution to ensure the coexistence of various 5G services. While the 5G architecture evolution for supporting slicing has been exhaustively studied, the architectural option impacts on RAN resource allocation efficiency remain unclear. This article fills a gap in this area by evaluating the impact of architecture choices on the quality of service of different services in the new 5G ecosystem, focusing on ultra-reliable low-latency communication applications. We propose architectural options based on the placement of the entities responsible for implementing these functions. We then assess their impact on the radio resource allocation flexibility when slices span two radio access technologies with redundant coverage. Our numerical experiments showed that the slice management function placement plays a pivotal role in choosing an adequate radio resource allocation scheme for URLLC slices.
Origine | Publication financée par une institution |
---|