HERMITE ESTIMATION IN NOISY CONVOLUTION MODEL
Résumé
In this paper, we study the problem of estimating a regression function in a convolution model. We consider the following model: $y(x_k)=h(x_k)+\varepsilon_k , h(x)=f\star g(x)=\int_{\R} f(x-y)g(y)dy, k=-n, \dots, n-1$ where $g$ is assumed to be known and $f$ is the unknown function to be estimated; the errors $(\varepsilon_k)_{-n\le k\le n-1}$ are independent and identically distributed (i.i.d.) such that $\mathbb{E}[\varepsilon_k]=0$ and $\mathrm{Var}(\varepsilon_k)=\sigma_\varepsilon^2<+\infty$, known; the points $(x_k=kT/n)_{-n\le k\le n-1}$ are deterministic and equispaced on the interval $[-T,T]$, where $0
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Ousmane Sacko : Connectez-vous pour contacter le contributeur
https://hal.science/hal-03517620
Soumis le : vendredi 7 janvier 2022-20:15:23
Dernière modification le : vendredi 26 avril 2024-13:37:26
Dates et versions
Identifiants
- HAL Id : hal-03517620 , version 1
Citer
Ousmane Sacko. HERMITE ESTIMATION IN NOISY CONVOLUTION MODEL. 2022. ⟨hal-03517620⟩
Collections
35
Consultations
83
Téléchargements