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HERMITE ESTIMATION IN NOISY CONVOLUTION MODEL

OUSMANE SACKO1

Abstract. In this paper, we study the problem of estimating a regression function in a convolution model.
We consider the following model: ypxkq “ hpxkq`εk, hpxq “ f ‹gpxq “

ş

R fpx´yqgpyqdy, k “ ´n, . . . , n´1
where g is assumed to be known and f is the unknown function to be estimated; the errors pεkq´nďkďn´1 are
independent and identically distributed (i.i.d.) such that Erεks “ 0 and Varpεkq “ σ2

ε ă `8, known; the
points pxk “ kT {nq´nďkďn´1 are deterministic and equispaced on the interval r´T, T s, where 0 ă T ă 8 is
fixed. Two estimation methods for f are considered by exploiting the properties of the Hermite basis. We
study the quadratic risk of each estimator. If f belongs to the Sobolev (first approach) or Sobolev-Hermite
(second approach) spaces, we obtain rates of convergence. We also present an adaptive procedure to select
the relevant parameter inspired by Goldenshluter and Lepski method, and prove that the resulting estimator
satisfies an oracle inequality for sub-Gaussian ε’s. Finally, we illustrate numerically these approaches.
January 7, 2022
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1. Introduction

Consider the convolution model

(1) ypxkq “ hpxkq ` εk, k “ ´n, . . . , n´ 1,

where

(2) hpxq “ f ‹ gpxq “

ż

R
fpx´ yqgpyqdy,

where the kernel function g is supposed to be known and f is the unknown function to be estimated;
the errors pεkq´nďkďn´1 are independent and identically distributed (i.i.d.) such that Erεks “ 0 and
Varpεkq “ σ2ε ă `8, known; the points pxk “ kT {nq´nďkďn´1 are deterministic and equispaced on the
interval r´T, T s, where 0 ă T ă 8 is fixed. This model appears in several application contexts: in Dy-
namic Contrast Enhanced (DCE) imaging data analysis (see Goh et al. (2005), Cuenod et al. (2006), Goh
et al. (2007), Cao et al. (2010) and Comte et al. (2017)) and in the study of time-resolved measurements
in fluorescence spectroscopy (see Gafni et al. (1975), McKinnon et al. (1977), O’Connor et al. (1979),
Ameloot and Hendrickx (1983), Abramovich et al. (2013)). If the function of interest is the unknown
function h, this problem is known as a fixed design regression model.
Nonparametric estimation of h has been studied at length in the literature, see Barron et al. (1999),
Baraud (2000) and recently Comte and Genon-Catalot (2019) for random design. Estimating the density
f of a random variable X when observing Z “ X ` ε with ε independent of X with density g amounts to
reconstruct f from an estimate of fZ “ f ‹ g. This problem is known as a deconvolution problem. It is
an inverse problem which has also been studied extensively in the literature, see Carroll and Hall (1988),
Fan (1991), Pensky and Vidakovic (1999), Comte et al. (2006), Delaigle et al. (2008), Mabon (2017),
Comte and Genon-Catalot (2018), Sacko (2020) among others, see also the monograph of Meister (2009).
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2 O. SACKO

Model (1) cumulates the two questions of regression and deconvolution, and this is why it is difficult. We
mention that in Model (1), the unknowns f and the kernel are not necessarily densities.
When f and g are r0, 1s-supported, Rice and Rosenblatt (1983) solved the problem (1) using a smooth-
ing spline approach for xk “ k{n with k “ 1, . . . , n. They obtain a control of the risk for f of class
C4. However, the question of the smoothing parameter is not considered in their work. Another special
case of Model (1) occurs when f and g are R`-supported, it is called Laplace convolution. Then, we
have hpxq “

şx
0 fpx ´ yqgpyqdy, whose discrete noisy version is given by (1) with k “ 1, . . . , n. It has

been studied in Dey et al. (1998) for gpxq “ be´ax1xě0, using that the solution of (2) satisfies a linear
differential equation. The authors compute convergence rates for n Ñ 8, under the assumption that
the s-th derivative of f is continuous, the procedure is not adaptive. Abramovich et al. (2013) study
the Laplace deconvolution problem for g known: they summarize the estimating problem of f to es-
timation of the derivative of h. These derivatives are estimated by a kernel method, the procedure is
adaptive and minimax optimal for f in a Sobolev class. Note that the rate depends on T “ Tn Ñ 8 as
n Ñ 8. Vareschi (2015) studies also the Laplace deconvolution problem using the Galerkin projection
on Laguerre functions for a g kernel contaminated by white noise. More recently, Comte et al. (2017)
proposed a projection estimator, based on the development of the functions f , g and h in the Laguerre
basis. The coefficients of the decomposition of h are expressed as a linear combination of those of f ,
the link matrix being invertible. They also propose an adaptive procedure by penalization: the resulting
estimator verifies an oracle inequality up to multiplicative log n factor. We emphasize that the pxkq1ďkďn
are not necessary equispaced on r0, T s and T is fixed. Finally, if, f is a function of 3 variables and g of one
variable, Benhaddou et al. (2019) consider also the projection method on Laguerre and wavelet bases for
a Gaussian white noise. Their method is adaptive and asymptotically optimal up to a logarithmic factor
when f belongs to a three-dimensional Laguerre-Sobolev ball. Note that regression model and inverse
problems can be encountered in different setting, see for instance Loubes and Marteau (2012) who study
an econometric model; then, the inverse problem arises from instrumental variables taken as covariate.

However, all of the afore studies were conducted for R` supported f and g. The novelty of the present
work, is that we consider Model (1) with R-supported functions and our aims are the following: Define
a consistent estimator of f ; Provide rates of convergence; Propose an adaptive procedure and illustrate
numerically its performances. The Laguerre basis which is R`-supported clearly no longer suits for our
problem. We consider here the Hermite basis which has non compact support and is well adapted in our
context. When using compactly supported bases, the support is a fixed interval determined in practice
from the dataset. Hermite basis does not require this preliminary choice and is well adapted in our con-
text. Recently, Belomestny et al. (2019) show that the Hermite basis allows to build estimators of low
complexity and therefore numerically fast.

In this paper, we first propose a Fourier-Hermite (denoted by FH in the sequel) approach to estimate f .
It consists in estimating h as regression function by a nonparametric least squares method, based on the
development of h in the Hermite basis. Then, we use the inverse Fourier transform to recover f . Contrary
to Baraud (2000), we do not consider a compactly supported basis. Moreover, we obtain a new (to our
knowledge) bound on the L2pRq-risk for regression function h. We provide an upper bound on the risk of
the estimator of f which shows that a bias-variance compromise must be performed. For f belonging to
a Sobolev ball, we obtain rates of convergence for adequate choice of some parameters (cut-off parameter
and dimension of the regression function). We also present an adaptive procedure inspired by Golden-
shluger and Lepski (2011) method to select the relevant parameters: the resulting estimator satisfies an
oracle inequality for ε sub-Gaussian (see below or Vershynin (2012) for more details), and automatically
realizes a bias-variance compromise up to a logarithm term. We also introduce another approach, called
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the Hermite-Hermite (denoted by HH in the following) strategy. Both functions f and h are decomposed
in the Hermite basis. We construct an estimator of f by replacing h by its nonparametric least squares
estimator in the formula of the coefficients of f . As for the FH strategy, we provide a risk bound and the
rate obtained therein for f belonging to a Sobolev-Hermite ball, and we propose a procedure to select
automatically the relevant dimension.

The plan of the paper is the following: The study of the estimation of regression function h in the
Hermite basis for fixed design is described in Section 2. Those results are exploited to study the FH and
HH strategies. Section 3 is devoted to the FH strategy. In particular, we define the FH estimator in
Section 3.1. A bias-variance decomposition is given in Section 3.2. In Section 3.3, we provide rates of
convergence. Section 3.4 is devoted to selection of model for the FH procedure and an oracle inequality
is proved for the resulting estimator therein. In Section 4, we describe the HH estimation strategy and a
comparison with the FH method is performed. As for FH method, we also propose an adaptive procedure
and an oracle inequality is proved in Section 4.4. Section 5 is devoted to the numerical study to illustrate
the performance of the adaptive procedure and comparisons between FH and HH method are performed.
Finally, all the proofs are presented in Section 6, technical Lemmas and some useful results are given in
the Appendix.

2. Hermite regression estimation of h

We first present a study concerning the estimation of h. From this point of view, model (1) corresponds
to a standard fixed design regression. Nonparametric estimation in this context can be found in Baraud
(2000), who consider compactly supported bases. In view of the following steps for ”extracting” f , we
need to handle the non compactly supported Hermite basis. Let us start by recalling the definition and
useful properties of this basis, and the associated regularity spaces.

2.1. Notations. For φ, ψ belonging to L2pRq X L1pRq, denote xϕ,ψy “
ş

ϕpuqψpuqdu the scalar product
on L2pRq and }ϕ}2 “

ş

|ϕpuq|2du the associated norm on L2pRq. The Fourier transform of ϕ is defined by
ϕ˚puq “

ş

eiuxϕpxqdx. Lastly, we recall the Plancherel-Parseval equality xϕ,ψy “ p2πq´1xϕ˚, ψ˚y.

2.2. The Hermite basis. Define the Hermite basis pϕjqjě0 from Hermite polynomials pHjqjě0 :

ϕjpxq “ cjHjpxqe
´x2{2, Hjpxq “ p´1qjex

2 dj

dxj
pe´x

2
q, cj “ p2

jj!
?
πq´1{2, x P R, j ě 0.(3)

The Hermite polynomials pHjqjě0 are orthogonal with respect to the weight function e´x
2
:
ş

RHjpxqHkpxqe
´x2dx “

2jj!
?
πδj,k (see Abramowitz and Stegun (1964), 22.2.14), where δj,k is the Kronecher symbol. It follows

that the sequence pϕjqjě0 is an orthonormal basis on R. Moreover, ϕj is bounded by

}ϕj}8 “ sup
xPR
|ϕjpxq| ď φ0, with φ0 “ π´1{4,(4)

(see Abramowitz and Stegun (1964), chap.22.14.17 and Indritz (1961)) and the following bound holds

(5) }ϕj}8 ď
C8

pj ` 1q
1
12

,

where C8 is a constant given in Szegö (1959). The Fourier transform pϕjqjě0 is given as follows

(6) ϕ˚j “
?

2πpiqjϕj .

From Askey and Wainger (1965), it holds:

(7) |ϕjpxq| ď C 18e
´ξx2 , |x| ě

a

2j ` 1,
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where C 18 and ξ are constants independent of x and j. The infinity norm of the derivative of ϕj satisfies
(see Comte and Genon-Catalot (2018), Lemma 7.3):

(8) }ϕ1j}8 ď C28pj ` 1q
5
12 , j ě 0,

where C28 ą 0 is a numerical constant.

2.3. Regularity spaces. We consider in the sequel the following regularity spaces (see Bongioanni and
Torrea (2006)).

Definition 2.1. Let s, L ą 0, define the Sobolev-Hermite ball of regularity s by

W s
HpLq “ tθ P L2pRq,

ÿ

kě0

ksa2kpθq ď Lu, where akpθq “

ż

θpxqϕkpxqdx.(9)

For s an integer, it is proved in Bongioanni and Torrea (2006) and Belomestny et al. (2019) (see Propo-
sition 4) that θ belongs to W s

HpLq if and only if θ admits derivatives up to order s and if the functions

θ, θ1, . . . , θpsq, xs´lθplq for l “ 0, . . . , s´ 1 belong to L2pRq. Recall also that the usual Sobolev ball W spLq
is defined, for s ą 0 by

(10) W spLq “ tθ P L2pRq,
ż

p1` u2qs|θ˚puq|2du ă Lu.

If s is an integer and L ą 0, it holds (see Bongioanni and Torrea (2006) and Belomestny et al. (2019))

then; ! θ PW spLq " is equivalent to ! there exists L˚ ą 0 such that
řs
j“0 }f

pjq}2 ă L˚ ".

Thus, it follows that W s
HpLq ĂW spL˚q. Moreover, if f PW spLq has compact support, then f PW s

HpL
˚q.

In other words, W s
HpLq and W spL˚q coincide for compactly supported functions.

2.4. Definition of the regression estimator. Let d ě 1 an integer and

Sd :“ spantϕ0, . . . , ϕd´1u,(11)

the linear space generated by ϕ0, . . . , ϕd´1, where ϕj is the Hermite basis defined in (3). Assume that
h belongs to L2pRq. Then, we can write h “

ř

jě0 bjphqϕj , with bjphq “ xh, ϕjy. Moreover, we define

hd “
řd´1
j“0 bjphqϕj , the orthogonal projection of h on Sd. Introduce the matrices:

(12) Φd “ pϕjpxiqq´nďiďn´1,0ďjďd´1, Ψd “
T

n
Φt
dΦd,

where Φt
d denotes the transpose of the matrix Φd. We need of following Lemma to get an estimator of h.

Lemma 2.1. For all d ď n, Ψd is invertible.

By the least squares method and Lemma 2.1, we derive the following projection estimator of h on Sd:

(13) phd “
d´1
ÿ

j“0

pb
pdq
j ϕj , where

~
pbpdq “ ppb

pdq
0 , . . . ,pb

pdq
d´1q

t “ pΦt
dΦdq

´1Φt
d~y “

T

n
Ψ´1d Φt

d~y,

~y “ pypx´nq, . . . , ypxn´1qq
t.

Comment on the assumption h P L2pRq. Let 1 ď p, q, r ď 8 such that 1{p ` 1{q “ 1 ` 1{r.
Let us recall that with the Young inequality, we have }h}r “ }f ‹ g}r ď }f}p}g}q. Thus, for (f P L2pRq
and g P L1pRq) or (g P L2pRq and f P L1pRq), it follows that h P L2pRq.
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2.5. Risk bound of phd and rate of convergence. For any s, t in L2pRq, we define:

}t}2n :“
T

n

n´1
ÿ

i“´n

t2pxiq, xs, tyn :“
T

n

n´1
ÿ

i“´n

spxiqtpxiq,

The following bias-variance decompositions hold.

Proposition 2.1. Let pxi, ypxiqq´nďiďn´1 be observations from model (1). Assume that h belongs to

L2pRq and consider the estimator phd defined in (13).

(i) Then, it holds that

(14) E
”

}phd ´ h}
2
n

ı

“ inf
tPSd

}t´ h}2n ` σ
2
εT

d

n
.

(ii) Moreover, we have

Er}phd ´ h}2s ď }h´ hd}2 ` λmax
`

Ψ´1d
˘

}h´ hd}
2
n ` σ

2
ε

T

n
tr
`

Ψ´1d
˘

,(15)

where trpAq is the trace of the matrix A and λmax pAq denotes the spectral radius of the matrix A.

The part (i) of Proposition 2.1 corresponds to a classical bias-variance decomposition for the empirical
norm } ¨ }n. The first term in the right-hand side of (14) is the bias term and the second term is the
variance term. They behave in the opposite way with respect to d: inftPSd }t´h}

2
n decreases with d while

σ2εTd{n increases with d. The risk bound given in (15) is new to our knowledge and handles the integrated
L2 risk on R. It is a bias-variance decomposition with bias equal to }h´hd}

2`λmax
`

Ψ´1d
˘

}h´hd}
2
n and

variance σ2εtr
`

Ψ´1d
˘

T {n. In both cases, we have a bias-variance trade-off to make.

The bias term is studied by exploiting the specific property of the Hermite basis. The following Lemma
leads to find the order of the bias:

Lemma 2.2. Assume that h belongs to Wα
HpLq (Sobolev-Hermite ball defined in (9)).

(i) If α ą 11{6, we have }h ´ hd}
2
n ď }h ´ hd}

2 ` Cpα,LqT
2

n , where Cpα,Lq is a positive constant
depending only on α and L.

(ii) If α ą 17{6, it hold that }h´hd}
2
n ď }h´hd}

2`C 1pα,Lq T 3

12n2 , where C 1pα,Lq is a positive constant
which depends on α and L.

For fixed T , the additional term T 2{n or T 3{n2 is a residual term which is negligible compared to the
variance term σ2εdT {n for the empirical norm or σ2εtr

`

Ψ´1d
˘

T {n for the integral L2pRq-norm. Furthermore,

to get the rate of convergence for the integral norm } ¨ }, we have to control tr
`

Ψ´1d
˘

and λmaxpΨ
´1
d q. We

consider the following assumption

pA0q There exists a constant λ ą 0 such that the maximum eigenvalue of Ψ´1d satisfies

λmaxpΨ
´1
d q ď λ ă `8,

uniformly in d.

For n large enough and T , d well chosen, we can show that

~Ψ´1d ´ Id~
2 ÝÑ
nÑ`8

0,

where ~ ¨ ~ is any matrix norm (see Section B in Appendix). It follows that Assumption pA0q holds
asymptotically with λ near of 1. The same type of hypothesis can be found in Comte et al. (2017) (see
Assumption 4) and Vareschi (2015) (see Assumption 2.3). Then, we can deduce the rate of convergence.
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Proposition 2.2. Assume that h belongs to Wα
HpLq with α ą 11{6 and select dopt “ rn

1{pα`1qs.

(i) Then, we have

(16) sup
hPWα

HpLq
E
”

}phdopt ´ h}
2
n

ı

ď Cpα,L, T, σεqn
´ α
α`1 ,

where Cpα,L, T, σεq depends on α,L, T and σε.
(ii) If in addition pA0q is satisfied, it yields that

(17) sup
hPWα

HpLq
E
”

}phdopt ´ h}
2
ı

ď Cpα,L, T, σε, λqn
´ α
α`1 .

Our estimator reaches the same rate as in the case where pxiq are random variables (see Comte and Genon-
Catalot (2019)). From the lower bound stated therein, this rate is optimal when we use the Laguerre or
the Hermite basis (at least for gaussian ε’s). Note that it is not standard and is specific to the Laguerre
and Hermite basis: in Baraud (2000), Baraud (2002), Barron et al. (1999), the least squares estimator

converges with rate n´2α{p2α`1q if the regression function h belongs to a Besov space with regularity index
α. The reason is that the variance order does not depend on the basis used while bias order does and
changes according to the regularity spaces associated with the basis.

Remark 1. The constraint α ą 11{6 or α ą 17{6 comes from the study of }h ´ hd}
2
n (see the Proof of

Lemma 2.2). It excludes some functions h (e.g. Cauchy since α “ 3{2´ η with 0 ă η ă 3{2 see Section
4 in Belomestny et al. (2019)). Without this constraint, we have for α ě 1 and h PWα

HpLq

}h´ hd}
2
n “

T

n

n´1
ÿ

i“´n

phdpxiq ´ hpxiqq
2 ď 2Tφ20

¨

˝

ÿ

jěd

jα{2ajphqj
´α{2

˛

‚

2

À d´α`1,

where φ0 is given in (4). It follows for the choice dopt “ rn1{pα`2qs that E
”

}phdopt ´ h}
2
n

ı

“ Opn´
α´1
α`2 q.

This rate is worse than the one obtained in (16). The estimator remains consistent in this case even if
the rate deteriorates. In the sequel, we will see that the condition α ą 11{6 or α ą 17{6 is often satisfied.

2.6. Adaptive estimator for h. However, the choice of d “ dopt depends on the regularity of h which
is unknown; thus this choice is only theoretical and cannot be used in practice. This is why an adaptive
procedure is developed now. It allows to choose the relevant dimension by replacing the bias and variance
terms by computable quantities. Let γnp¨q be the empirical contrast:

γnptq “
T

n

n´1
ÿ

i“´n

rypxiq ´ tpxiqs
2 .

It is easy to see that phd “ arg min
tPSd

γnptq. The quantity γnpphdq “ ´}phd}
2
n is a classical estimator of the bias

term. Then, we select the space Sd by setting:

pd :“ arg min
dPMn

tγnpphdq ` penpdqu, where penpdq “ κT
d

n
σ2ε , κ ą 1(18)

where Mn “ t1, . . . , dmaxu, dmax ď n is the maximal dimension which depends on n and κ is a positive
numerical constant. The constant κ is independent of the data and a value must be assigned in prac-
tice. Methods are proposed in Baudry et al. (2012) and programs for density estimation are given in
the Softwares R and Matlab called ”Capushe”. The following oracle inequalities hold for the resulting
estimator.

Theorem 2.3. Let pxi, ypxiqq´nďiďn´1 be observations, from model (1). Assume that Erε81s ă 8.
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(i) Then, the estimator ph
pd

satisfies:

(19) Er}ph
pd
´ h}2ns ď Cpκq inf

dPMn

ˆ

inf
tPSd

}t´ h}2n ` σ
2
εT

d

n

˙

`
C 1T

n
,

where Cpκq “ 2κp1 ` 4{pκ ´ 1qq ą 1 (for instance for κ “ 2.5, Cp2.5q “ 9.17) and C 1 ą 0 are
numerical constants.

(ii) If in addition pA0q holds, we have

Er}ph
pd
´ h}2s ď C1 inf

dPMn

ˆ

p2λ2 ` 1q}h´ hd}
2
n ` }hd ´ h}

2 ` σ2εT
d

n

˙

`
C 11λT

n
,(20)

where λ is given in pA0q, C1 “ maxp1, 2λ2Cpκqq and C 11 “ 2C 1 are positive constants.

The estimator ph
pd

is adaptive and minimax optimal in the sense that the bias-variance compromise is
realized automatically, since C 1T {n and λC 11T {n are residual terms. Indeed, for h P Wα

HpLq, we deduce

from Proposition 2.2 that Er}ph
pd
´h}2ns À n´

α
α`1 and Er}ph

pd
´h}2s À n´

α
α`1 . Theorem 2.3 is a consequence

of Theorem 3.1 given in Baraud (2000) and the bound given in (15).

Remark 2. The variance σ2ε of the noise which appears in (18) is assumed to be known but is in general
unknown and must be estimated. A classical estimator is the residual least squares estimator:

xσ2ε :“
T

n

n´1
ÿ

i“´n

”

ypxiq ´ phd˚pxiq
ı2
,

where d˚ is an arbitrarily chosen dimension (for instance d˚ “ r
?
ns suits see Baraud (2000)).

3. Fourier-Hermite approach for the estimation of f

In this section, we construct an estimator of f using the Fourier inverse transform and then the least
squares estimator. First, we consider the following assumption on the unknown f .

pA1q The unknown function f and its Fourier transform f˚ belong to L1pRq.
Assumption pA1q is introduced to use the Fourier transform inverse: tpxq “ 1{p2πq

ş

R e
iuxt˚puqdu.

We will also need of the following assumption on the kernel g which are classical in deconvolution context:

pA2q The Fourier transform of g denoted g˚ is well defined and such that: g˚ ‰ 0, where t˚puq “
ş

eiuxtpxqdx, and i is the complex number with i2 “ ´1.

pA3q There exist c1 ě c11 ą 0, and γ ě 0, such that

(21) c11p1` t
2q
γ
ď |g˚ptq|´2 ď c1p1` t

2q
γ
, @t P R.

pA2q is necessary to define the estimator and pA3q is generally useful to study its risk. Under pA3q, the
function g and the errors are called ”ordinary smooth”. Observe that pA3q implies pA2q and is verified
by some classical distributions: we can cite for example the Laplace distribution (with γ “ 2), Gamma
distributions (γ “ p, where p is the shape parameter) and more generally for all symmetric Gamma
distributions.

3.1. Estimation procedure. Consider discrete observations pxk, ypxkqq´nďkďn´1 from model (1). As
h “ f ‹ g (see (2)), under pA1q, pA2q and using the Fourier inversion formula, we have:

(22) fpxq “

ż

R
e´iux

h˚puq

g˚puq
du, @x P R.
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Equation (22) leads to an estimator of f by replacing h by an estimator. By taking the Fourier transform
of (13), it yields

(23) ph˚dpuq “
d´1
ÿ

j“0

pb
pdq
j ϕ˚j puq.

Plugging (23) in (22), we introduce the following estimator of f :

(24) pfpdqpxq “
1

2π

ż

e´iux
ph˚dpuq

g˚puq
du.

The estimator is well defined because the Hermite basis decreases as e´ξx
2

(see (7)), which makes the

ratio ph˚d{g
˚ integrable for many functions g (see also Sacko (2020)). The quality of pfpdq is related to that

of phd which is studied in Section 2. The dimension d must be optimized. In practice, we must introduce

a cut-off to compute pfpdq. Moreover, to control the risk of pfpdq, we first consider the following estimator

(25) pfp`q,dpxq “
1

2π

ż `

´`
e´iux

ph˚dpuq

g˚puq
du, for ` ą 0.

3.2. Risk bound for the deconvolution estimator. Now, we study the integrated quadratic risk of
pfpdq given by (24). Define

(26) ∆p`q “ sup
|u|ď`

|g˚puq|´2, fp`qpxq “
1

2π

ż `

´`
e´iux

h˚puq

g˚puq
du,

Consider also the following assumption:

pA4q }h}8 “ supxPR |hpxq| ă 8.

We recall that, by the Cauchy-Schwarz inequality, }h}8 ď }f}}g}. Therefore, if f and g are square inte-
grable then, condition pA4q is automatically satisfied.

Then, we can state the following upper bound on the risk.

Proposition 3.1. Suppose that the assumptions pA0q to pA4q hold. For pfpdq given in (24), pfp`q,d defined

in (25) and ` ě
?

2d, we have

E
”

} pfpdq ´ f}
2
ı

ď 2CλTe´ξd ` 2E
”

} pfp`q,d ´ f}
2
ı

,(27)

where C is a constant depending on C 18, ξ given in (7), c1 in pA3q and }h}8. For pfp`q,d defined in (25)
and any ` ą 0, it holds that

(28) E
”

} pfp`q,d ´ f}
2
ı

ď }f ´ fp`q}
2 `∆p`q

ˆ

}h´ hd}
2 ` λmax

`

Ψ´1d
˘

}h´ hd}
2
n ` σ

2
ε

T

n
tr
`

Ψ´1d
˘

˙

.

(a) The first term on the right-hand side of (28) (}f ´ fp`q}
2 “ 1

2π

ş

|u|ą` |f
˚puq|2du) is the classical

bias term: it is decreasing with the cut-off `.
(b) The term ∆p`q corresponds to the deconvolution aspect of problem: it is studied using the regu-

larity condition on g˚ given in pA3q and is increasing with `.
(c) Finally, the terms in the big parenthesis represent the regression aspect of problem (see Proposition

2.1 (ii)).
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We also mention that the term CλTe´ξd is negligible compared to E
”

} pfp`q,d ´ f}
2
ı

for ` large enough and

f PW spLq (Sobolev ball see (10) for the definition of W spLq) and under pA3q. Then, the two estimators

( pfp`q,d and pfpdq) have the same rate of convergence. We can also consider pfp`q,d as an estimator. However,

this requires to optimize two parameters, the cut-off ` and the dimension d in practice, contrary to pfpdq
which requires only to optimize d.

3.3. Rate of convergence of pfp`q,d and pfpdq. In this section, we compute rates of convergence in a
collection of specified cases. To derive convergence results, we will make two consecutive bias-variance
compromises, first for the regression part (compromise in (17)) and then for the deconvolution part, by

substituting this value in (28) and optimizing in ` to get the rates of pfp`q,d and pfpdq. The following result
of convergence holds.

Theorem 3.2. Let assumptions pA0q to pA3q hold. Assume that h P W s`γ
H pL1q, then we have for

dopt “ rn
1{ps`γ`1qs with s` γ ą 11{6 and `opt ∝ n1{2ps`γ`1q that

sup
fPW spLq

E
”

} pfp`optq,dopt ´ f}
2
ı

“ O
´

n
´ s
s`γ`1

¯

,

where W spLq is the classical Sobolev ball of regularity s defined in (10) and γ is given in pA3q.

The same result holds for the estimator pfpdoptq with the assumption pA4q, see (27). The estimator
pfp`optq,dopt and pfpdoptq converge at a polynomial rate as in density deconvolution for ordinary smooth noise.

Clearly, the hypothesis h PW s`γ
H p¨q can be related to the regularity of f and g.

Note that as `2opt ∝ dopt, then, we can just set ` “ c
?

2d with c ě 1 in the constraint ` ě
?

2d given in

Proposition 3.1. If we had a Fourier bias instead of Hermite bias (i.e. we have }h´h
p
?
dq}

2 instead of }h´

hd}
2), for f PW spLq and under pA3q, we have by an elementary calculation that h “ f ‹ g PW s`γpL{c11q

(see Remark 3). Therefore, it yields under pA0q to pA3q that supfPW spLq E
”

} pfp`optq,dopt ´ f}
2
ı

“ O
´

n
´ s
s`γ`1

¯

.

Remark 3. Assume that f belongs to W spLq (see Section 2.3) and g is ordinary smooth (i.e. g satisfies
(21)). Then, h belongs to W s`γpL{c11q, where c11 is given in (21). Indeed, we have

ż

p1` u2qs`γ |h˚puq|2du “

ż

p1` u2qs|f˚puq|2p1` u2qγ |g˚puq|2du ď
1

c11

ż

p1` u2qs|f˚puq|2du ď
L

c1
.

We derive that h is s` γ times differentiable if s` γ is assumed integer and these derivatives up to order
s ` γ belong to L2pRq. Then, it belongs to W s`γ

H pLq if and only if the functions xs`γ´ηhpηq belong to
L2pRq for η “ 0, . . . , s` γ ´ 1 (see Section 2.3).

For some classical functions, we can obtain the exact order of bias of the unknown function f and the

regression function h. We only calculate the rate for pfp`q,d, these results extend naturally to pfpdq (see
Equation (27)) considering pA4q.

3.3.1. Rate of convergence for f Gaussian. Let

(29) fσpxq “
1

?
2πσ

exp

ˆ

´
x2

2σ2

˙

,

we can establish the following result.
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Proposition 3.3. Let assumptions pA0q to pA3q hold and f “ fσ where fσ is defined in (29). Further
suppose that xαg P L1pRq X L2pRq for α an integer which can be chosen as large as possible and l “

0, . . . , α´ 1. Set dopt “ rn
1{pα`1qs and `2opt “ β logpnq with β “ α{pα` 1qσ2, we have

E
”

} pfp`optq,dopt ´ f}
2
ı

À
logpnqγ

n
α
α`1

,

where γ is given in pA3q.

Note that the condition xαg P L1pRq X L2pRq holds for classical ordinary smooth functions (Laplace or
Gamma distributions). As α can be chosen large, then, for α Ñ `8 (which corresponds to dopt “ 1),
pfp`optq,dopt is order logpnqγ{n. In this case, the rate logpnqγ{n is better than the rate obtained in the

classical density deconvolution since the rate is order logpnqγ`1{2{n, see Butucea (2004).

3.3.2. Rate of convergence for Gaussian kernel. By reversing the role of f and g in Proposition 3.3, namely

that gpxq “ p2πσ2q´1{2e´
x2

2σ2 and f P W spLq, we recover the classical rate of the density deconvolution
framework, see Fan (1993) and Pensky and Vidakovic (1999).

Proposition 3.4. Let Assumptions pA0q, pA1q and pA3q hold, gpxq “ p2πσ2q´1{2e´
x2

2σ2 , f PW spLq and
xαf P L1pRqXL2pRq for α an integer which can be chosen as large as desired and l “ 0, . . . , α´ 1. Then,

we have for dopt “ rn
1{pα`1qs and `2opt “

σ2α
2pα`1q logpnq that

E
”

} pfp`optq,dopt ´ f}
2
ı

À logpnq´s.

3.3.3. Rate of convergence for f and g Gaussian. If f and h belong to W s
HpLq and are of Gaussian-type,

the order of the bias term decreases exponentially (see Belomestny et al. (2019), section 4.3 and Lemma
2 in Comte and Lacour (2011)). The rate is therefore imposed by the variance term.

Proposition 3.5. Assume that pA0q, pA1q and pA2q hold, fpxq “ p2πσ2q´1{2e´
x2

2σ2 and gpxq “ p2πθ2q´1{2e´
x2

2θ2

with σ2 ` θ2 ‰ 1. Then, for dopt “ rlogpnq{λσ,θs with, λσ,θ “ log

„

´

σ2`θ2`1
σ2`θ2´1

¯2


, we have

E
”

}phdopt ´ h}
2
ı

À
logpnq

n
.(30)

Consequently, it comes for `2opt “
1

σ2`θ2
logpnq ´ 3

2
1

θ2`σ2 log logpnq that

E
”

} pfp`optq,dopt ´ f}
2
ı

À n
´ σ2

σ2`θ2 logpnq
σ2´ θ

2

2
σ2`θ2 .

The same result holds if f is a mixture of Gaussian random variables. It is known that the rates in double
super smooth case are of type n´δ with δ ą 0 up to a certain power of logpnq (see Lacour (2006), Theorem
3.1 in density deconvolution setting).

Note that if σ2`θ2 “ 1, we have h “ f ‹g “ p
?

2q´1pπq´
1
4ϕ0 where ϕ0 is the first function of the Hermite

basis given by (3), in this case hd “ h and }h´ hd} :“ 0 which implies that the rate can be better than
the one given in Proposition 3.5.

3.3.4. Rate of convergence for the Gamma case. When f is Γpp, θq and g Γpq, θq, where Γpa, bq is the
Gamma distribution of with shape parameter a and scale b, then, the regression function h is Γpp` q, θq.
If in addition the shape parameter is an integer, we can derive the exact bias order of h and then the rate
of convergence.
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Proposition 3.6. Let pA0q to pA3q hold, p and q be two integers such that p ` q ą 2. Assume that

f „ Γpp, θq and g „ Γpq, θq. For dopt “ rn
1{pp`q´1qs, we have

E
”

}phdopt ´ h}
2
ı

À n
´
p`q´2
p`q´1 .

Therefore, it follows for `opt ∝ n
p`q´2

pp`q´1qp2p`2q´1q that

E
”

} pfp`optq,dopt ´ f}
2
ı

“ O
ˆ

n
´

pp`q´2qp2p´1q
pp`q´1qp2p`2q´1q

˙

.

The estimator pfp`optq,dopt converges with rate n´pp`q´2qp2p´1q{pp`q´1qp2p`2q´1q if f and g are Gamma func-
tions. The same results holds if f is a mixture of Gamma function.

Let us now summarize the previous results in the Table 1:

f
g Gaussian Gamma

N p0, θ2q Γpq, θq

Gaussian
n
´ σ2

σ2`θ2 logpnq
σ2´ θ

2

2
σ2`θ2

logpnqqn´
α
α`1

N p0, σ2q α large

Gamma
logpnq´p`

1
2 n

´
pp`q´2qp2p´1q

pp`q´1qp2p`2q´1q
Γpq, θq

Table 1. Rate of convergence for the MISE of pfp`optq,dopt in the specific cases.

3.4. Adaptive procedure for Fourier-Hermite strategy. The objective of this section is to propose

a way of selection for the estimator pfp`q,d. First, we remark that pfp`q,d cannot be written as a minimizer of
a contrast. Thus, we cannot use a procedure by penalization. This is why, we describe an adaptive choice
inspired by the ideas developed by Goldenshluger and Lepski (2011). The procedure is mainly based on

the comparison of estimators of f . From now, we set ` “
?

2d and introduce the following estimator

rfpdqpxq :“ pf
p
?
2dq,dpxq “

1

2π

ż

?
2d

´
?
2d
e´iux

ph˚dpuq

g˚puq
du.(31)

This choice of ` is motivated by the results obtained in Proposition 3.1 and Theorem 3.2. Indeed: the
optimal choice of ` is the order of

?
d and as the minimal admissible choice is ` “

?
2d; this is why, we

set ` “
?

2d.
Consider the following collection of models

Mp1q
n :“ t1 ď d ď n,

σ2ελTd∆p
?

2dq

n
ď 1u

where ∆pdq is given by (26) and λ in pA0q. Define

pApdq :“ max
d1PMp1q

n

"

´

} rfd1 ´ rfd^d1}
2 ´ κ1V pd

1q

¯

`

*

,(32)

where κ1 ą 0 is numerical constant which must be calibrated in practice by simulations and

V pdq “ 2 p1` 24 logpnqqσ2ε∆p
?

2dq
λdT

n
.(33)
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Then, we select pd as follows

pd :“ arg min
dPMp1q

n

!

pApdq ` κ2V pdq
)

,(34)

where κ1 ď κ2 and κ2 must be also calibrated. The term pApdq is an estimator of bias of rfpdq and its
construction is based on the comparison of estimators of f . We add the following assumption on the noise

pA5q ε1 is sub-Gaussian variable with proxy variance b ą 0, that is for every t P R, it holds

Erexpptε1qs ď expp
b2t2

2
q.

It is also said that ε1 is b-sub-Gaussian or sub-Gaussian with parameter b. The natural example of a
sub-Gaussian random variable is a centered Gaussian. If ε1 has N p0, σ2q distribution, it is easy to check

Erexpptε1qs ď exppσ
2t2

2 q, then, ε1 is sub-gaussian with parameter σ2. Assumption pA5q is also satisfied if
ε1 is bounded.
The following non asymptotic result holds for rf

p pdq
.

Theorem 3.7. Let assumptions pA0q to pA3q and pA5q hold, rfpdq be defined by (31), pd selected by (34).
Then, for κ1 ě 12, we have

Er} rf
p pdq
´ f}2s ď C inf

dPMp1q
n

´

}f ´ f
p
?
2dq}

2 `Rbpdq ` V pdq
¯

` C 1
logpnq

n
,(35)

where Rbpdq :“ max
d1PMp1q

n ,dďd1

´

∆p
?

2d1q}h´ Erphd1s}2
¯

C is a numerical constant and C 1 “ C 1pErε41s, γ, c1, ξ, λ, C 18q
with c11, γ given in pA3q, ξ, C 18 in (7) and λ in pA0q.

In addition, if f belongs to W spLq and h to W s`γ
H pL1q with s` γ ě 17{6, it holds

Er} rf
p pdq
´ f}2s ď C1 inf

dPMp1q
n

`

d´s ` V pdq
˘

` C 11
logpnq

n
,(36)

where C1 is a constant depending on C, L, L1, s, γ and C 11 depending on C 1, s and γ.

The term Rbpdq has the same order as the classical bias of f (}f ´ f
p
?
2dq}

2) under adequate regularity

conditions on f and g. Inequalities (35) and (36) are non asymptotic. In the assumptions of regularity, the
values of s (for f) and γ (s`γ for h) need not to be known for implementing the procedure or computing

the estimator. The two inequalities show that rf
p pdq

realizes automatically a bias-variance trade-off up to

log term, and an additional residual term C 1 logpnqn , which is negligible in general. Moreover, we derive
from Theorem 3.2 with n replaced by n{ logpnq that under the assumptions of Theorem 3.7

Er} rf
p pdq
´ f}2s ď Cp

n

logpnq
q
´ s
s`γ`1 ,

where C ą 0 is a numerical constant.

4. Hermite-Hermite strategy for the estimation of f

Our aim is to build a projection estimator of the unknown function f using the Hermite basis. The ideas
is to decompose both functions f and h in the Hermite basis.
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4.1. Estimation strategy. Let pxk, ypxkqq´nďkďn´1 from model (1), m ě 1, integer and consider Sm
defined in (11). Assuming that f belongs to L2pRq, we decompose f in the Hermite basis pϕjqjě0:
f “

ř8
j“0 ajpfqϕj , ajpfq “ xf, ϕjy “

ş

fpxqϕjpxqdx and the orthogonal projection of f on Sm is given by:

fm “
řm´1
j“0 ajpfqϕj . To estimate f , we build m estimators of the coefficients ajpfq. Under pA2q, using

the Plancherel theorem and as h “ f ‹ g, it follows that:

(37) ajpfq “
1

2π
x
h˚

g˚
, ϕ˚j y “

1

2π

ż

h˚puq

g˚puq
ϕ˚j puqdx “

p´iqj
?

2π

ż

h˚puq

g˚puq
ϕjpuqdu.

Replacing h˚ by ph˚d defined in (23) and plugging this in (37), we define the following estimator:

(38) pfm,d “
m´1
ÿ

j“0

paj,dϕj , paj,d “
p´iqj
?

2π

ż

ph˚dpuq

g˚puq
ϕjpuqdu,

provided that ph˚dϕj{g
˚ is integrable for j “ 0, . . . ,m´ 1. The coefficients paj,d are real. Indeed, using that

ϕjpxq “ p´1qjϕjp´xq (since Hjp´xq “ p´1qjHjpxq), we have

paj,d “
piqj
?

2π

ż

ph˚dpuq

g˚puq
ϕjpuqdu “

p´iqj
?

2π

ż

ph˚dpuq

g˚puq
ϕjpuqdu “ paj,d,

where z is the complex conjugate of the complex number z. Under pA3q, the integrability condition of

the ratio ph˚dϕj{g
˚ is ensured (see Equation (7)). The two dimensions m and d must be optimized. As for

pfpdq or pfp`q,d, the performance of pfm,d depends on phd which has good statistical properties (see Section 2).

4.2. Risk bound for the projection estimator of f . The following risk bound holds for pfm,d.

Proposition 4.1. Assume that f and h belong to L2pRq and set

(39) Σpmq “ sup
|u|ď

?
ρm
|g˚puq|´2 `

m´1
ÿ

j“0

ż

|u|ě
?
ρm
|ϕjpuq|

2|g˚puq|´2du, ρ ą 0.

For pfm,d given in (38), we have

E
”

} pfm,d ´ f}
2
ı

ď}f ´ fm}
2 ` 2Σpmq

ˆ

}h´ hd}
2 ` λmax

`

Ψ´1d
˘

}h´ hd}
2
n ` σ

2
ε

T

n

`

tr
`

Ψ´1d
˘

^ 2π2m
˘

˙

.

(40)

Note that the constant ρ ą 0 is independent from n, m and d. The same comments given after Propo-

sition 3.1 for the deconvolution estimator pfp`q,d hold here. The difference with pfp`q,d can be found

on the bias of pfm,d and the term Σpmq, the regression part does not change. Moreover, the term
řm´1
j“0

ş

|x|ě
?
ρm |ϕjpxq|

2|g˚pxq|´2dx is exponentially decaying in m for ρ ě 2 (see Proposition 3.1 in Sacko

(2020)) and thus negligible with respect of sup|x|ď?ρmp|g
˚pxq|´2q “ ∆p

?
ρmq, where ∆p`q is given in (26).

Thus, for f P W s
HpLq and choosing ` —

?
m, the estimator pfp`q,d and pfm,d have the same order and then

rate of convergence (see also Comte and Genon-Catalot (2018) and Sacko (2020) in the framework of
density deconvolution).
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4.3. Rate of convergence of pfm,d. As for pfpdq, we propose a two-step bias-variance trade-off.

Theorem 4.2. Suppose that pA0q, pA3q and h belongs to W s`γ
H pLq. For dopt “ mopt “ rn

1{ps`γ`1qs with
s` γ ą 11{6, we derive that

sup
fPW s

HpLq
E
”

} pfmopt,dopt ´ f}
2
ı

“ O
´

n
´ s
s`γ`1

¯

,

where W s
HpLq is the classical Sobolev-Hermite ball defined in (9).

The estimator pfmopt,dopt achieves the same rate as pfpdoptq obtained in Theorem 3.2. Note that the results

for some special functions obtained for pfpdoptq in Proposition 3.3, 3.4 and 3.5 apply here. If f is a Gamma

function (see Proposition 3.6), we have a loss on the order of the bias of f , }f ´ fm}
2 which is linked to

the Hermite basis. Indeed, for `2 — m, pfm,d and pfp`q,d have the same variance order but the bias is order:

}f ´ fm}
2 ď `´2p`4 contrary to the Fourier bias where }f ´ f`}

2 — `´2p`1 where p is the shape parameter

of Gamma function. For pfm,d, we get for mopt “ d2opt “ rn
1

2pp`q´1q s the following rate of convergence

E
”

} pfmopt,dopt ´ f}
2
ı

“ O
´

n
´

p´2
p`q´1

¯

.

4.4. Adaptive procedure for Hermite-Hermite approach. As for the Fourier-Hermite method and
in view of Theorem 4.2, we set d “ m and we consider the following estimator

rfm “ pfm,m,(41)

where pfm,m is given in (38) Now, we are interested in the choice of m. Let us define the collection of

models Mp2q
n by

Mp2q
n :“

 

1 ď m ď n,
σ2ελTmΣpmq

n
ď 1

(

,

where Σpmq is given by (39) and λ in pA0q. Analogously to FH approach, we estimate the bias by

pBpmq “ max
m1PMp2q

n

"

´

} rfm1 ´ rfm^m1}
2 ´ κ11W pm

1q

¯

`

*

, W pmq “ 4 p1` 24 logpnqqσ2εΣpmq
λmT

n
,(42)

where κ11 ą 0 is a numerical constant which must be adjusted in practice. Then, we set

rm :“ arg min
mPMp2q

n

!

pBpmq ` κ12W pmq
)

,(43)

with κ12 ě κ11 ą 0 must be also calibrated in practice. We can prove the following oracle inequality

Theorem 4.3. Let Assumptions pA0q to pA3q and pA5q hold, rfm be defined by (41), rm selected by (43).
Then, for κ11 ě 12, it yields

Er} rf
rm ´ f}

2s ď C inf
mPMp2q

n

`

}f ´ fm}
2 `R1bpmq `W pmq

˘

` C 1
logpnq

n
,(44)

where R1bpmq “ max
m1PMp2q

n ,mďm1
Σpm1q}h´Erphm1s}2, C is a numerical constant and C 1 “ C 1pErε41s, γ, c1, ξ, λ, C 18q

with c11, γ given in pA3q, ξ, C 18 in (7) and λ in pA0q.

In addition, if f belongs to W s
HpLq and h to W s`γ

H pL1q with s` γ ě 17{6, we derive

Er} rf
rm ´ f}

2s ď C1 inf
mPMp2q

n

`

m´s `W pmq
˘

` C 11
logpnq

n
,(45)

where C1 is a constant depending on C, L, L1, s, γ and C 11 depending on C 1, s and γ.
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The same comments for HH strategy given after Theorem 3.7 hold for rf
rm. In particular, we deduce from

Theorem 4.2 (with n{ logpnq playing the role of n),

Er} rf
rm ´ f}

2s ď Cp
n

logpnq
q
´ s
s`γ`1 ,

where C is an universal constant.

5. Numerical illustration

5.1. Practical implementation. In this section, we present the results of a simulation study to illustrate

the performances of our strategies. We compute the estimator rf
p pdq

given in (31) with pd selected by (34)

and rf
rm defined in (41) with rm chosen in (43). We consider the following test functions which are estimated

on the interval I

(i) fpxq “ expp´2x2q , I “ r´2, 2s,
(ii) Gamma distribution Γp4, 4q, I “ r0, 2.5s,

(iii) fpxq “ 4?
2π
p0.4 expp´8px` 1q2q ` 0.6 expp´8px´ 1q2qq, I “ r´2, 2s,

(iv) fpxq “ ´2xp1` x2q´2, I “ r´2, 2s.

For the kernel g, we choose a Γp2, θq distribution i.e. gpxq “ θ2x expp´θxq1xě0 with θ “ 4. The errors
pεkq are centered Gaussian with standard deviation σε P t1{8, 1{4u. We also choose T “ 10 and consider
two sample sizes n “ 250, 1000. The regression h “ f ‹ g is computed for each test function f and
kernel g by Riemann sum discretization in 500 points. We consider the following collection of models

Mp2q
n “Mp1q

n “ t1, 2, . . . , 25u. The Fourier transform of g is equal to g˚ptq “ p1´ i tθ q
´2 with θ “ 4 then,

we consider the following variance term in practice for the FH method:

(46) V pdq “ 2 p1` 24 logpnqqσ2εp1`
2d

θ2
q2
λdT

n
, θ “ 4, λ “ 1.

For the HH method, we take W pmq “ 2V pmq. The adaptive procedure is implemented as follows:

� For each d P Mp1q
n , compute pApdq “ max

d1PMp1q
n

"

´

} rfpd1q ´ rfpd^d1q}
2 ´ κ1V pd

1q

¯

`

*

, where the

integral } rfpd1q ´ rfpd^d1q}
2 is computed by Riemann’s approximation and V pdq given in (46),

� Select pd such that pd “ arg min
dPMp1q

n

!

pApdq ` κ2V pdq
)

,

� Compute rf
p pdq
pxq “ 1

2π

ş

?
2 pd

´

?
2 pd
e´iux

ph˚
pd
puq

g˚puqdu.

This description remains valid for the HH strategy by setting κ11 “ 2κ1 and κ12 “ 2κ2 where 2V pmq plays
the role of V pdq. In the sequel, this procedure is called ! GLM " (for the Goldenshluger and Lepski
method).
Choice of constants κ1 and κ2. We can choose κ1 “ κ1 and have just one constant to calibrate, it is in
this kind that the procedure (Goldenshluger and Lepski) was developed. Recently, Lacour and Massart
(2016) suggested the idea of considering two different constants (κ1 ‰ κ2) and propose to take κ2 “ 2κ1
for kernel density estimation using Goldenshluger and Lepski (2011) method. Here, we adopt the same
idea to find the values of κ1 and κ2. In a rather ”rough” way and after some numerical tests, we choose
κ1 “ 1.5ˆ 10´3 and κ2 “ 3ˆ 10´3. Then, we illustrate the procedure by some graphs.
As GLM method is slow and therefore difficult to calibrate, we implement the penalization method, which
allows us to perform repetitions and propose risk tables. The penalization strategy has the advantage to
be faster. Furthermore, we must only calibrate one constant denoted κp1q. More precisely, the method
(called ! PM " for the penalization method) is described (only for the FH method) as follows
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‚ For each d PMp1q
n , compute rApdq “ ´} rfd}

2, by Riemann’s approximation.

‚ Choose rd via rd “ arg min
dPMp1q

n

!

rApdq ` κp1qV pdq
)

.

‚ Compute rf
p rdq
pxq “ 1

2π

ş

?
2 rd

´

?
2 rd
e´iux

ph˚
rd
puq

g˚puqdu.

Calibration of constant κp1q. To find the value of κp1q, we have evaluated the MISE for different test
functions and different proposals for κp1q. This preliminary study leads to fix κp1q “ 1.5 ˆ 10´3 for the
FH procedure and 10´3 for the HH method.

5.2. Numerical simulation results. First, we illustrate the methods by presenting some pictures.
Figure 1 presents the true unknown function (the bold red line), and twenty estimators chosen by the
GLM procedure in green dotted lines, for each test function (i), (ii), (iii) and (iv). The dimension selected
by the procedure and the value of Signal-to-noise ratio s2n are given under each graph. Note that s2n is
defined here by:

s2n :“
1
2n

řn´1
i“´n hpxiq

2

1
2n

řn´1
i“´n ε

2
i

«

1
2n

řn´1
i“´n ypxiq

2 ´ σ2ε
σ2ε

,

where the above approximation is obtained using the law of large numbers. We observe that the GLM
procedure give very satisfactory results, visually.
In Figures 2 to 5, we plot the true function in bold red line with 20 estimators in dotted lines for the
test functions (iii), (iv) by considering the PM algorithm for the two estimation procedures. The first
line illustrates the influence of sample size and the second line shows how the noise level can affect the
performance of the estimates. We observe that increasing n improves the estimation and, on the contrary,
that increasing the noise makes the problem more difficult. We can also see some oscillations when
σε “ 1{4 which corresponds to a s2n ratio less than 1 (see Table 3), this effect decreases when the sample
size increases. The mean of selected dimensions are given in Table 2. We observe that these averages are
comparable to the dimension obtained in Figure 1 for (iii) and (iv) with GLM algorithm.
In Table 3, we report the values of the MISEs with standard deviation in parentheses multiplied by 100

computed from 100 simulated samples for the estimator rf
p rdq

and rf
rm with rd and rm selected using the PM

algorithm. We also provide the average of rd or rm selected by each procedure. As for graphical study,
we see that increasing the sample size or decreasing the variance of noise (which corresponds to a larger

s2n, see Table 3) improves the estimation. When n increases, the average of rd or rm is increasing except
in the case of function (i) with σε “ 1{4. This case corresponds to a s2n equal to 0.58 see Table 3 and
then the estimation is most difficult; this can explain why the procedure chooses a large dimension for
n “ 250. Clearly, the influence of signal-to-noise ratio s2n is important, see Figures for graphical analysis.
Comparisons between FH and HH procedures. We observe that the two estimation methods seem to be
equivalent. The computing time is the main difference between the two procedures. For example: we need
about 25 minutes to obtain the MISEs for n “ 250 and almost 1 hour for n “ 1000 for the FH method,
while the HH procedure takes only about 4 minutes for n “ 250 and less than 10 minutes for n “ 1000.
This difference in computation time is probably related to the fact that the Hermite basis allows to build
low complexity estimators, see Belomestny et al. (2019).
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(i) (ii)

pd “ 11.20, s2n “ 2.38, s ÝÑ 8 pd “ 13.85, s2n “ 1.60, s “ 3
(iii) (iv)

pd “ 20.05, s2n “ 1.18, s ÝÑ 8 pd “ 12.65, s2n “ 1.87, s ÝÑ 8

Figure 1. 20 estimates of rf
p pdq

for the GLM algorithm. The true function is in bold red

and the estimate in green dotted lines for n “ 1000.

σε “
1
8 σε “

1
4

f
n 250 1000 250 1000

FH HH FH HH FH HH FH HH
(iii) 13.30 13.75 22.20 21.45 14.05 11.75 17.20 13.05
(iv) 12.65 10.25 12.95 11.40 10.05 9.65 12.90 10.45

Table 2. Mean of selected dimensions rd or rm presented in Figures 2 to 5.

6. Proofs

6.1. Proofs of Section 2.
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Figure 2. 20 estimates of (iii) with FH method, and n “ 250 (first line) or n “ 1000 (second
line) using the PM algorithm. The true function is in bold red and the estimates in green dotted
lines (left σε “ 1{4, right σε “ 1{8).

Figure 3. 20 estimates of (iv) with FH method, and with n “ 250 (first line) or n “ 1000 (second
line) using the PM algorithm. The true function is in bold red and the estimates in green dotted
lines (left σε “ 1{4, right σε “ 1{8).



HERMITE ESTIMATION IN NOISY CONVOLUTION MODEL 19

Figure 4. 20 estimates of (iii) with HH method, and n “ 250 (first line) or n “ 1000 (second
line) using the PM algorithm. The true function is in bold red and the estimates in green dotted
lines (left σε “ 1{4, right σε “ 1{8).

Figure 5. 20 estimates of (iv) with HH method, and n “ 250 (first line) or n “ 1000 (second
line) using the PM algorithm. The true function is in bold red and the estimates in green dotted
lines (left σε “ 1{4, right σε “ 1{8).

Proof of Lemma 2.1. Let ~w “ pw0, . . . , wd´1q
t, with Ψd ~w “ 0. Then, it holds

T

n
~wTΦT

d Φd ~w “
T

n
}Φd ~w}

2
2 “

T

n

n
ÿ

i“´n

˜

d´1
ÿ

j“0

wjϕjpxiq

¸2

“ 0.
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σε “
1
8 σε “

1
4

f
n 250 1000 250 1000

FH HH FH HH FH HH FH HH

(i)
1.28p0.99q 1.24p0.67q 0.35p0.26q 0.43p0.17q 4.66p4.33q 3.11p2.05q 1.12p0.88q 1.16p0.71q

11.75 9.53 11.35 10.83 10.10 7.51 9.95 8.65
2.37 2.36 2.36 2.36 0.58 0.58 0.58 0.59

(ii)
1.40p0.82q 1.51p0.85q 0.61p0.28q 0.65p0.25q 4.48p3.04q 3.11p1.90q 0.46p0.22q 1.47p0.63q

13.23 11.87 15.31 14.66 11.94 9.07 12.21 10.67
1.58 1.57 1.57 1.57 0.37 0.39 0.39 0.39

(iii)
3.95p1.61q 4.96p1.83q 1.36p0.71q 1.52p1.09q 9.85p3.95q 9.65p3.92q 4.27p1.61q 5.41p1.45q

18.96 15.39 22.33 21.93 13.42 11.20 16.59 13.60
1.19 1.18 1.17 1.18 0.28 0.30 0.29 0.30

(vi)
1.60p1.05q 1.38p0.83q 0.49p0.27q 0.45p0.24q 5.10p4.12q 4.53p3.69q 1.46p0.78q 1.41p0.58q

12.71 10.41 13.11 12.74 10.45 8.87 10.65 9.39
1.88 1.89 1.90 1.90 0.48 0.48 0.48 0.47

Table 3. First line: empirical 100ˆ MISE (with 100ˆsd) for the estimation of unknown function

f computed over 100 independent simulations; second line: mean of rd in the for rf
p rdq

or mean of rm

for rf
Ăm, selected by the PM algorithm; third line: mean of Signal/Noise ratio.

Therefore, for all ´n ď i ď n ´ 1, we have,
řd´1
j“0 wjϕjpxiq “ 0. As ϕjpxq “ cjHjpxqe

´x2{2, we derive

Pdpxiq :“
řd´1
j“0 wjcjHjpxiq “ 0 i.e., Pd is a polynomial of degree d ´ 1 admitting n ą d distinct roots.

Consequently, it follows Pd ” 0 and thus ~w ” ~0. �

Proof of Proposition 2.1. Denote Πdh “ Φd
~bpdq “ ΦdpΦ

t
dΦdq

´1Φt
dhp~xq with hp~xq “ phpx´nq, . . . , hpxn´1qq

t

the orthogonal projection of h on Sd for the empirical norm } ¨ }2n.

Proof of part (i). We have

}phd ´ h}
2
n “ }Πdh´ h}

2
n ` }

phd ´Πdh}
2
n “ inf

tPSd
}t´ h}2n ` }

phd ´Πdh}
2
n.

Taking the expectation gives

E
”

}phd ´ h}
2
n

ı

“ inf
tPSd

}t´ h}2n ` E
”

}phd ´Πdh}
2
n

ı

.(47)

Then, for
~
pbpdq given in (13), we can write phdp~xq “

´

phdpx´nq, . . . ,phdpxn´1q
¯t
“ Φd

~
pbpdq and Πdh “ Erphdp~xqs.

Setting P p~xq “ ΦdpΦ
t
dΦdq

´1Φt
d, we have

}phd ´Πdh}
2
n “ }P p~xq~ε}

2
n “

T

n
~εtP p~xqtP p~xq~ε “

T

n
~εtP p~xq~ε.



HERMITE ESTIMATION IN NOISY CONVOLUTION MODEL 21

Moreover, it yields

Er~εtP p~xq~εs “ E
“

ÿ

´nďi,kďn´1

εiεkrP p~xqi,ks
‰

“ σ2ε

n´1
ÿ

i“´n

ErP p~xqi,is “ σ2εtrpP p~xqq “ σ2εtrpIdq “ σ2εd.

Consequently, it holds E
”

}phd ´Πdh}
2
n

ı

“ σ2εT
d
n . Plugging this in (47) ends the proof of (14).

Proof of part (ii). By Phythagoras Theorem, we have

Er}phd ´ h}2s “ Er}phd ´ hd}2s ` }h´ hd}2

“ Er}phd ´ Erphds}2s ` }Erphds ´ hd}2 ` }h´ hd}2.
We study the two first terms in the right hand side of the previous equality. For the first term, using the

definition of phd given in (23), we get

E
”

}phd ´ Erphds}2
ı

“ E}~pbpdq ´ E~pbpdq}2Rd “ 2πE
„

p
~
pbpdq ´ E~pbpdqqtp~pbpdq ´ E~pbpdqq



.

Note that
~
pbpdq ´ E~pbpdq “ pΦt

dΦdq
´1Φt

d~ε, this implies

E
”

}phd ´ Erphds}2
ı

“ E
“

~εtΦdpΦ
t
dΦdq

´1pΦt
dΦdq

´1Φt
d~ε
‰

“ E
“

~εtMp~xq~ε
‰

,

where Mp~xq “ ΦdpΦ
t
dΦdq

´1pΦt
dΦdq

´1Φt
d. As εi are i.i.d. of variance σ2ε , it holds

E
“

~εtMp~xq~ε
‰

“ E
“

ÿ

´nďi,kďn´1

εiεkrMp~xqi,ks
‰

“ σ2ε

n´1
ÿ

i“´n

ErMp~xqi,is

“ σ2εtrpMp~xqq “ σ2εtrppΦ
t
dΦdq

´1q.

We derive that E
“

~εtMp~xq~ε
‰

“ σ2ε
T
n tr

`

Ψ´1d
˘

and

E
”

}phd ´ Erphds}2
ı

“ σ2ε
T

n
tr
`

Ψ´1d
˘

.(48)

For the other term, we have

}hd ´ Erphds}2 “
›

›pxh, ϕ0y, . . . , xh, ϕd´1yq
t
´ pΦt

dΦdq
´1Φt

d phpx´nq, . . . , hpxnqq
t
›

›

2

Rd .

Now, we remark that

phdpx´nq, . . . , hdpxn´1qq
t
“

d´1
ÿ

k“0

xh, ϕky pϕkpx´nq, . . . , ϕkpxn´1qq
t
“ Φd pxh, ϕ0y, . . . , xh, ϕd´1yq

t

and therefore,
pΦt

dΦdq
´1Φt

d phdpx´nq, . . . , hdpxn´1qq
t
“ pxh, ϕ0y, . . . , xh, ϕd´1yq

t .

Thus, it follows

}hd ´ Erphds}2 “ }pΦt
dΦdq

´1Φt
d phdp~xq ´ hp~xqqq }

2
Rd ď }pΦ

t
dΦdq

´1Φt
d}

2
op

n´1
ÿ

i“´n

phdpxiq ´ hpxiqq
2,

where }A}2op is the operator norm of the matrix A defined as the square root of the largest eigenvalue of

AtA. Then, it yields

}pΦt
dΦdq

´1Φt
d}

2
op “ λmaxpΦdpΦ

t
dΦdq

´1pΦt
dΦdq

´1Φt
dq “

T

n
λmax

`

Ψ´1d
˘

(49)
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This implies

(50) }hd ´ Erphds}2 ď λmax
`

Ψ´1d
˘

}h´ hd}
2
n,

From (48) and (6.1), we derive

Er}phd ´ h}2s ď σ2ε
T

n
tr
`

Ψ´1d
˘

` }h´ hd}
2 ` λmax

`

Ψ´1d
˘

}h´ hd}
2
n.(51)

�

Proof of Proposition 2.2. For h P Wα
HpLq with α ą 11{6, we have from Proposition 2.1 (i) and Lemma

2.2 that

E
”

}phd ´ h}
2
n

ı

ď }hd ´ h}
2 ` pσ2εT ` Cpα,LqT

2q
d

n
ď Ld´α ` pσ2ε ` Cpα,LqT

2q
d

n
,

where Cpα,Lq ą 0 depends on α and L. The choice d “ dopt “ rn
1{pα`1qs yields

E
”

}phdopt ´ h}
2
n

ı

“ Opn´
α
α`1 q.

Hence the part (i) of Proposition 2.2. The part (ii) is similar considering pA0q. �

Proof of Theorem 2.3. Inequality (19) follows from Corollary 3.1 in Baraud (2000), where all terms are
multiplied by T with q “ 1 and p “ 8. The constant C 1 is given by:

C 1 “ C2pκq
Erε81s
σ6ε

˜

1`
ÿ

dPMn

d´2

¸

ă `8.

Let us now prove (20). We recall that (see Equation (17) in Baraud (2000))

(52) @d P N , sup
tPSd,t‰0

}t}

}t}n
“ λmaxpΨ

´1
d q.

Using that

Er}ph
pd
´ h}2s ď 2Er}ph

pd
´ hd}

2s ` 2}hd ´ h}
2

Under pA0q and as ph
pd
´ hd P Sdn , where dn ď n is the maximum dimension of the collections of models

Mn, it holds from (52) that }ph
pd
´ hd}

2 ď 2λ2}ph
pd
´ h}2n ` 2λ2}h´ hd}

2
n. Thus, for any d ě 1,

Er}ph
pd
´ h}2s ď 2λ2Er}ph

pd
´ h}2ns ` 2λ2}h´ hd}

2
n ` }hd ´ h}

2.

From (19), we derive that

Er}ph
pd
´ h}2s ď2λ2

„

Cpκq inf
dPMn

ˆ

inf
tPSd

}t´ h}2n ` σ
2
εT

d

n

˙

`
C 1

n



` 2λ2}h´ hd}
2
n ` }hd ´ h}

2

ďmaxp1, 2λ2Cpκqq inf
dPMn

ˆ

p2λ2 ` 1q}h´ hd}
2
n ` }hd ´ h}

2 ` σ2εT
d

n

˙

` 2λ2
C 1T

n
.

This gives (20) and ends the proof of Theorem 2.3. �
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6.2. Proofs of Section 3.

Proof of Proposition 3.1.

Proof of Equation (27). We have

Er} pfpdq ´ f}2s ď 2Er} pfpdq ´ pfp`q,d}
2s ` 2Er} pfp`q,d ´ f}2s.

We examine the first term. Using successively the Cauchy-Schwarz inequality, (7) and under pA3q, we
deduce that

} pfpdq ´ pfp`q,d}
2 “

1

2π

ż

|u|ą`

|ph˚dpuq|
2

|g˚puq|2
du “

1

2π

ż

|u|ą`

ˇ

ˇ

ˇ

ph˚dpuq ´ Eph˚dpuq ` Eph˚dpuq
ˇ

ˇ

ˇ

2

|g˚puq|2
du

“

ż

|u|ą`

ˇ

ˇ

ˇ

řd´1
j“0

´

pb
pdq
j ´ Epbpdqj ` Epbpdqj

¯

ϕjpuq
ˇ

ˇ

ˇ

2

|g˚puq|2
du

ď

d´1
ÿ

j“0

´

pb
pdq
j ´ Epbpdqj ` Epbpdqj

¯2 d´1ÿ

j“0

ż

|u|ą`

ϕjpuq
2

|g˚puq|2
du

ď c1C
12
8

d´1
ÿ

j“0

´

pb
pdq
j ´ Epbpdqj ` Epbpdqj

¯2
de´

ξ`2

2

ż

e´
ξu2

2 p1` u2qγdu.

As
ş

e´
ξu2

2 p1` u2qγdu ď c11 ă 8 with c11 “ c11pγ, ξq and ` ě
?

2d, then, it follows that

E
”

} pfpdq ´ pfp`q,d}
2
ı

ď c1c
1
1C

2
8 E

«

d´1
ÿ

j“0

´

pb
pdq
j ´ Epbpdqj ` Epbpdqj

¯2
ff

de´ξd.(53)

By the definition phd given in (13), it yields E
„

řd´1
j“0

´

pb
pdq
j ´ Epbpdqj ` Epbpdqj

¯2


“ E
„

řd´1
j“0

´

pb
pdq
j ´ Epbpdqj

¯2


`

řd´1
j“0

´

Epbpdqj
¯2

and }Ephd}
2 “ }Er~pbpdqs}2Rd “ }pΦ

t
dΦdq

´1Φt
d
~h}2Rd ď }pΦ

t
dΦdq

´1Φt
d}

2
op

řn´1
i“´nphpxiqq

2. Using

(48) and (49) (where hd :“ 0), we derive that

E

«

d´1
ÿ

j“0

´

pb
pdq
j ´ Epbpdqj ` Epbpdqj

¯2
ff

“ Er}phd ´ Ephd}
2s ` }Ephd}

2 ď σ2ε
T

n
trpΨ´1d q ` λmax

`

Ψ´1d
˘

}h}2n.

Under pA0q and pA4q, we have σ2ε
T
n trpΨ´1d q ` λmax

`

Ψ´1d
˘

}h}2n ď maxpσ2ε , 2}h}
2
8qλT . It comes that

E
„

řd´1
j“0

´

pb
pdq
j ´ Epbpdqj ` Epbpdqj

¯2


ď maxpσ2ε , 2}h}
2
8qλT . Injecting this in (53), we obtain

Er} pfpdq ´ pfp`q,d}
2s ď c1c

1
1C

12
8maxpσ2ε , 2}h}

2
8qde

´ξd “ CλTe´
ξd
2 ,

where C “ CpC 18, c1, }h}8, ξq and therefore that

Er} pfpdq ´ pfp`q,d}
2s ď CλTe´ξd ` 2Er} pfp`q,d ´ f}2s.

Proof of Equation (28). For all ` ą 0, d ě 1, we have the following decomposition:

E
”

} pfp`q,d ´ f}
2
ı

“ }f ´ fp`q}
2 ` E

”

}fp`q ´ pfp`q,d}
2
ı

.(54)
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We evaluate E
”

}fp`q ´ pfp`q,d}
2
ı

using the Plancherel formula :

Er} pfp`q,d ´ fp`q}2s “
1

2π
E

»

–

ż `

´`

ˇ

ˇ

ˇ

ˇ

ˇ

ph˚dpuq ´ h
˚puq

g˚puq

ˇ

ˇ

ˇ

ˇ

ˇ

2

du

fi

fl ď ∆p`qE
”

}phd ´ h}
2
ı

.

Plugging successively (15) in the above bound and in (54) gives (28). �

Proof of Theorem 3.2. Under pA3q, pA0q and for h belongs to Wα
H with α “ s` γ, we get from Lemma

2.2:

E
”

} pfp`q,d ´ f}
2
ı

ď L`´2s ` p1` `2qγ
„

σ2ελ
dT

n
` p1` λqL1d´α ` Cpα,Lq

T 2

n



.

The choices dopt “ rn
1{pα`1qs and `opt “ n

1
2pα`1q end the proof. �

Proof of Proposition 3.3. As f is Gaussian, then it belongs to Wα
HpDq (see (9)) with α as large as desired,

since f is infinitely differentiable and f, . . . , f pαq, xα´lf plq for l “ 0 . . . α ´ 1, see Section 2.3. Using the
differentiation under the integral sign theorem, we have that h “ f ‹ g is also infinitely differentiable for
g P L1pRq and we write hplq “ f plq ‹ g. Besides, it yields }hplq} ď }f plq}}g}1. Then, h belongs to Wαp¨q

(Sobolev ball) since these derivative up to order α belong to L2pRq. Thus, h P Wα
Hp¨q if the function

xα´lhplq is square integrable. This is equivalent to prove that xαhplq is square integrable. Now, we write

}xαhplq}2 “ 2π}
´

xpαqhplq
¯˚

}2 “ 2π}rphplqq˚spαq}2 “ 2π}rg˚pf plqq˚spαq}2.

As xαg P L1pRq X L2pRq and xαf plq P L1pRq, we get by the Leibniz Formula and the Cauchy-Schwarz
inequality that:

}xαhplq}2 “2π}
α
ÿ

k“0

ˆ

α

k

˙

pg˚qpkqrpf plqq˚spα´kq}2

“2π

ż

ˇ

ˇ

ˇ

ˇ

ˇ

α
ÿ

k“0

ˆ

α

k

˙

pg˚qpkqpuqrpf plqq˚spα´kqpuq

ˇ

ˇ

ˇ

ˇ

ˇ

2

du

ďCpαq max
0ďkďα´l

}rpf plqq˚spα´kq}28

α
ÿ

k“0

ˆ

α

k

˙
ż

|pg˚qpkqpuq|2du.

Moreover, it holds
ş

|pg˚qpkqpuq|2du “ 1
2π

ş

|xkgpxq|2dx ď
ş

|x|ď1 |gpxq|
2dx `

ş

|x|ě1 |x
pαqgpxq|2dx ă `8.

Therefore, }xαhplq}2 ă `8 and h belongs to Wα
HpLq. Proposition 2.2 (ii) gives Er}phdopt ´ h}2s À n´

α
α`1 .

Plugging this in (28) and using Lemma 2 in Comte and Lacour (2011) yield

E
”

} pfp`q,dopt ´ f}
2
ı

À `´1e´σ`
2
` c1p1` `

2qγn´
α
α`1 .

Replacing `2 by `2opt “
α

pα`1qσ2 logpnq ends the proof. �

Proof of Proposition 3.4. The proof is similar to that of Proposition 3.3. The regression part does not

change i.e. for the choice dopt “ rn
1{pα`1qs, we have always that Er}phdopt ´ h}2s À n´

α
α`1 . (see the Proof

of Proposition 3.3) with α as large as desired. But for the deconvolution part, the rate change since the

order of the bias of f and ∆p`q have changed. Now, these order are: ∆p`q “ sup|u|ď` |g
˚puq|´2 ď eσ

2`2
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because g˚puq “ expp´σ2t2

2 q and }f ´ fp`q}
2 “ 1

2π

ş

|u|ą` |f
˚puq|2du ď `´2s for f PW spLq (see (10)). From

the previous results, we derive from (28)

E
”

} pfp`q,dopt ´ f}
2
ı

À `´2s ` eσ
2`2n´

α
α`1 .

Choosing `2opt “ p
α

2pα`1qσ2 logpnqq, it yields that

E
”

} pfp`optq,dopt ´ f}
2
ı

À logpnq´s.

�

Proof of Proposition 3.5. First, note that as f and g are Gaussian densities, then h “ f ‹ g is it also a
Gaussian density with variance σ2` θ2. It is proved in Belomestny et al. (2019) (see Proof of Proposition
7, p. 55-56) that the bias for Gaussian density is exponentially decaying and its order is given by

}h´ hd}
2 À 1?

d
expp´λσ,θdq, where λσ,θ “ log

„

´

σ2`θ2`1
σ2`θ2´1

¯2


ą 0. We derive that:

(55) Er}phd ´ h}2s À σ2ελ
T

n
d`

1
?
d

expp´λσ,θdq `OpT
2

n
q

Injecting dopt “ rlogpnq{λσ,θs in (55), we have (30). Injecting this in (28), it comes

E
”

} pfp`q,dopt ´ f}
2
ı

ď }f ´ fp`q}
2 `∆p`q

logpnq

n
.

As g˚puq “ expp´ θ2t2

2 q then, it holds ∆p`q “ sup|u|ď` |g
˚puq|´2 ď eθ

2`2 . Using Lemma 2 in Comte and

Lacour (2011), we have

}f ´ fp`q}
2 “

1

2π

ż

|u|ą`
|f˚puq|2du — `´1e´σ

2`2 .

Consequently, we get from (28)

E
”

} pfp`q,dopt ´ f}
2
ı

À `´1e´σ
2`2 ` eθ

2`2 logpnq

n
,

Replacing `2opt “
1

pσ2`θ2
logpnq ´ 3

2pθ2`σ2q
log logpnq gives the announced result. �

Proof of Proposition 3.6. Recall that as f is Γpp, θq and g Γpq, θq, then, the regression function h “ f ‹g „

Γpp` q, θq and belongs to h PW
pp`q´2q
H since p` q ą 2. We have

Er}phd ´ h}2s ď Cd´pp`q´2q ` σ2ελ
T

n
d`OpT

2

n
q.

Replacing d by dopt “ rn
1{pp`q´1qs, we derive

Er}phdopt ´ h}2s À n
´
p`q´2
p`q´1 .

Now, we consider the deconvolution part. The Fourier transform of g and its modulus are given by

g˚ptq “ p1´ i
t

θ
q´q, |g˚ptq| “ p1`

t2

θ2
q´

q
2 .

Then, it holds that

∆p`q “ sup
|u|ď`

|g˚puq|´2 ď p1`
`2

θ2
qq “ c`2q
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and using Lemma 2 in Comte and Lacour (2011), it follows }f ´ fp`q}
2 “ 1

2π

ş

|u|ą` |f
˚puq|2du — p `θ q

´2p`1.

Plugging the previous results in (28) yields

E
”

} pfp`q,dopt ´ f}
2
ı

À p
`

θ
q´2p`1 ` c`2qn

´
p`q´2
p`q´1 .

Choosing `opt :“ n
p`q´2

pp`q´1qp2p`2q´1q gives

E
”

} pfp`optq,dopt ´ f}
2
ı

“ O
ˆ

n
´

pp`q´2qp2p´1q
pp`q´1qp2p`2q´1q

˙

.

�

Proof of Theorem 3.7. Let us start by the proof of Inequality (35). First, we have by definition of pA, pd

and @d PMp1q
n ,

} rf
p pdq
´ f}2 “ } rf

p pdq
´ rf

p pd^dq
` rf

p pd^dq
´ rfpdq ` rfpdq ´ f}

2

ď 3} rf
p pdq
´ rf

p pd^dq
}2 ` 3} rf

p pd^dq
´ rfpdq}

2 ` 3} rfpdq ´ f}
2

ď 3p pApdq ` κ1V ppdqq ` 3p pAppdq ` κ1V pdqq ` 3} rfd ´ f}
2

ď 6p pApdq ` κ2V pdqq ` 3} rfd ´ f}
2.

Taking the expectation in the previous inequality, we get

E
”

} rf
p pdq
´ f}2

ı

ď 6Er pApdqs ` 6κ2V pdqq ` 3E
”

} rfd ´ f}
2
ı

.(56)

Now, we are interested in the study of Er pApdqs. For all d PMp1q
n , we use the following decomposition

} rfpd1q ´ rfpd1^dq}
2 “ } rfpd1q ´ Er rfpd1qs ` Er rfpd1qs ´ Er rfpd1^dqs ` Er rfpd1^dqs ´ rfpd1^dq}

2

ď 3} rfpd1q ´ Er rfpd1qs}2 ` 3}Er rfpd1^dqs ´ rfpd1^dq}
2 ` 3}Er rfpd1qs ´ Er rfpd1^dqs}2.

Using this, it comes

pApdq ď3 max
d1PMp1q

n

"

´

} rfpd1q ´ Er rfpd1qs}2 ´
κ1
6
V pd1q

¯

`

*

` 3 max
d1PMp1q

n

"

´

}Er rfpd1^dqs ´ rfpd1^dq}
2 ´

κ1
6
V pd1q

¯

`

*

` 3 max
d1PMp1q

n

!

}Er rfpd1qs ´ Er rfpd1^dqs}2
)

.

Let us remark that if d1 ď d, the last term is equal to zero. We have

max
d1PMp1q

n

}Er rfpd1qs ´ Er rfpd1^dqs}2 “ max
d1PMp1q

n ,dăd1
}Er pf

p
?
2d1q,d1s ´ Er pf

p
?
2dq,ds}

2

“ max
d1PMp1q

n ,dăd1

!

}Er pf
p
?
2d1q,d1s ´ fp

?
2d1q ` fp

?
2d1q ´ fp

?
2dq ` fp

?
2dq ´ Er pf

p
?
2dq,ds}

2
)

ď 3 max
d1PMp1q

n ,dăd1
}Er pf

p
?
2d1q,d1s ´ fp

?
2d1q}

2 ` 3}f
p
?
2dq ´ }Er pfp?2dq,ds}

2

` 3 max
d1PMp1q

n ,dăd1
}f
p
?
2d1q ´ fp

?
2dq}

2.

Besides, by definition of pf
p
?
2dq,d given in (25) and f

p
?
2dq in (26), we have for all d ě 1

}Er pf
p
?
2dq,ds ´ fp

?
2dq}

2 “
1

2π

ż

?
2d

´
?
2d

|Erph˚dpuqs ´ h˚puq|2

|g˚puq|2
du ď ∆p

?
2dq}h´ Erphds}2,
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and for d1 ě d

}f
p
?
2d1q ´ fp

?
2dq}

2 “

ż

?
2dď|u|ď

?
2d1
|f˚puq|2du ď

ż

|u|ě
?
2d
|f˚puq|2du “ }f ´ f

p
?
2dq}

2.

This implies

pApdq ď3 max
d1PMp1q

n

"

´

} pf
p
?
2d1q,d1 ´ Er pf

p
?
2d1q,d1s}

2 ´
κ1
6
V pd1q

¯

`

*

` 3 max
d1PMp1q

n

"

´

}Er pf
p
?
2d1^

?
2dq,d1^ds ´

pf
p
?
2d1^

?
2dq,d1^d}

2 ´
κ1
6
V pd1q

¯

`

*

` 9 max
d1PMp1q

n ,dďd1
∆p
?

2d1q}h´ Erphd1s}2 ` 9}f ´ f
p
?
2dq}

2.

As

max
d1PMp1q

n

"

´

} pf
p
?
2d1q,d1 ´ Er pf

p
?
2d1q,d1s}

2 ´
κ1
6
V pd1q

¯

`

*

ď
ÿ

d1PMp1q
n

"

´

} pf
p
?
2d1q,d1 ´ Er pf

p
?
2d1q,d1s}

2 ´
κ1
6
V pd1q

¯

`

*

and V pd1q ě V pd1 ^ dq, then, we have the following bound

max
d1PMp1q

n

"

´

}Er pf
p
?
2d1^

?
2dq,d1^ds ´

pf
p
?
2d1^

?
2dq,d1^d}

2 ´
κ1
6
V pd1q

¯

`

*

ď max
d1PMp1q

n ,d1ďd

"

´

}Er pf
p
?
2d1q,d1s ´

pf
p
?
2d1q,d1}

2 ´
κ1
6
V pd1q

¯

`

*

`

"

´

}Er pf
p
?
2dq,ds ´

pf
p
?
2dq,d}

2 ´
κ1
6
V pdq

¯

`

*

ď 2
ÿ

d1PMp1q
n

"

´

} pf
p
?
2d1q,d1 ´ Er pf

p
?
2d1q,d1s}

2 ´
κ1
6
V pd1q

¯

`

*

.

Consequently, it follows

E
”

pApdq
ı

ď 9
ÿ

d1PMp1q
n

E
„

´

} pf
p
?
2d1q,d1 ´ Er pf

p
?
2d1q,d1s}

2 ´
κ1
6
V pd1q

¯

`



` 9 max
d1PMp1q

n ,dďd1
∆p
?

2d1q}h´ Erphd1s}2 ` 9}f ´ f
p
?
2dq}

2.

Next, we have to control the term
ř

d1PMp1q
n

E
„

´

} pf
p
?
2d1q,d1 ´ Er pf

p
?
2d1q,d1s}

2 ´ κ1
6 V pd

1q

¯

`



. We use the

following technical Lemma.

Lemma 6.1. Under the assumptions of Theorem 3.7, it holds for κ1 ě 12 and C0 a positive constant,

ÿ

dPMp1q
n

E
„

´

} pf
p
?
2dq,d ´ Er pf

p
?
2dq,ds}

2 ´
κ1
6
V pdq

¯

`



ď
C0 logpnq

n
,

where C0 “ C0pErε41s, γ, c1, ξ, λ, C 18q.

By Phythagoras Therorem, we have

}h´ Erphds} “ }h´ hd}2 ` }hd ´ Erphds}2.(57)
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Then, we deduce from Lemma 6.1, (56), (54) and (48) that:

Er} rf
p pdq
´ f}2s ď 57}f ´ f

p
?
2dq}

2 ` 7κ2V pdq ` 54C0
logpnq

n
` 57Rbpdq,(58)

whereRbpdq :“
”

max
d1PMp1q

n ,dďd1
∆p
?

2d1q}h´ Erphd1s}2
ı

. Taking the infimum d and choosing C “ maxp57, 7κ2q,

C 1 “ 54C0 in (58) ends the proof of Inequality (35).

Now, we prove Inequality (36). From (57)-(50) and pA0q, it holds

∆p
?

2d1q}h´ Erphd1s}2 ď p1` λq∆p
?

2d1q}h´ hd1}
2 ` λ∆p

?
2d1q}h´ hd1}

2
n.

Under pA3q, it comes from Lemma 2.2 (ii) and for h PW s`γ
H pL1q,

∆p
?

2d1q}h´ Erphd1s}2 ďc1p1` λqp1` 2d1qγL1pd1q´s´γ ` C∆p
?

2d1q
T 3

n2

ďC

ˆ

d1´s `
T 2

n

˙

.

Then, for d1 ě d, we derive that Rbpdq ď C
´

d´s ` T 2

n

¯

. Plugging this in (58) and using }f ´ f?2d}
2 ď

2´sLd´s because f PW spLq concludes the proof of Theorem 3.7. �

6.3. Proofs of Section 4.

Proof of Proposition 4.1. By the Pythagoras Theorem, we have

(59) E
”

} pfm,d ´ f}
2
ı

“ }f ´ fm}
2 ` E

”

} pfm,d ´ fm}
2
ı

Let us study the term E
”

} pfm,d ´ fm}
2
ı

. On the one hand, by definition of pfm,d and fm, it yields

E
”

} pfm,d ´ fm}
2
ı

“Er
m´1
ÿ

j“0

ppaj,d ´ ajq
2s “ E

«

m´1
ÿ

j“0

1

2π
|x
ph˚d ´ h

˚

g˚
, ϕjy|

2

ff

ď
1

π
E

«

m´1
ÿ

j“0

|x
ph˚d ´ h

˚

g˚
1|¨|ď

?
ρm, ϕjy|

2

ff

`
1

π
E

«

m´1
ÿ

j“0

|x
ph˚d ´ h

˚

g˚
1|¨|ě

?
ρm, ϕjy|

2

ff

.

By the Bessel Inequality, it holds

m´1
ÿ

j“0

x
ph˚d ´ h

˚

g˚
1|¨|ď

?
ρm, ϕjy

2 ď }
ph˚d ´ h

˚

g˚
1|¨|ď

?
ρm}

2 “

ż

|x|ď
?
ρm

ˇ

ˇ

ˇ

ˇ

ˇ

ph˚dpuq ´ h
˚

g˚puq

ˇ

ˇ

ˇ

ˇ

ˇ

2

du

ď sup
|u|ď

?
ρm

1

|g˚puq|2

ż

|ph˚dpuq ´ h
˚|2du.

The Cauchy-Schwarz inequality gives,

x
ph˚d ´ h

˚

g˚
1|¨|ě

?
ρm, ϕjy

2 ď }ph˚d ´ h
˚}2}

ϕj
g˚
1|¨|ě

?
ρm}

2.
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Consequently, we get

E
”

} pfm,d ´ fm}
2
ı

ď
1

π

«

sup
|u|ď

?
ρm

1

|g˚puq|2
`

m´1
ÿ

j“0

ż

|u|ě
?
ρm

|ϕjpuq|
2

|g˚puq|2
du

ff

E
”

}ph˚d ´ h
˚}2

ı

“ 2ΣpmqE
”

}phd ´ h}
2
ı

.

Injecting this in (59) and using Proposition 2.1 (ii), we get

E
”

} pfm,d ´ f}
2
ı

ď }f ´ fm}
2 ` 2Σpmq

ˆ

}h´ hd}
2 ` λmax

`

Ψ´1d
˘

}h´ hd}
2
n ` σ

2
ε

T

n
tr
`

Ψ´1d
˘

˙

.(60)

On the other hand, from (59), we have

E
”

} pfm,d ´ f}
2
ı

“ }f ´ fm}
2 ` }Er pfm,ds ´ fm}2 ` E

”

} pfm,d ´ Er pfm,ds}2
ı

.(61)

We study the last two terms on the above expression. Start by the second. To do this, we introduce the
matrix:

M :“

ˆ
ż

R

ϕ˚jϕ
˚
k

g˚

˙

0ďjďm´1, 0ďkďd´1

By definition phd given in (13), we remark paj,d “ rM
~
pbpdqsj with

~
pbpdq “ ppb

pdq
0 , . . . ,pb

pdq
d´1q

t. We set

~
pfm,d “ ppa0,d, . . . ,pam´1,dq

t “ rM
~
pbpdqs0ďjďm´1

Then, it yields

E
”

} pfm,d ´ Er pfm,ds}2
ı

“ E
„

}
~
pfm,d ´ Er~pfm,ds}2Rpmq



“ E
“

}MpΦt
dΦdq

´1Φt
d~ε}

2
Rpmq

‰

“ σ2εtr
“

ΦdpΦ
t
dΦdq

´1M tMpΦt
dΦdq

´1Φt
d

‰

“
σ2εT

n
trrΨ´1d M tM s.

As Ψ´1d is a definite symmetric positive matrix, then, it is diagonalizable Ψ´1d “ PDP t with D “

diagpµ1, . . . , µdq, where the µi ą 0 are eigenvalues of matrix Ψ´1d and PP t “ P tP “ Id. We can define

the root square of Ψ´1d and derive (see Proof of Theorem 3.7 when we compute M1) trrΨ´1d M tM s ď

λmaxpΨ
´1
d qtrrM

tM s. The Frobenuis norm and Bessel inequality give:

}M}2F “ trrM tM s “
m´1
ÿ

j“0

d´1
ÿ

k“0

ˇ

ˇ

ˇ

ˇ

ż

R

ϕ˚j puqϕ
˚
kpuq

g˚puq
du

ˇ

ˇ

ˇ

ˇ

2

ď 2π
m´1
ÿ

j“0

ż

R

|ϕ˚j puq|
2

|g˚puq|2
du

ď 4π2

˜

m∆p
?
ρmq `

m´1
ÿ

j“0

ż

|u|ě
?
ρm

|ϕ˚j puq|
2

|g˚puq|2
du

¸

.

Consequently, it holds

E
”

} pfm,d ´ Er pfm,ds}2
ı

ď 4π2

˜

m∆p
?
ρmq `

m´1
ÿ

j“0

ż

|u|ě
?
ρm

|ϕ˚j puq|
2

|g˚puq|2
du

¸

σ2ε
T

n
.

Similarly to the study of quantity E
”

} pfm,d ´ fm}
2
ı

where pfm,d is replaced by Er pfm,ds, we have

}Er pfm,ds ´ fm}2 ď 2Σpmq
`

}h´ hd}
2 ` λmax

`

Ψ´1d
˘

}h´ hd}
2
n

˘

.
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Plugging the two last terms on the above bound in 61, we obtain

E
”

} pfm,d ´ f}
2
ı

ď }f ´ fm}
2 ` 2Σpmq

ˆ

}h´ hd}
2 ` λmax

`

Ψ´1d
˘

}h´ hd}
2
n ` 2π2σ2ελmax

`

Ψ´1d
˘

m
T

n

˙

.

Combining this and (60) ends the proof. �

Proof of Theorem 4.2. Under pA3q, pA0q and for h belongs to Wα
HpL

1q, it holds from Lemma 2.2:

E
”

} pfm,d ´ f}
2
ı

ď Lm´s ` 2Σpmq

„

p1` λqL1d´α ` λσ2εT
d

n
` Cpα,Lq

T 2

n



Besides, under pA3q and from (7) with ρ ě 2, we have

m´1
ÿ

j“0

ż

|u|ě
?
ρm
|ϕjpuq|

2|g˚puq|´2dx ď
m´1
ÿ

j“0

C2e´ξρm
ż

p1` u2qe´ξu
2
du ď Cpξqme´ξρm.

As sup|x|ď?ρm |g
˚pxq|´2 ď c1p1`pmρq

γq, then, there exits a constant, denoted C1 such that Σpmq ď C1m
γ .

Then, we obtain

E
”

} pfm,d ´ f}
2
ı

ď Lm´s ` 2C1m
γ

„

p1` λqL1d´α ` λσ2εT
d

n
` Cpα,Lq

T 2

n



,

and the choices mopt “ dopt “ rn
1{pα`1qs with α “ s` γ ą 11{6 end the proof. �

Proof of Theorem 4.3.

Proof of Inequality (44). By definition of pB, rm and @m PMp2q
n , we have

} rf
rm ´ f}

2 ď 6
´

pBpmq ` κ12W pmq
¯

` 3} rfm ´ f}
2,

by analogy with the proof of Theorem 3.7. Then, it yields

E
”

} rf
rm ´ f}

2
ı

ď 6Er pBpmqs ` κ12W pmq ` 3E
”

} rfm ´ f}
2
ı

(62)

Next, we study the term Er pBpmqs. For all m,m1 PMp2q
n , we have the following decomposition

} rfm1 ´ rfm1^m}
2 ď 3} rfm1 ´ Er rfm1s}2 ` 3} rfm1^m ´ Er rfm1^ms}2 ` 3}Er rfm1s ´ Er rfm1^ms}2,

which implies

pBpmq ď3 max
m1PMp2q

n

"ˆ

} rfm1 ´ Er rfm1s}2 ´
κ11
6
W pm1q

˙

`

*

` 3 max
m1PMp2q

n

"ˆ

} rfm1^m ´ Er rfm1^ms}2 ´
κ11
6
W pm1q

˙

`

*

` 3 max
m1PMp2q

n

!

}Er rfm1s ´ Er rfm1^ms}2
)

Note that for m1 ď m, the last term is null. More precisely, we have

max
m1PMp2q

n

!

}Er rfm1s ´ Er rfm1^ms}2
)

“ max
m1PMp2q

n ,măm1

!

}Er rfm1s ´ Er rfm1^ms}2
)

ď3 max
m1PMp2q

n ,măm1

!

}Er rfm1s ´ fm1}2
)

` 3}fm ´ Er rfms}2

` 3 max
m1PMp2q

n ,măm1
}f 1m ´ fm}

2.
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Moreover, it yields

}fm ´ Er rfms}2 “
1

2π

ˇ

ˇ

ˇ

ˇ

ˇ

m´1
ÿ

j“0

ż

h˚puq ´ Erh˚mpuqs
g˚puq

ϕjpuqdu

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď
1

π

ˇ

ˇ

ˇ

ˇ

ˇ

m´1
ÿ

j“0

ż

|u|ď
?
ρm

h˚puq ´ Erh˚mpuqs
g˚puq

ϕjpuqdu

ˇ

ˇ

ˇ

ˇ

ˇ

2

`
1

π

ˇ

ˇ

ˇ

ˇ

ˇ

m´1
ÿ

j“0

ż

|u|ą
?
ρm

h˚puq ´ Erh˚mpuqs
g˚puq

ϕjpuqdu

ˇ

ˇ

ˇ

ˇ

ˇ

2

From Bessel, the Cauchy-Schwarz inequalities and Parseval equality, we obtain }fm´Er rfms}2 ď 2Σpmq}h´

Erphms}2. For m ă m1, we have }f 1m ´ fm}
2 ď }f ´ fm}

2. Consequently, it holds

pBpmq ď3 max
m1PMp2q

n

"ˆ

} rfm1 ´ Er rfm1s}2 ´
κ11
6
W pm1q

˙

`

*

` 3 max
m1PMp2q

n

"ˆ

} rfm1^m ´ Er rfm1^ms}2 ´
κ11
6
W pm1q

˙

`

*

` 18 max
m1PMp2q

n ,mďm1
Σpm1q}h´ Erphm1s}2 ` 9}f ´ fm}

2.

Notice that

max
m1PMp2q

n

"ˆ

} rfm1 ´ Er rfm1s}2 ´
κ11
6
W pm1q

˙

`

*

ď
ÿ

m1PMp2q
n

"ˆ

} rfm1 ´ Er rfm1s}2 ´
κ11
6
W pm1q

˙

`

*

,

and W pm1q ěW pm1 ^mq, then, we have the following bound

max
m1PMp2q

n

"ˆ

} rfm1^m ´ Er rfm1^ms}2 ´
κ11
6
W pm1q

˙

`

*

ď 2
ÿ

m1PMp2q
n

"ˆ

} rfm1 ´ Er rfm1s}2 ´
κ11
6
W pm1q

˙

`

*

.

Finally, after taking expectation, we get

Er pBpmqs ď 9
ÿ

m1PMp2q
n

E
„ˆ

} rfm1 ´ Er rfm1s}2 ´
κ11
6
W pm1q

˙

`



` 18 max
m1PMp2q

n ,mďm1
Σpm1q}h´ Erphm1s}2 ` 9}f ´ fm}

2.

Lemma 6.2. Under the assumption of Theorem 4.3, for κ11 ě 12, we have

ÿ

m1PMp2q
n

E
„ˆ

} rfm1 ´ Er rfm1s}2 ´
κ11
6
W pm1q

˙

`



ď C0
logpnq

n
.

Lemma 6.2 implies that

Er pBpmqs ď 9C0
logpnq

n
` 18 max

m1PMp2q
n ,mďm1

Σpm1q}h´ Erphm1s}2 ` 9}f ´ fm}
2.

Injecting this in (62) and from (57)-(50), we obtain

E
”

} rf
rm ´ f}

2
ı

ď 57}f ´ fm}
2 ` 108Rbpm

1q ` 7κ12W pmq ` 54C0
logpnq

n
.(63)

Choosing C “ maxp108, 7κ12q, C
1 “ 54C0 and taking the infimum on m P Mp2q

n concludes the proof of
Inequality (44).

Proof of Inequality (45). Recall that for f P W spLq, it holds }f ´ fm}
2 ď Lm´s. Similarly to
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the proof of (36), we derive for h PW s`γ
H pL1q with s`γ ě 17{6 that R1bpmq ď CpS, γ, λ, σ2εqpm

´s`T 2{nq.
Plugging the two previous inequalities into (63) gives (45). �
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53(1):97–110.

Fan, J. (1993). Adaptively local one-dimensional subproblems with application to a deconvolution prob-
lem. Ann. Statist., 21(2):600–610.

Gafni, A., Modlin, R. L., and Brand, L. (1975). Analysis of fluorescence decay curves by means of the
laplace transformation. Biophysical journal, 15(3):263–280.

Goh, V., Halligan, S., Hugill, J.-A., Gartner, L., and Bartram, C. I. (2005). Quantitative colorectal cancer
perfusion measurement using dynamic contrast-enhanced multidetector-row computed tomography:
effect of acquisition time and implications for protocols. Journal of computer assisted tomography,
29(1):59–63.

Goh, V., Padhani, A. R., and Rasheed, S. (2007). Functional imaging of colorectal cancer angiogenesis.
The Lancet Oncology, 8(3):245–255.

Goldenshluger, A. and Lepski, O. (2011). Bandwidth selection in kernel density estimation: oracle in-
equalities and adaptive minimax optimality. Ann. Statist., 39(3):1608–1632.

Indritz, J. (1961). An inequality for Hermite polynomials. Proc. Amer. Math. Soc., 12:981–983.
Klein, T. and Rio, E. (2005). Concentration around the mean for maxima of empirical processes. Ann.

Probab., 33(3):1060–1077.
Lacour, C. (2006). Rates of convergence for nonparametric deconvolution. C. R. Math. Acad. Sci. Paris,

342(11):877–882.
Lacour, C. and Massart, P. (2016). Minimal penalty for Goldenshluger-Lepski method. Stochastic Process.

Appl., 126(12):3774–3789.
Ledoux, M. (1997). On Talagrand’s deviation inequalities for product measures. ESAIM Probab. Statist.,

1:63–87.
Loubes, J.-M. and Marteau, C. (2012). Adaptive estimation for an inverse regression model with unknown

operator. Stat. Risk Model., 29(3):215–242.
Mabon, G. (2017). Adaptive deconvolution on the non-negative real line. Scand. J. Stat., 44(3):707–740.
McKinnon, A., Szabo, A., and Miller, D. (1977). The deconvolution of photoluminescence data. The

Journal of Physical Chemistry, 81(16):1564–1570.
Meister, A. (2009). On testing for local monotonicity in deconvolution problems. Statist. Probab. Lett.,

79(3):312–319.
O’Connor, D., Ware, W., and Andre, J. (1979). Deconvolution of fluorescence decay curves. a critical

comparison of techniques. Journal of Physical Chemistry, 83(10):1333–1343.
Pensky, M. and Vidakovic, B. (1999). Adaptive wavelet estimator for nonparametric density deconvolu-

tion. Ann. Statist., 27(6):2033–2053.
Rice, J. and Rosenblatt, M. (1983). Smoothing splines: regression, derivatives and deconvolution. Ann.

Statist., 11(1):141–156.
Sacko, O. (2020). Hermite density deconvolution. ALEA Lat. Am. J. Probab. Math. Stat., 17(1):419–443.
Stewart, G. W. and Sun, J. G. (1990). Matrix perturbation theory. Computer Science and Scientific

Computing. Academic Press, Inc., Boston, MA.



34 O. SACKO
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Appendix A. Proof of technical Lemmas

Proof of Lemma 2.2. Recall that }hd ´ h}
2
n “

T
n

řn´1
i“´nphdpxiq ´ hpxiqq

2.

Proof of part (i). We write T
n

řn´1
i“´nphdpxiq´hpxiqq

2 “ T
n

řn´1
i“´nphdpxiq´hpxiqq

2´
şT
´T ph´hdq

2puqdu`
şT
´T ph´ hdq

2puqdu. Using Lemma B.2 given in the Appendix yields
ˇ

ˇ

ˇ

ˇ

ˇ

T

n

n´1
ÿ

i“´n

phdpxiq ´ hpxiqq
2 ´

ż T

´T
ph´ hdq

2puqdu

ˇ

ˇ

ˇ

ˇ

ˇ

ď }ψ1}8
T 2

n
,

where ψpxq “ p
ř

jěd ajphqϕjpxqq
2. Using (5), (8) and the Cauchy-Schwarz inequality, we have for h P

Wα
HpLq that

ÿ

jěd

ajphqϕ
1
jpxq ď

¨

˝

ÿ

jěd

jα|ajphq|
2

˛

‚

1
2
¨

˝

ÿ

jěd

j´α`
5
6

˛

‚

1
2

À

´

d´α`
5
6
`1
¯

1
2
“ d´

α
2
` 11

12 ,

provided´α`5{6`1 ă 0, that is α ą 11{6. Then, ψ is differentiable and ψ1pxq “ 2
ř

jěd ajphqϕ
1
jpxq

ř

jěd ajphqϕjpxq.

Again, using (5) and the Cauchy-Schwarz inequality, we have for h PWα
HpLq that

ÿ

jěd

|ajphqϕjpxq| ď
ÿ

jěd

j
α
2 |ajphq|j

´α
2
´ 1

12 ď

¨

˝

ÿ

jěd

jα|ajphq|
2

˛

‚

1
2
¨

˝

ÿ

jěd

j´α´
1
6

˛

‚

1
2

À d´
α
2
` 5

12 .

Consequently, it follows for α ą 11{6 that T
n

řn´1
i“´nphdpxiq ´ hpxiqq

2 ´
şT
´T ph ´ hdq

2puqdu ď C T 2

n and

therefore }h´ hd}
2
n ď Cpα,LqT

2

n ` }h´ hd}
2. This gives the part (i).

Proof of part (ii). Let us start by writing

}h´ hd}
2
n “

T

n

n´1
ÿ

i“´n

ph´ hdq
2pxiq

ď 2
T

n

n´1
ÿ

i“´n

„

ph´ hdq
2pxiq ` ph´ hdq

2pxi`1q

2



“ 2
T

n

n´1
ÿ

i“´n

„

ph´ hdq
2pxiq ` ph´ hdq

2pxi`1q

2



´ 2

ż T

´T
ph´ hdq

2pxqdx` 2

ż T

´T
ph´ hdq

2pxqdx.

From Lemma B.2 (ii) given in Appendix, we have
ˇ

ˇ

ˇ

ˇ

ˇ

T

n

n´1
ÿ

i“´n

„

ph´ hdq
2pxiq ` ph´ hdq

2pxi`1q

2



´

ż T

´T
ph´ hdq

2pxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď }ψ2}8
T 3

12n2
,
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where ψpxq “ ph´hdq
2pxq “ p

ř

jąd ajphqϕjpxqq
2 with ajphq “ xh, ϕjy. Next, we evaluate the term }ψ2}8.

By induction on d, the d-th derivative of ϕj is given by (see Lemma 5.2 in Comte et al. (2020) for the
proof)

ϕ
pdq
j “

d
ÿ

k“´d

b
pdq
k,jϕj`k, where b

pdq
k,j “ Opjd{2q, j ě d ě |k|.

Using this for d “ 2 and (5), it follows |ϕ2j pxq| À jpj ` kq´
1
12 À j

11
12 and then we get for Wα

HpLq and

α ą 17{6

|
ÿ

jąd

ajphqϕ
2
j pxq| ď

¨

˝

ÿ

jąd

jαajphq
2

˛

‚

1
2
¨

˝

ÿ

jąd

j´α`
11
6

˛

‚

1
2

À pd´α`
11
6
`1q

1
2 “ d´

α
2
` 17

12 .

This implies that ψ is differentiable of order 2. Then, for any j ą d, it holds

ψ2pxq “ 2

»

–

ÿ

jąd

ajphqϕ
2
j pxq

ÿ

jěd

ajphqϕjpxq `

¨

˝

ÿ

jąd

ajphqϕ
1
jpxq

˛

‚

2fi

fl ,

where the bound of last term is d´α`
11
6 for h P Wα

HpLq (see Proof of part (i)). Besides, the order of
ř

jěd ajphqϕjpxq is d´
α
2
` 5

12 . Therefore, it comes }ψ2}8 À d´α`
11
6 and then

}h´ hd}
2
n ď 2}h´ hd}

2 ` C
T 3

12n2
.

This ends the proof of part (ii) and then the proof of Lemma. �

Proof of Lemma 6.1. Consider the process νnptq “ xt, pfp
?
2dq,d ´ Er pf

p
?
2dq,dsy. Let us denote by Sd :“ tt P

L1pRqXL2pRq, supp pt˚q Ă r´
?

2d,
?

2dsu. We have, |νnptq|
2 ď }t}2} pf

p
?
2dq,d´Er pf

p
?
2dq,ds}

2 with equality

in t “ pf
p
?
2dq,d ´ Er pf

p
?
2dq,ds{p

pf
p
?
2dq,d ´ Er pf

p
?
2dq,dsq , then, it holds

} pf
p
?
2dq,d ´ Er pf

p
?
2dq,ds}

2 “ sup
tPSd,}t}“1

|νnptq|
2.

By definition of phd given in (13), we write,

νnptq “xt, pfp
?
2dq,d ´ Er pf

p
?
2dq,dsy “

1

2π

ż

?
2d

´
?
2d

ph˚dpuq ´ Erph˚dpuqs
g˚puq

t˚p´uqdu

“
1

2π

T

n

ż

?
2d

´
?
2d

řd´1
j“0

“

Ψ´1d Φt
d~ε
‰

j
ϕ˚j puq

g˚puq
t˚p´uqdu

Using that
“

Ψ´1d Φt
d~ε
‰

0ďjďd´1
“

”

řn´1
i“´nrΨ

´1
d Φt

dsj,iεi

ı

0ďjďd´1
, it holds

νnptq “
1

2π

T

n

n´1
ÿ

i“´n

εixt
˚,

řd´1
j“0

“

Ψ´1d Φt
d

‰

j,i
ϕ˚j

g˚
1
|¨|ď

?
2dy “

1

2n

n´1
ÿ

i“´n

αt,d,ipεiq

where

αt,d,ipxq “ x
T

π
xt˚,

řd´1
j“0

“

Ψ´1d Φt
d

‰

j,i
ϕ˚j

g˚
1
|¨|ď

?
2dy.
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As the noise is not bounded, we cannot apply directly the Talagrand’s inequality to the process νnptq. In
this respect, we use the following decomposition

εi “ ζi ` ξi, ζi “ εi1|εi|ďkn ´ Erεi1|εi|ďkns, ξi “ εi1|εi|ąkn ´ Erεi1|εi|ąkns,

where kn is chosen in the sequel. Then, it follows that

νnptq “ νp1qn ptq ` νp2qn ptq, νp1qn ptq “
1

2n

n´1
ÿ

i“´n

αt,d,ipζiq, νp2qn ptq “
1

2n

n´1
ÿ

i“´n

αt,d,ipξiq,

and

E

«˜

sup
tPSd,}t}“1

|νnptq|
2 ´

κ1
6
V pdq

¸

`

ff

ď 2E

«˜

sup
tPSd,}t}“1

|νp1qn ptq|2 ´
κ1
12
V pdq

¸

`

ff

` 2E

«

sup
tPSd,}t}“1

|νp2qn ptq|2

ff

.

This implies that

ÿ

dPMp1q
n

E
„

´

} pf
p
?
2dq,d ´ Er pf

p
?
2dq,ds}

2 ´
κ1
6
V pdq

¯

`



ď 2
ÿ

dPMp1q
n

E

«˜

sup
tPSd,}t}“1

|νp1qn ptq|2 ´
κ1
12
V pdq

¸

`

ff

` 2nE

«

sup
tPSd,}t}“1

|νp2qn ptq|2

ff

.(64)

Now, we study the last two terms. We start by the second.

Upper bound for nE
”

suptPSd,}t}“1 |ν
p2q
n ptq|2

ı

. For t P Sd, we remark that

νp2qn ptq “
1

2π

T

n

ż

?
2d

´
?
2d

řd´1
j“0

”

Ψ´1d Φt
d
~ξ
ı

j
ϕ˚j puq

g˚puq
t˚p´uqdu “

1

2π

ż

?
2d

´
?
2d

ȟ˚dpuq ´ Erȟ˚dpuqs
g˚puq

t˚p´uqdu,

where (see Equation (13)) ȟd “
řd´1
j“0 b̌

pdq
j ϕj ,

~̌bpdq “ pb̌
pdq
0 , . . . , b̌

pdq
d´1q

t “ pΦt
dΦdq

´1Φt
d~y “

T
nΨ´1d Φt

d
~̌y, ~̌y “

py̌px´nq, . . . , y̌pxn´1qq
t with y̌pxiq “ hpxiq` ξi, here and only for the study of nE

”

suptPSd,}t}“1 |ν
p2q
n ptq|2

ı

.

It comes that

E

«

sup
tPSd,}t}“1

|νp2qn ptq|2

ff

ď }t}2∆p
?

2dqE
“

}ȟd ´ Erȟds}2
‰

.

The bounds obtained for phd extend to ȟd. Then, it yields from (48) (with σ2ε replaced by Erξ21s) and under

pA0q that E
”

suptPSd,}t}“1 |ν
p2q
n ptq|2

ı

ď ∆p
?

2dqλdErξ21sTn . By the Cauchy-Schwarz inequality, we have

Erξ21s ď Erε211|ε1|ěkns ď
b

Erε41s
a

Pp|ε1| ě knq.

We introduce the following technical Lemma to obtain a bound of Erξ21s.
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Lemma A.1. Under pA5q, it yields Pp|ε1| ě knq ď 2e´
k2n
2b2 . Moreover, ε1 admits a finite moment of any

order, Er|ε1|ps ď p2b2q
p
2 spΓpp2q, where Γp¨q denotes the gamma function defined by:

Γptq “

ż `8

0
xt´1e´xdx, @t P R.

Using Lemma A.1 with p “ 4 and choosing

kn “ 2
?

2b
a

logpnq,(65)

we get

(66) nE

«

sup
tPSd,}t}“1

|νp2qn ptq|2

ff

ď n∆p
?

2dqλd
b

Erε41s
a

Pp|ε1| ě knq
T

n
ď
C

n
,

since ∆p
?

2dqλdT À n by definition of Mp1q
n .

Upper bound for
ř

dPMp1q
n

E
„

´

suptPSd,}t}“1 |ν
p1q
n ptq|2 ´ κ1

12V pdq
¯

`



. We bound this term applying the

Talagrand inequality given in Appendix C.2. Let us first compute the three constants H2, M1 and v.

Computing of H2. Similarly to the study of E
”

suptPSd,}t}“1 |ν
p2q
n ptq|2

ı

, we have under pA0q and from

(48),

E

«

sup
tPSd,}t}“1

|νp1qn ptq|2

ff

ď λErζ21 s∆p
?

2dq
dT

n
ď λσ2ε∆p

?
2dq

dT

n
:“ H2.

Computing of v. For t P Sd, it holds by the Cauchy-Schwarz inequality, Erζ21 s ď σ2ε and as }t}2 “ 1,

1

2n

n´1
ÿ

i“´n

Varpαt,d,ipζiqq “
1

2n

n´1
ÿ

i“´n

E
”

αt,d,ipζiqαt,d,ipζiq
ı

“σ2ε
T 2

2nπ2

n´1
ÿ

i“´n

ˇ

ˇ

ˇ

ˇ

ˇ

xt˚,

řd´1
j“0

“

Ψ´1d Φt
d

‰

j,i
ϕ˚j

g˚
1
|¨|ď

?
2dy

ˇ

ˇ

ˇ

ˇ

ˇ

2

ďσ2ε
T 2

2nπ2

n´1
ÿ

i“´n

}t˚}2
ż

?
2d

´
?
2d

ˇ

ˇ

ˇ

řd´1
j“0

“

Ψ´1d Φt
d

‰

j,i
ϕ˚j puq

ˇ

ˇ

ˇ

2

|g˚puq|2
du

“σ2ε
T 2

nπ
∆p
?

2dq
n´1
ÿ

i“´n

ż

?
2d

´
?
2d

ˇ

ˇ

ˇ

ˇ

ˇ

d´1
ÿ

j“0

“

Ψ´1d Φt
d

‰

j,i
ϕ˚j puq

ˇ

ˇ

ˇ

ˇ

ˇ

2

du.

The Fourier transform of pϕjq, see (6) gives,

1

2n

n´1
ÿ

i“´n

Varpαt,d,ipζiqq ď 2σ2ε
T 2

n
∆p
?

2dq
n´1
ÿ

i“´n

ż

R
|

d´1
ÿ

j“0

“

Ψ´1d Φt
d

‰

j,i
ϕjpuq|

2du

“ 2σ2ε
T 2

n
∆p
?

2dq
n´1
ÿ

i“´n

d´1
ÿ

j“0

“

Ψ´1d Φt
d

‰2

j,i
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where we use the orthonormality pϕjq. Recall that for A “ pai,jq1ďiďm,1ďjďn a matrix with real coefficients,
the Frobenius norm of A is defined by

}A}2F “
m
ÿ

i“1

n
ÿ

j“1

a2i,j “ tr
“

AtA
‰

.

Then, under pA0q, it yields

T

n

n´1
ÿ

i“´n

d´1
ÿ

j“0

“

Ψ´1d Φt
d

‰2

j,i
“
T

n
tr
“

ΦdΨ
´1
d Ψ´1d Φt

d

‰

“ tr
“

Ψ´1d
‰

ď λd,

which implies

sup
tPSd,}t}“1

1

2n

n´1
ÿ

i“´n

Varpαt,d,ipζiqq ď 2σ2εTλd∆p
?

2dq “: v.

Computing of M1. Using successively (6), the Cauchy-Schwarz inequality and the orthonormality

of ϕj , we have on the process ν
p1q
n

sup
tPSd,}t}“1

}αt,d,i}8 “ sup
tPSd,}t}“1

sup
xPR

|αt,d,ipxq| “ sup
tPSd,}t}“1

sup
xPR

ˇ

ˇ

ˇ

ˇ

ˇ

x1xďkn
T

π
xt˚,

d´1
ÿ

j“0

“

Ψ´1d Φt
d

‰

j,i

ϕ˚j
g˚
1
|¨|ď

?
2dy

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
tPSd,}t}“1

¨

˚

˝

2kn
T

π
}t˚}

?
2π

˜

ż

?
2d

´
?
2d

|
řd´1
j“0

“

Ψ´1d Φt
d

‰

j,i
ϕjpuq|

2

|g˚puq|2
du

¸

1
2

˛

‹

‚

ď 4knT

˜

∆p
?

2dq
d´1
ÿ

j“0

“

Ψ´1d Φt
d

‰2

j,i

¸

1
2

.

To bound the term
řd´1
j“0

“

Ψ´1d Φt
d

‰2

j,i
, we use:

d´1
ÿ

j“0

“

Ψ´1d Φt
d

‰2

j,i
“

d´1
ÿ

j“0

“

Ψ´1d Φt
d

‰

j,i

“

Ψ´1d Φt
d

‰

i,j
“

“

ΦdΨ
´1
d Ψ´1d Φt

d

‰

´nďi,iďn´1
“ ~etiΦdΨ

´1
d Ψ´1d Φt

d~ei,

where p~eiq´nďiďn´1 is the vector of the canonical basis of R2n. The matrix Ψ´1d is a definite symmetric,
then diagonalizable and we can write

Ψ´1d “ PDP t, P tP “ PP t “ Id, D “ Diagpµ1, . . . , µdq,

where pµiq1ďiďd are the eigenvalues of matrix Ψ´1d . We can define its square root and we have for

~w “ P tΨ
´ 1

2
d Φt

d~ei

d´1
ÿ

j“0

“

Ψ´1d Φt
d

‰2

j,i
“ ~etiΦdΨ

´ 1
2

d Ψ´1d Ψ
´ 1

2
d Φt

d~ei “
d´1
ÿ

j“0

µjw
2
j ď λmaxpΨ

´1
d q~w

t ~w,

The definition of operator norm implies,

d´1
ÿ

j“0

“

Ψ´1d Φt
d

‰2

j,i
ď λmaxpΨ

´1
d q sup

}~x}“1

ˆ

~xtΦdΨ
´ 1

2
d Ψ

´ 1
2

d Φt
d~x

˙

“ λmaxpΨ
´1
d qλmaxpΦdΨ

´1
d Φt

dq.
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Furthermore, the matrix ΦdΨ
´1
d Φt

d “
n
T ΦdpΦ

t
dΦdq

´1Φt
d is an orthogonal projection matrix, then, it comes

d´1
ÿ

j“0

“

Ψ´1d Φt
d

‰2

j,i
ď λmaxpΨ

´1
d q

n

T
.(67)

Under pA0q, we obtain

sup
tPSd,}t}“1

}αt,d,i}8 ď 4knT
1
2 p∆p

?
2dqλnq

1
2 :“M1.

For δ ą 0, the Talagrand inequality gives,

E

«˜

sup
tPSd,}t}“1

ˇ

ˇ

ˇ
νp1qn ptq

ˇ

ˇ

ˇ

2
´ 2p1` 2δqH2

¸

`

ff

ď
4

K1
pTd ` Udq,

where

Td “
2σ2ελTd∆p

?
2dq

n
exp

ˆ

´
K1δ

2

˙

and Ud “
196λk2nT∆p

?
2dq

K1C2pδqn
exp

˜

´K 1
1Cpδq

?
δ

a

σ2ε
kn

?
d

¸

,

K1 “ 1{3, Cpδq “ p
?

1` δ ´ 1q ^ 1. It follows that

ÿ

dPMp1q
n

E

«˜

sup
tPSd,}t}“1

|νp1qn ptq|2 ´ 2p1` 2δqH2

¸

`

ff

À
ÿ

dPMp1q
n

rTd ` Uds .

As Td∆p
?

2dq À n, then, it yields
ř

dPMp1q
n
Td À n exp p´K1δ{2q. The choice δ “ 4

K1
logpnq ensures that

ř

dPMp1q
n
Td ď

C
n . With this choice of δ and kn given by (65), we derive Cpδq “ 1 and

ÿ

dPMp1q
n

Ud ď C
logpnq

n

ÿ

dPMp1q
n

∆p
?

2dq exp
´

´C
?
d
¯

ď C
logpnq

n
,

since
ÿ

dPMp1q
n

´

∆p
?

2dq exp
´

´C
?
d
¯¯

À
ÿ

dPMp1q
n

dγ exp
´

´C
?
d
¯

ă 8.

Finally, it holds for κ1 ě 12 that

ÿ

dPMp1q
n

E

«˜

sup
tPSd,}t}“1

|νp1qn ptq|2 ´
κ1
12
V pdq

¸

`

ff

ď C
logpnq

n
.

Plugging this and (66) in (64) concludes the proof. �

Proof of Lemma A.1. Let us prove the first bound. Using the Markov inequality, we have for any t, s ą 0

Ppε1 ą sq ď Ppetε1 ą estq ď
Eretε1s
est

ď e
b2t2

2
´st,

where the last bound is obtained using the fact that ε1 is b-sub-Gaussian. The above inequality holds for

any t ą 0, then, for the t which minimizes the bound. Set rptq “ b2t2

2 ´ st, we have r1ptq “ 0 in t “ s{b2

and r2ptq ą 0 for any t ą 0. It follows that t “ s{b2 is the minimizer of rptq and inftě0 rptq “ ´s
2{p2b2q

and then, Ppε1 ą sq ď e´
s2

2b2 . Likewise, it yields Ppε1 ă ´sq ď e´
s2

2b2 . Consequently, we get Pp|ε1| ą sq ď
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Ppε1 ą sq ` Ppε1 ă ´sq ď 2e´
s2

2b2 . This prove the first part by setting s “ kn. For the second part, we
have by the definition of the expectation for non negative variable

Er|ε1|ps “
ż `8

0
Pp|ε1|p ě xqdx ď 2

ż `8

0
e´

x
2
p

2b2 dx

“ p2b2q
p
2 p

ż `8

0
e´yy

p
2
´1dy.

Using the definition of the gamma function, we get Er|ε1|ps “ p2b2q
p
2 pΓpp2q. �

Proof of Lemma 6.2. Define the linear process νnpsq “ xs, rfm1 ´ Er rfm1sy. For all function s, it holds

} rfm1 ´ Er rfm1s}2 “ supsPSm,}s}“1 |νnpsq|
2. By definition of rfm given in (41), we have

νnpsq “

ż

R
spuqp rfm1 ´ Er rfm1sqpuqdu “

ż

R

m´1
ÿ

j“0

`

paj,m ´ Erpaj,ms
˘

spuqϕjpuqdu

“
1

2π

ż

R

m´1
ÿ

j“0

˜

ż

R

ph˚mpvq ´ Erph˚mpvqs
g˚pvq

ϕ˚j pvqdv

¸

ϕjpuqspuqdu

“
1

2π

T

n

n´1
ÿ

i“´n

εi

ż

R

m´1
ÿ

j“0

˜

ż

R

řm´1
k“0

“

Ψ´1m Φt
m

‰

k,i
ϕ˚kpvq

g˚pvq
ϕ˚j pvqdv

¸

ϕjpuqspuqdu

“
1

2π

T

n

n´1
ÿ

i“´n

εi

C

s,
m´1
ÿ

j“0

ϕj

˜

ż

R

řm´1
k“0

“

Ψ´1m Φt
m

‰

k,i
ϕ˚kpvq

g˚pvq
ϕ˚j pvqdv

¸G

“
1

2n

n´1
ÿ

i“´n

βs,m,ipεiq

where

βs,m,ipxq “ x
T

π

C

s,
m´1
ÿ

j“0

ϕj

˜

ż

R

řm´1
k“0

“

Ψ´1m Φt
m

‰

k,i
ϕ˚kpvq

g˚pvq
ϕ˚j pvqdv

¸G

.

As the noise is not necessarily bounded, we cannot used the Talagrand inequality directly to the process
νn, then, we split the noise as follows:

εi “ ζi ` ξi, ζi “ εi1|εi|ďkn ´ Erεi1|εi|ďkns, ξi “ εi1|εi|ąkn ´ Erεi1|εi|ąkns,

where kn is chosen in the sequel. Thus, it comes

νp1qn psq “ νp1qn psq ` νp2qn psq, νp1qn psq “
1

2n

n´1
ÿ

i“´n

βs,m,ipζiq, νp2qn psq “
1

2n

n´1
ÿ

i“´n

βs,m,ipξiq,

and

ÿ

mPMp2q
n

E
„ˆ

} rfm ´ Er rfms}2 ´
κ11
6
W pmq

˙

`



ď 2
ÿ

mPMp2q
n

E

«˜

sup
sPSm,}s}“1

|νp1qn psq|2 ´
κ11
12
W pm1q

¸

`

ff

` 2nE

«

sup
sPSm,}s}“1

|νp2qn psq|2

ff

.(68)
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We study separately the terms on the right-hand side of previous bound. Let us start the last term.

Bounding of nE
”

supsPSm,}s}“1 |ν
p2q
n psq|2

ı

. We first remark that:

νp2qn psq “
1

2π

ż

R

m´1
ÿ

j“0

˜

ż

R

h̆˚mpvq ´ Erh̆˚mpvqs
g˚pvq

ϕ˚j pvqdv

¸

ϕjpuqspuqdu,

where where (see Equation (13)) h̆d “
řd´1
j“0 b̆

pdq
j ϕj ,

~̆
bpdq “ pb̆

pdq
0 , . . . , b̆

pdq
d´1q

t “ pΦt
dΦdq

´1Φt
d~y “

T
nΨ´1d Φt

dy̆,
~̆y “ py̆px´nq, . . . , y̆pxn´1qq

t with y̆pxiq “ hpxiq ` ξi, only here. The Cauchy Schwarz inequality implies

|νp2qn psq| ď
1

4π2
}s}2

›

›

›

›

›

m´1
ÿ

j“0

x
h̆˚m ´ Erh̆˚ms

g˚
, ϕ˚j yϕj

›

›

›

›

›

2

“
1

π

m´1
ÿ

j“0

ˇ

ˇ

ˇ

ˇ

ˇ

x
h̆˚m ´ Erh̆˚ms

g˚
, ϕjy

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Splitting
ş

Rp.q “
ş

|¨|ď
?
ρmp¨q `

ş

|¨|ą
?
ρmp¨q, using Bessel, the Cauchy Schwarz inequalities and Parse-

val equality, we derive |ν
p2q
n psq| ď 2}h̆m ´ Erh̆ms}2Σpmq. Recall that the bounds obtained for phm re-

main valid for h̆m. In particular, it holds from (48) with Erξ21s plays the role of σ2ε and under pA0q,

E
”

}h̆m ´ Erh̆ms}2
ı

ď λmErξ21sTn , which implies E
”

supsPSm,}s}“1 |ν
p2q
n psq|2

ı

ď 2ΣpmqλmErξ21sTn ď
Erξ21s
σ2
ε

since 2ΣpmqλmT
n ď 1

σ2
ε

by definition of Mp2q
n . Next, by the Cauchy Schwarz inequality and as ε1 is

sub-Gaussian, we derive from Lemma A.1

Erξ21s “ Erε211|ε1|ěkns ď
b

Erε41s
a

Pp|ε1| ě knq ď 4
?

2b2e´
k2n
4b2 ,

where b ą 0 is a constant given in pA5q. Choosing

kn “ 2b
?

2 logpnq,(69)

we deduce

nE

«

sup
sPSm,}s}“1

|νp2qn psq|2

ff

ď
C

n
.(70)

Bounding of
ř

mPMp2q
n

E
„

´

supsPSm,}s}“1 |ν
p1q
n psq|2 ´

κ11
12W pmq

¯

`



. We apply the Talagrand inequality

given in Appendix C.2. We must compute three constant H2,M1 and v.

Computing H2. Analogously to the study of nE
”

supsPSm,}s}“1 |ν
p2q
n psq|2

ı

, we derive under pA0q and as

Erζ21 s ď σ2ε

E

«

sup
sPSm,}s}“1

|νp1qn psq|2

ff

ď 2Σpmqλmσ2ε
T

n
:“ H2.

Computing of v. For all s P Sm, we have by the Cauchy-Schwarz inequality, Erζ21 s ď σ2ε , as ϕ˚j “
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?
2πpiqjϕj (see (6)) and }s}2 “ 1

1

2n

n´1
ÿ

i“´n

Varpβs,m,ipζiqq “
1

2n

n´1
ÿ

i“´n

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

T

π
ζi

C

s,
m´1
ÿ

j“0

ϕj

˜

ż

R

řm´1
k“0

“

Ψ´1m Φt
m

‰

k,i
ϕ˚kpvq

g˚pvq
ϕ˚j pvqdv

¸Gˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

ď
1

2n

n´1
ÿ

i“´n

T 2

π2
σ2ε}s}

2

›

›

›

›

›

m´1
ÿ

j“0

ϕj

˜

ż

R

řm´1
k“0

“

Ψ´1m Φt
m

‰

k,i
ϕ˚kpvq

g˚pvq
ϕ˚j pvqdv

¸›

›

›

›

›

2

ď
T 2

nπ
σ2ε

n´1
ÿ

i“´n

m´1
ÿ

j“0

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R

řm´1
k“0

“

Ψ´1m Φt
m

‰

k,i
ϕ˚kpvq

g˚pvq
ϕjpvqdv

ˇ

ˇ

ˇ

ˇ

ˇ

2

By splitting
ş

R into
ş

|¨|ď
?
ρmp¨q`

ş

|¨|ą
?
ρmp¨q, the Bessel and Cauchy-Schwarz inequalities, ϕ˚j “

?
2πpiqjϕj ,

it yields

m´1
ÿ

j“0

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R

řm´1
k“0

“

Ψ´1m Φt
m

‰

k,i
ϕ˚kpvq

g˚pvq
ϕjpvqdv

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď 4πΣpmq
m´1
ÿ

k“0

“

Ψ´1m Φt
m

‰2

k,i
,(71)

which implies

1

2n

n´1
ÿ

i“´n

Varpβs,m,ipζiqq ď4
T 2

n
σ2εΣpmq

n´1
ÿ

i“´n

m´1
ÿ

k“0

“

Ψ´1m Φt
m

‰2

k,i
.

By definition of Frobenius norm, it holds under pA0q

T

n

n´1
ÿ

i“´n

m´1
ÿ

k“0

“

Ψ´1m Φt
m

‰2

k,i
“
T

n
tr
“

ΦmΨ´1m Ψ´1m Φt
m

‰

“ tr
“

Ψ´1m
‰

ď λm.

Therefore, we get

sup
sPSm,}s}“1

1

2n

n´1
ÿ

i“´n

Varpβs,m,ipζiqq ď 4λσ2εTΣpmqm :“ v.

Computing M1. Using the Cauchy-Schwarz inequality, (6) and from (71), it holds

sup
sPSm,}s}“1

}βs,m,i}8 ď sup
sPSm,}s}“1

$

’

&

’

%

2kn
T

π
}s}

¨

˝

m´1
ÿ

j“0

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R

řm´1
k“0

“

Ψ´1m Φt
m

‰

k,i
ϕ˚kpvq

g˚pvq
ϕjpvqdv

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1
2

,

/

.

/

-

ď

$

&

%

4kn
T
?
π

˜

Σpmq
m´1
ÿ

k“0

“

Ψ´1m Φt
m

‰2

k,i

¸
1
2

,

.

-

.

Under pA0q and from (67), we derive

sup
sPSm,}s}“1

}βs,m,i}8 ď
4
?
π
kn
`

λTΣpmqn
˘

1
2 :“M1.

Applying the Talagrand inequality, we have for all δ ą 0,

ÿ

mPMp2q
n

E

«˜

sup
sPSm,}s}“1

|νp1qn psq|2 ´ 2p1` 2δqH2

¸

`

ff

ď
4

K1

$

&

%

ÿ

mPMp2q
n

T pmq `
ÿ

mPMp2q
n

V pmq

,

.

-

,
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where

T pmq “
4λσ2εTmΣpmq

n
e´

K1δ
2 , Upmq “

784knλTΣpmq

π2K1Cpδq2n
e´K

1
1Cpδq

?
δ

?
2πσ2εm

4kn ,

Cpδq “ p
?

1` δ´1q^1, K1 “ 1{3 and K 1
1 ą 0 is a universal constant. By definition of Mp2q

n and choosing
δ “ 4 logpnq{K1, it yields 4

K1

ř

mPMp2q
n
T pmq ď C{n. From this choice of δ and kn given in (65), we deduce

from pA1q

4

K1

ÿ

mPMp2q
n

Upmq À
logpnq

n

ÿ

mPMp2q
n

mγe´Cpσ,k
1
1q
?
m ď C

logpnq

n
.

Consequently, we get for κ11 ě 12

ÿ

mPMp2q
n

E

«˜

sup
sPSm,}s}“1

|νp1qn psq|2 ´
κ11
12
W pmq

¸

`

ff

ď C
logpnq

n
.

Plugging this and (70) in (68) ends the proof. �

Appendix B. Study of trpΨdq and discussion on Assumption pA0q

In this section, T depends on d. For n large, we have tr
`

Ψ´1d
˘

— d. Indeed, we can prove the following
Lemma:

Lemma B.1. Assume that T ě
?

2d´ 1, we have

(72) ~Ψd ´ Id~ ď C1e
´2ξT 2

d` φ0d
17
12
T 2

n
,

where C1 depends on ξ, C 18 given in (7) and ~ ¨ ~ is any matrix norm.

Then, for the choice d “ rnωs such that ω “ 12{17 ´ η, with 0 ă η ă 12{17 and T —
?

2d´ 1, we have
~Ψd´ Id~

2 ÝÑ
nÑ`8

0. It follows that ~Ψd´ Id~ ď 1{2 for n large enough. Using Theorem C.1 (see Stewart

and Sun (1990)), we get

~Ψ´1d ´ Id~ ď
~Ψd ´ Id~~Id~

2

1´ ~Ψd ´ Id~
.

This implies
~Ψ´1d ´ Id~

2 ÝÑ
nÑ`8

0.

Thus, for n large enough pA0q holds and is not a strong condition.

In Table 4 and 5, we report the matrix norm of Ψd ´ Id and Ψ´1d ´ Id for

(73) ~A~ “ ~A~1 “ max
1ďjďn

n
ÿ

i“1

|Aij |, A “ pAijq1ďi,jďn.

Comment on Table 4 and 5. Globally, we see that increasing n makes the norm smaller but on the
other hand the increase of d increases the norm. This is in accordance with the theory. Indeed in (72), we
observe that for d large enough, it is the second term that determines the precision of these two norms.
The increase with d of the norms is thus excepted. The results of Table 5 are better than those of Table
4. This is due to the choice T “ 10 larger than T “

?
2d´ 1 for the choices of n et d given in Table 4

(for instance for n “ 1000, d “ rn1{2s “ 31, we have T « 7.81). Lastly, the norm ~Ψd ´ Id~ is smaller
than ~Ψ´1d ´ Id~.
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d
n

100 500 1000

[n1{2]
0.094 (0.101) 0.082 (0.087) 0.079 (0.084)

10 (4.359) 22 (6.557) 31 (7.810)

[n1{3]
0.103 (0.114) 0.094 (0.101) 0.090 (0.097)

4 (2.646) 7 (3.606) 9 (4.123)

[n1{4]
0.109 (0.121) 0.102 (0.111) 0.098 (0.107)

3 (2.236) 4 (2.646) 5 (3)

Table 4. First line: Matrix norm of A´Id with A “ Ψd without parentheses and A “ Ψ´1d
in parentheses for T “

?
2d´ 1. Second line: values of d with T in parentheses.

d
n

100 500 1000

rn1{2s 9.19e-16 ( 9.19e-16) 2.03e-15 (2.14e-15) 9.57e-11 (9.57e-11)

rn1{3s 5.02e-16 (5.15e-16) 6.07e-16 (6.07e-16) 4.84e-16 (4.84e-16)

rn1{4s 7.29e-16 (8.40e-16) 5.00e-16 (5.00e-16) 3.45e-16 (3.45e-16)

Table 5. Matrix norm of A ´ Id with A “ Ψd without parentheses and A “ Ψ´1d in
parentheses for T “ 10.

Proof of Lemma B.1. We prove the result only for the particular norm defined in (73) but the result is
valid for any matrix norm since we are in finite dimension. The general term of pΨd ´ Idq is

ˆ

T

n
ΦT
d Φd ´ Id

˙

j,k

“

˜

T

n

n
ÿ

i“´n

ϕjpiT {nqϕkpiT {nq ´

ż

ϕjpuqϕkpuqdu

¸

0ďj,kďd´1

For 0 ď j, k ď d´ 1, we write

T

n

n´1
ÿ

i“´n

ϕjpiT {nqϕkpiT {nq ´

ż

ϕjpuqϕkpuqdu “
T

n

n´1
ÿ

i“´n

ϕjpiT {nqϕkpiT {nq ´

ż T

´T
ϕjpuqϕkpuqdu

´

ż

|u|ěT
ϕjpuqϕkpuqdu.

Using Lemma B.2, we get
ˇ

ˇ

ˇ

ˇ

ˇ

T

n

n´1
ÿ

i“´n

ϕjpiT {nqϕkpiT {nq ´

ż T

´T
ϕjpuqϕkpuqdu

ˇ

ˇ

ˇ

ˇ

ˇ

ď }pϕjϕkq
1}8

T 2

n
ď φ0d

5
12
T 2

n
.

From (7) and as T ě
?

2d´ 1, we have

|

ż

|x|ěT
ϕjpxqϕkpxqdx| ď

ż

|x|ěT
|ϕjpxqϕkpxq|dx ď C 128e

´ξT 2

ż

e´ξx
2
dx ď C1e

´ξT 2
,

where C1 is a positive constant since
ş

e´ξx
2
dx ă `8. It comes

(74) ~Ψd ´ Id~1 ď d

„

C1e
´ξT 2

` φ0d
5
12
T 2

n



.

�
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B.1. Estimating error in Riemann sums. We give in this section the approximate errors of Riemann
sum.

Lemma B.2. Let n ě 1, T ą 0, pxi “ iT {nq´nďiďn´1. Then,

(i) For ψ be a function of class C1 on r´T, T s, we have
ˇ

ˇ

ˇ

ˇ

ˇ

T

n

n´1
ÿ

i“´n

ψpxiq ´

ż T

´T
ψpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď }ψ1}8
T 2

n
.

(ii) For ψ be a function of class C2 on r´T, T s,
ˇ

ˇ

ˇ

ˇ

ˇ

T

n

n´1
ÿ

i“´n

ψpxiq ` ψpxi`1q

2
´

ż T

´T
ψpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď }ψ2}8
T 3

12n2
.

Proof of Lemma B.2. These proof are very classic when we approximate an integral by Rieman’s sum.

Proof of part (i). By Chasles’s relation, it yields
ż T

´T
ψpuqdu “

n`1
ÿ

i“´n

ż xi`1

xi

ψpuqdu.

On the other hand, we write

T

n

n´1
ÿ

i“´n

ψpxiq “
n´1
ÿ

i“´n

ż xi`1

xi

ψpxiqdu.

Then, we have by the mean value theorem that
ˇ

ˇ

ˇ

ˇ

ˇ

T

n

n´1
ÿ

i“´n

ψpxiq ´

ż T

´T
ψpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n´1
ÿ

i“´n

ż xi`1

xi

|ψpuq ´ ψpxiq|du

ď }ψ1}8

n´1
ÿ

i“´n

ż xi`1

xi

pu´ xiqdu “ }ψ
1}8

T 2

n
.

Proof of part (ii). Define the Lagrangian interpolation polynomial of ψ by

ψipxq “ ψpxiq `
ψpxi`1q ´ ψpxiq

xi`1 ´ xi
px´ xiq.

This linear function coincide with ψ for x P txi, xi`1u. We first remark that:

T

n

n´1
ÿ

i“´n

ψpxiq ` ψpxi`1q

2
“

n´1
ÿ

i“´n

ż xi`1

xi

ψipxqdx.

Then, it follows that
ˇ

ˇ

ˇ

ˇ

ˇ

T

n

n´1
ÿ

i“´n

ψpxiq ` ψpxi`1q

2
´

ż T

´T
ψpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n´1
ÿ

i“´n

ż xi`1

xi

|ψipxq ´ ψpxq|dx.

Now, we look for a bound of
şxi`1

xi
|ψipxq ´ ψpxq|dx for all x P R. We introduce the following function for

fixed x on rxi, xi`1s

φptq “ ψptq ´ ψiptq ´
pt´ xiqpt´ xi`1q

px´ xiqpx´ xi`1q
pψpxq ´ ψipxqq
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This function is null in t “ x, xi and xi`1. By the Rolle theorem, there exists a constant cx such that

φ2pcxq “ ψ2pcxq ´ 2 ψpxq´ψipxq
px´xiqpx´xi`1q

“ 0 which gives ψpxq ´ ψipxq “ px´ xiqpx´ xi`1q
ψ2pcxq

2 . From this, we

deduce that
ż xi`1

xi

|ψipxq ´ ψpxq|dx ď
}ψ}8

2

ż xi`1

xi

px´ xiqpxi`1 ´ xqdx ď
}ψ}8

12
pxi`1 ´ xiq

3,

and
ˇ

ˇ

ˇ

T
n

řn´1
i“´n

ψpxiq`ψpxi`1q

2 ´
şT
´T ψpxqdx

ˇ

ˇ

ˇ
ď }ψ}8

T 3

12n2 . This concludes the proof. �

Appendix C. Some inequalities

The proof of the following Theorem can be found in Stewart and Sun (1990).

Theorem C.1. Let A and E be two square matrices. If A is nonsingular and for some norm }A´1E} ă 1,
then we have

}pA` Eq´1 ´A´1} ď
}A}2}E}

1´ }A´1}}E}
,

Theorem C.2 (Talagrand’s inequality). Let pXiq´nďiďn´1 be independent real random variables, F a
class at most countable of measurable functions.

νnpsq “
1

2n

n´1
ÿ

i“´n

pspXiq ´ ErspXiqsq, @s P F .

We assume there exist third strictly positive constants M1, H, v such that:

sup
sPF

}s}8 ďM1, Ersup
sPF

|νnpsq|s ď H, and sup
sPF

1

n

n´1
ÿ

i“´n

VarpspXiqq ď v.

Then, for all δ ą 0,

E
„ˆ

sup
sPF

|ν2npsq| ´ 2p1` 2δqH2

˙

`



ď
4

K1

ˆ

v

n
e´K1δ

nH2

v `
49M2

1

K1C2pδqn2
e
´K11Cpδq

?
δ nH
M1

˙

where Cpδq “ p
?

1` δ ´ 1q ^ 1, K1 “ 1{3 and K 1
1 a universal constant.

The Talagrand inequalities has been proven in Talagrand (1996), reworded by Ledoux (1997). This version
is given in Klein and Rio (2005).
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