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HERMITE ESTIMATION IN NOISY CONVOLUTION MODEL

OUSMANE SACKO!

ABSTRACT. In this paper, we study the problem of estimating a regression function in a convolution model.
We consider the following model: y(xzx) = h(xy)+er, h(z) = frg(z) = §; fle—y)g(y)dy, k= —n,...,n—1
where g is assumed to be known and f is the unknown function to be estimated; the errors (Ek),ngkgn,1 are
independent and identically distributed (i.i.d.) such that E[ex] = 0 and Var(ex) = 02 < 400, known; the
points (xx = kT/n)_n<k<n—1 are deterministic and equispaced on the interval [—T,T], where 0 < T < o0 is
fixed. Two estimation methods for f are considered by exploiting the properties of the Hermite basis. We
study the quadratic risk of each estimator. If f belongs to the Sobolev (first approach) or Sobolev-Hermite
(second approach) spaces, we obtain rates of convergence. We also present an adaptive procedure to select
the relevant parameter inspired by Goldenshluter and Lepski method, and prove that the resulting estimator
satisfies an oracle inequality for sub-Gaussian e’s. Finally, we illustrate numerically these approaches.
January 7, 2022

Key words: Convolution model; Hermite basis; Model selection; Nonparametric regression; Projection
estimator

AMS Classification: 62G05 - 62G08

1. INTRODUCTION

Consider the convolution model

(1) y(ry) = h(zk) + e, k=-n,...,n—1,
where
@) a) = £+9(0) = | 1o =t

where the kernel function ¢ is supposed to be known and f is the unknown function to be estimated;
the errors (ex)_n<k<n—1 are independent and identically distributed (i.i.d.) such that E[ex] = 0 and
Var(ep) = 02 < 4+, known; the points (7, = kT/n)_p<p<n_1 are deterministic and equispaced on the
interval [—T,T], where 0 < T' < o0 is fixed. This model appears in several application contexts: in Dy-
namic Contrast Enhanced (DCE) imaging data analysis (see Goh et al. (2005), Cuenod et al. (2006), Goh
et al. (2007), Cao et al. (2010) and Comte et al. (2017)) and in the study of time-resolved measurements
in fluorescence spectroscopy (see Gafni et al. (1975), McKinnon et al. (1977), O’Connor et al. (1979),
Ameloot and Hendrickx (1983), Abramovich et al. (2013)). If the function of interest is the unknown
function h, this problem is known as a fixed design regression model.

Nonparametric estimation of h has been studied at length in the literature, see Barron et al. (1999),
Baraud (2000) and recently Comte and Genon-Catalot (2019) for random design. Estimating the density
f of a random variable X when observing Z = X + ¢ with ¢ independent of X with density g amounts to
reconstruct f from an estimate of f; = f x g. This problem is known as a deconvolution problem. It is
an inverse problem which has also been studied extensively in the literature, see Carroll and Hall (1988),
Fan (1991), Pensky and Vidakovic (1999), Comte et al. (2006), Delaigle et al. (2008), Mabon (2017),
Comte and Genon-Catalot (2018), Sacko (2020) among others, see also the monograph of Meister (2009).

! Université de Paris, MAP5, UMR CNRS 8145.
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Model (1) cumulates the two questions of regression and deconvolution, and this is why it is difficult. We
mention that in Model (1), the unknowns f and the kernel are not necessarily densities.

When f and g are [0, 1]-supported, Rice and Rosenblatt (1983) solved the problem (1) using a smooth-
ing spline approach for z; = k/n with & = 1,...,n. They obtain a control of the risk for f of class
C*. However, the question of the smoothing parameter is not considered in their work. Another special
case of Model (1) occurs when f and g are R*-supported, it is called Laplace convolution. Then, we
have h(z) = §; f(z — y)g(y)dy, whose discrete noisy version is given by (1) with k = 1,...,n. It has
been studied in Dey et al. (1998) for g(x) = be™**1,>0, using that the solution of (2) satisfies a linear
differential equation. The authors compute convergence rates for n — o0, under the assumption that
the s-th derivative of f is continuous, the procedure is not adaptive. Abramovich et al. (2013) study
the Laplace deconvolution problem for g known: they summarize the estimating problem of f to es-
timation of the derivative of h. These derivatives are estimated by a kernel method, the procedure is
adaptive and minimax optimal for f in a Sobolev class. Note that the rate depends on T' = T;,, — o0 as
n — oo. Vareschi (2015) studies also the Laplace deconvolution problem using the Galerkin projection
on Laguerre functions for a g kernel contaminated by white noise. More recently, Comte et al. (2017)
proposed a projection estimator, based on the development of the functions f, g and A in the Laguerre
basis. The coefficients of the decomposition of h are expressed as a linear combination of those of f,
the link matrix being invertible. They also propose an adaptive procedure by penalization: the resulting
estimator verifies an oracle inequality up to multiplicative logn factor. We emphasize that the (zx)1<k<n
are not necessary equispaced on [0, 7] and T is fixed. Finally, if, f is a function of 3 variables and g of one
variable, Benhaddou et al. (2019) consider also the projection method on Laguerre and wavelet bases for
a Gaussian white noise. Their method is adaptive and asymptotically optimal up to a logarithmic factor
when f belongs to a three-dimensional Laguerre-Sobolev ball. Note that regression model and inverse
problems can be encountered in different setting, see for instance Loubes and Marteau (2012) who study
an econometric model; then, the inverse problem arises from instrumental variables taken as covariate.

However, all of the afore studies were conducted for R* supported f and g. The novelty of the present
work, is that we consider Model (1) with R-supported functions and our aims are the following: Define
a consistent estimator of f; Provide rates of convergence; Propose an adaptive procedure and illustrate
numerically its performances. The Laguerre basis which is RT-supported clearly no longer suits for our
problem. We consider here the Hermite basis which has non compact support and is well adapted in our
context. When using compactly supported bases, the support is a fixed interval determined in practice
from the dataset. Hermite basis does not require this preliminary choice and is well adapted in our con-
text. Recently, Belomestny et al. (2019) show that the Hermite basis allows to build estimators of low
complexity and therefore numerically fast.

In this paper, we first propose a Fourier-Hermite (denoted by FH in the sequel) approach to estimate f.
It consists in estimating h as regression function by a nonparametric least squares method, based on the
development of i in the Hermite basis. Then, we use the inverse Fourier transform to recover f. Contrary
to Baraud (2000), we do not consider a compactly supported basis. Moreover, we obtain a new (to our
knowledge) bound on the IL2(R)-risk for regression function h. We provide an upper bound on the risk of
the estimator of f which shows that a bias-variance compromise must be performed. For f belonging to
a Sobolev ball, we obtain rates of convergence for adequate choice of some parameters (cut-off parameter
and dimension of the regression function). We also present an adaptive procedure inspired by Golden-
shluger and Lepski (2011) method to select the relevant parameters: the resulting estimator satisfies an
oracle inequality for € sub-Gaussian (see below or Vershynin (2012) for more details), and automatically
realizes a bias-variance compromise up to a logarithm term. We also introduce another approach, called
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the Hermite-Hermite (denoted by HH in the following) strategy. Both functions f and h are decomposed
in the Hermite basis. We construct an estimator of f by replacing h by its nonparametric least squares
estimator in the formula of the coefficients of f. As for the FH strategy, we provide a risk bound and the
rate obtained therein for f belonging to a Sobolev-Hermite ball, and we propose a procedure to select
automatically the relevant dimension.

The plan of the paper is the following: The study of the estimation of regression function A in the
Hermite basis for fixed design is described in Section 2. Those results are exploited to study the FH and
HH strategies. Section 3 is devoted to the FH strategy. In particular, we define the FH estimator in
Section 3.1. A bias-variance decomposition is given in Section 3.2. In Section 3.3, we provide rates of
convergence. Section 3.4 is devoted to selection of model for the FH procedure and an oracle inequality
is proved for the resulting estimator therein. In Section 4, we describe the HH estimation strategy and a
comparison with the FH method is performed. As for FH method, we also propose an adaptive procedure
and an oracle inequality is proved in Section 4.4. Section 5 is devoted to the numerical study to illustrate
the performance of the adaptive procedure and comparisons between FH and HH method are performed.
Finally, all the proofs are presented in Section 6, technical Lemmas and some useful results are given in
the Appendix.

2. HERMITE REGRESSION ESTIMATION OF h

We first present a study concerning the estimation of h. From this point of view, model (1) corresponds
to a standard fixed design regression. Nonparametric estimation in this context can be found in Baraud
(2000), who consider compactly supported bases. In view of the following steps for ”"extracting” f, we
need to handle the non compactly supported Hermite basis. Let us start by recalling the definition and
useful properties of this basis, and the associated regularity spaces.

2.1. Notations. For ¢, ¢ belonging to L?(R) n L}(R), denote (¢, %) = § ¢ (u)1(u)du the scalar product
on L?(R) and [¢|> = §|¢(u)|?du the associated norm on L?(R). The Fourier transform of ¢ is defined by
©*(u) = § e™®p(x)dz. Lastly, we recall the Plancherel-Parseval equality {p,¢) = (2m) " (p*, ¢*).

2.2. The Hermite basis. Define the Hermite basis (¢;);>0 from Hermite polynomials (H});>0 :
() = e H (D=2 Hila) — (176 L (=) e (20 ity :
B)  elo) = Hy e ™, Hilr) = (e ), o= @), zeR 20
The Hermite polynomials (H});>0 are orthogonal with respect to the weight function e Sz Hj(z)Hy, (z)e " dx =

2Jj1\/m8; 1 (see Abramowitz and Stegun (1964), 22.2.14), where 4§, is the Kronecher symbol. It follows
that the sequence (¢;);>0 is an orthonormal basis on R. Moreover, ¢; is bounded by

@ leilleo = Sug%(m)\ < ¢o, with ¢o = 714,
xTe
(see Abramowitz and Stegun (1964), chap.22.14.17 and Indritz (1961)) and the following bound holds
C
(5) loilloe < —=—,
(j + 1) i)

where O is a constant given in Szeg6 (1959). The Fourier transform (¢;);>0 is given as follows
(6) w5 = V2r(i) ;.
From Askey and Wainger (1965), it holds:

_ex2 :
(7) lpj ()] < Cloe ™™, || = /25 +1,
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where C?, and & are constants independent of = and j. The infinity norm of the derivative of ¢; satisfies
(see Comte and Genon-Catalot (2018), Lemma 7.3):

(8) [l < Clp(j +1)12,  j =0,

where C7/ > 0 is a numerical constant.

2.3. Regularity spaces. We consider in the sequel the following regularity spaces (see Bongioanni and
Torrea (2006)).

Definition 2.1. Let s, L > 0, define the Sobolev-Hermite ball of reqularity s by
(9) Wi (L) = {0 € LA(R), Z k*a2(0) < L}, where ay(f) = j&(m)apk(x)dx.
k=0

For s an integer, it is proved in Bongioanni and Torrea (2006) and Belomestny et al. (2019) (see Propo-
sition 4) that 6 belongs to W}, (L) if and only if # admits derivatives up to order s and if the functions
0,60',...,00) 25719 for [ = 0,...,5 — 1 belong to L?(R). Recall also that the usual Sobolev ball W*(L)
is defined, for s > 0 by

(10) W*(L) = {6 e L3(R), J(l + u?)®|0* (u)|*du < L}.

If s is an integer and L > 0, it holds (see Bongioanni and Torrea (2006) and Belomestny et al. (2019))
then; « 0 € W*(L) » is equivalent to « there exists L* > 0 such that >%_ IfD? < L* ».

Thus, it follows that W (L) < W#(L*). Moreover, if f € W*(L) has compact support, then f € W}, (L*).
In other words, W}, (L) and W#(L*) coincide for compactly supported functions.

2.4. Definition of the regression estimator. Let d > 1 an integer and

(11) Sd = Span{SOO’"')SOd—l}v

the linear space generated by ¢, ..., p4-1, where ¢; is the Hermite basis defined in (3). Assume that
h belongs to L2(R). Then, we can write h = 2j=0bi(h)pj, with b;(h) = (h, ;). Moreover, we define

ha = Z;-l;é b;j(h)p;, the orthogonal projection of h on Sg. Introduce the matrices:
T
(12) ®q = (j(i))-n<isn-10<j<d-1, Va = —Pa®a,
where @, denotes the transpose of the matrix ®;. We need of following Lemma to get an estimator of h.

Lemma 2.1. For all d < n, ¥, is invertible.

By the least squares method and Lemma 2.1, we derive the following projection estimator of A on Sy:
S~ G = ~d ~d T
(13) ha =1 00;, where 5@ = (55", ..., )t = (@40,) 1047 = E‘Iiglq)ggj,
j=0

¥=(y(x-n),-.. ’?/(JUn—l))t'

Comment on the assumption h € L*(R). Let 1 < p,q,r < o such that 1/p + 1/q = 1+ 1/r.
Let us recall that with the Young inequality, we have |h[, = |f * gl < |[flpllg|4- Thus, for (f € L*(R)
and g € LY(R)) or (g € L?(R) and f € L!(R)), it follows that h € L?(R).
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2.5. Risk bound of ?Ld and rate of convergence. For any s, t in L?(R), we define:

n—1 n—1
12 5= = 3 2, (sbni= o 3, s,

1=—n 1=—n

The following bias-variance decompositions hold.

Proposition 2.1. Let (x;,y(x;))—n<i<n—1 be observations from model (1). Assume that h belongs to
L2(R) and consider the estimator hq defined in (13).

(i) Then, it holds that

~ d

2] - 2 o 2@

(14) E [[ha = bl%) = inf |6 = I} + o277
(i) Moreover, we have

~ _ T _
(15) E[lha = hI”) < [h = hall® + Amaz (U3 ") [h = hally + 02 —tr (251),
where tr(A) is the trace of the matrix A and Amaz (A) denotes the spectral radius of the matriz A.

The part (i) of Proposition 2.1 corresponds to a classical bias-variance decomposition for the empirical
norm | - |l,. The first term in the right-hand side of (14) is the bias term and the second term is the
variance term. They behave in the opposite way with respect to d: infieg, [t — h|? decreases with d while
02Td/n increases with d. The risk bound given in (15) is new to our knowledge and handles the integrated
L2 risk on R. It is a bias-variance decomposition with bias equal to |k — hg|? + Apmaz (¥ 1) [k — hg|? and
variance o2tr (\Ilgl) T'/n. In both cases, we have a bias-variance trade-off to make.

The bias term is studied by exploiting the specific property of the Hermite basis. The following Lemma
leads to find the order of the bias:

Lemma 2.2. Assume that h belongs to Wi (L) (Sobolev-Hermite ball defined in (9)).

(i) If a > 11/6, we have |h — hy|? < |h — hq? + C(a,L)Tg, where C(a, L) is a positive constant
depending only on o and L.

(i3) If o > 17/6, it hold that |h—hg|2 < |h—hq|?+C'(a, L)%, where C' (e, L) is a positive constant
which depends on o and L.

For fixed T, the additional term T72/n or T3/n? is a residual term which is negligible compared to the
variance term o2dT /n for the empirical norm or o2tr (\Ilgl) T /n for the integral L2(R)-norm. Furthermore,
to get the rate of convergence for the integral norm || - |, we have to control tr (\Ifgl) and )\max(\llgl). We
consider the following assumption

(A0) There exists a constant A > 0 such that the maximum eigenvalue of \Ilgl satisfies
Amax(T51) <\ < +00,

uniformly in d.

For n large enough and 7', d well chosen, we can show that
w3t = Lall* — o,

n—-+00

where || - || is any matrix norm (see Section B in Appendix). It follows that Assumption (AO) holds
asymptotically with A near of 1. The same type of hypothesis can be found in Comte et al. (2017) (see
Assumption 4) and Vareschi (2015) (see Assumption 2.3). Then, we can deduce the rate of convergence.
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Proposition 2.2. Assume that h belongs to W (L) with a > 11/6 and select dgp = [n/(@+1)].
(i) Then, we have

(16) sup E ([, — 2| < Cla, L T,0)n73,
heWg (L)
where C(a, L, T, 0.) depends on a, L,T and o..
(11) If in addition (AO) is satisfied, it yields that

(17) sup E [, — hl?| < Cla, LT, 00, An a5
heWg (L)

Our estimator reaches the same rate as in the case where (x;) are random variables (see Comte and Genon-
Catalot (2019)). From the lower bound stated therein, this rate is optimal when we use the Laguerre or
the Hermite basis (at least for gaussian ¢’s). Note that it is not standard and is specific to the Laguerre
and Hermite basis: in Baraud (2000), Baraud (2002), Barron et al. (1999), the least squares estimator
converges with rate n=2¢/(22+1) if the regression function h belongs to a Besov space with regularity index
a. The reason is that the variance order does not depend on the basis used while bias order does and
changes according to the regularity spaces associated with the basis.

Remark 1. The constraint o > 11/6 or o > 17/6 comes from the study of |h — hq|? (see the Proof of
Lemma 2.2). It excludes some functions h (e.g. Cauchy since a = 3/2 —n with 0 < n < 3/2 see Section
4 in Belomestny et al. (2019)). Without this constraint, we have for v > 1 and h € W§(L)

2

T n—1
|h— hall?, = - >3 (hali) = h(z:))® < 2765 | Y 5%a;(h)i~** | < d >,

1=—n j=d

where ¢o is given in (4). It follows for the choice dopr = [nY/(@+2)] that E [”;\Ldopt - hH,%] = O(niﬁ).

This rate is worse than the one obtained in (16). The estimator remains consistent in this case even if
the rate deteriorates. In the sequel, we will see that the condition o > 11/6 or a > 17/6 is often satisfied.

2.6. Adaptive estimator for h. However, the choice of d = d,p; depends on the regularity of h which
is unknown; thus this choice is only theoretical and cannot be used in practice. This is why an adaptive
procedure is developed now. It allows to choose the relevant dimension by replacing the bias and variance
terms by computable quantities. Let v, (-) be the empirical contrast:

T n—1
2
Tn(t) = Py Z [y(zi) — t(zi)]"
i=—n
It is easy to see that hq = arg miny, (¢). The quantity v, (hq) = —|ha|? is a classical estimator of the bias
teSy
term. Then, we select the space Sy by setting:
~ ~ d
(18) d := argmin{y,(hg) + pen(d)}, where pen(d) =kT—02, K> 1
deMy, n
where M,, = {1,...,dmax}, dmax < n is the maximal dimension which depends on n and « is a positive

numerical constant. The constant x is independent of the data and a value must be assigned in prac-
tice. Methods are proposed in Baudry et al. (2012) and programs for density estimation are given in
the Softwares R and Matlab called ”Capushe”. The following oracle inequalities hold for the resulting
estimator.

Theorem 2.3. Let (2;,y(7;)) _n<i<n_1 be observations, from model (1). Assume that E[e§] < co.
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(i) Then, the estimator /ﬁg satisfies:

(19) E[|h; — h|2] < C(x) in

d\ C'T
(inf It — R|% + a§T> - :
deMy, n n

teSy

where C(k) = 2k(1 +4/(k — 1)) > 1 (for instance for k = 2.5, C(2.5) = 9.17) and C' > 0 are
numerical constants.
(ii) If in addition (AO) holds, we have

)

~ d CI\T
(20) Ellf; - 1) < Cu it (234 D~ a2 + Tha = 0?4 0275 ) +
EMn

n n
where X is given in (A0), C; = max(1,2)\2C(k)) and C} = 2C" are positive constants.

The estimator }\Lg is adaptive and minimax optimal in the sense that the bias-variance compromise is
realized automatically, since C'T/n and AC|T/n are residual terms. Indeed, for h € Wy (L), we deduce

from Proposition 2.2 that E[”}\LJ— 2] < n~a+ and IE[H’HJ— R < n~a+1. Theorem 2.3 is a consequence
of Theorem 3.1 given in Baraud (2000) and the bound given in (15).

Remark 2. The variance o2 of the noise which appears in (18) is assumed to be known but is in general
unknown and must be estimated. A classical estimator is the residual least squares estimator:

n—1
o?:= % Z [y(xz) — iALd* ($i):|2,

where d* is an arbitrarily chosen dimension (for instance d* = [\/n] suits see Baraud (2000)).

3. FOURIER-HERMITE APPROACH FOR THE ESTIMATION OF f
In this section, we construct an estimator of f using the Fourier inverse transform and then the least
squares estimator. First, we consider the following assumption on the unknown f.
(A1) The unknown function f and its Fourier transform f* belong to L(R).

Assumption (A1) is introduced to use the Fourier transform inverse: t(z) = 1/(2n) {p ™“t*(u)du.
We will also need of the following assumption on the kernel g which are classical in deconvolution context:

(A2) The Fourier transform of g denoted ¢g* is well defined and such that: ¢* s 0, where t*(u) =

§ e®®t(z)dx, and i is the complex number with i? = —1.
(A3) There exist ¢; = ¢} > 0, and v > 0, such that
(21) QA+t <|g*(t) 2 <e(1+1t2), VieR.

(A2) is necessary to define the estimator and (A3) is generally useful to study its risk. Under (A3), the
function g and the errors are called ”ordinary smooth”. Observe that (A3) implies (A2) and is verified
by some classical distributions: we can cite for example the Laplace distribution (with v = 2), Gamma
distributions (v = p, where p is the shape parameter) and more generally for all symmetric Gamma
distributions.

3.1. Estimation procedure. Consider discrete observations (zg,y(2k))—n<k<n—1 from model (1). As
h = f*g (see (2)), under (A1), (A2) and using the Fourier inversion formula, we have:
(22) f(x) = f e_“””#du, Vo e R.

R g*(u)
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Equation (22) leads to an estimator of f by replacing h by an estimator. By taking the Fourier transform
of (13), it yields

(23) j B,

Plugging (23) in (22), we introduce the following estimator of f:

(24) fay(@) = % Jem Z% EZ; du.

The estimator is well defined because the Hermite basis decreases as e$° (see (7)), which makes the

ratio /ﬁ:‘l /g* integrable for many functions g (see also Sacko (2020)). The quality of f4 is related to that

of hd which is studled in Section 2. The dimension d must be optimized. In practice, we must introduce
a cut-off to compute f(d Moreover, to control the risk of f(d we first consider the following estimator

N 1 ¢ —tux hi(u
(25) fw.alx) = %f e giéu; du, for ¢ > 0.

3.2. Risk bound for the deconvolution estimator. Now, we study the integrated quadratic risk of
f(a) given by (24). Define

_ * — 1 ¢ —tuxT h*(u)
(26) All) = |i1|l£3’g Ol fol=) = 2 f_ee g*(u) e

Consider also the following assumption:
(A4) [hlloo = supyeg [h(z)] < oo

We recall that, by the Cauchy-Schwarz inequality, |h|s < | f][g]l. Therefore, if f and g are square inte-
grable then, condition (A4) is automatically satisfied.

Then, we can state the following upper bound on the risk.

Proposition 3.1. Suppose that the assumptions (A0O) to (A4) hold. For f(d) given in (24), ,]?(g)’d defined
in (25) and £ = +/2d, we have

(27) E|lfia) - £I?| < 20XTe 4 2K [ fip a — 117,

where C is a constant depending on Cl,, & giwven in (7), ¢1 in (A3) and ||h|sw. For f(@)’d defined in (25)
and any £ > 0, it holds that

~ T
28)  E|lfi.a— 1] <If = fol? + A®) (uh = Rl + Amaz (95") B = halls + 02—t (wg1)> -

(a) The first term on the right-hand side of (28) (|f — f > =4+ S|u|>€ |f*(u)|?du) is the classical
bias term: it is decreasing with the cut-off /.

(b) The term A({) corresponds to the deconvolution aspect of problem: it is studied using the regu-
larity condition on ¢g* given in (A3) and is increasing with /.

(c) Finally, the terms in the big parenthesis represent the regression aspect of problem (see Proposition

2.1 (ii)).
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We also mention that the term CATe™¢? is negligible compared to E |:Hf/}g)’d — fHQ] for ¢ large enough and
f e W3(L) (Sobolev ball see (10) for the definition of W#(L)) and under (A3). Then, the two estimators
(f(),a and f(q)) have the same rate of convergence. We can also consider f(,) 4 as an estimator. However,

this requires to optimize two parameters, the cut-off £ and the dimension d in practice, contrary to f(d)
which requires only to optimize d.

3.3. Rate of convergence of f(@)’d and f(d). In this section, we compute rates of convergence in a
collection of specified cases. To derive convergence results, we will make two consecutive bias-variance
compromises, first for the regression part (compromise in (17)) and then for the deconvolution part, by

substituting this value in (28) and optimizing in ¢ to get the rates of f(g 4 and f . The following result
of convergence holds.

Theorem 3.2. Let assumptions (AO) to (A3) hold. Assume that h € W3V (L'), then we have for
dopt = [nY 7TV with s + v > 11/6 and Loy oc n'/26+7%D) that

sup | i — F17] = © (n7757)

fews(L)
where W#(L) is the classical Sobolev ball of regularity s defined in (10) and v is given in (A3).

The same result holds for the estimator f(d with the assumption (A4), see (27). The estimator

f(éopt),dopt and f(dopt) converge at a polynomial rate as in density deconvolution for ordinary smooth noise.

opt )

Clearly, the hypothesis h € WSJFV( -) can be related to the regularity of f and g.
Note that as Eopt o dopt, then, we can just set £ = c¢v/2d with ¢ > 1 in the constraint ¢ > v/2d given in
Proposition 3.1. If we had a Fourier bias instead of Hermite bias (i.e. we have |h— hvay | instead of |h—

hal|?), for f € W*(L) and under (A3), we have by an elementary calculation that h = f g e W7 (L/c})
(see Remark 3). Therefore, it yields under (A0) to (A3) that sup fepys(f, [Hf (Copt)sdopt fHZ] =0 (n_ﬁi+1 )

Remark 3. Assume that f belongs to W*(L) (see Section 2.3) and g is ordinary smooth (i.e. g satisfies
(21)). Then, h belongs to W5tV (L/c}), where ¢} is given in (21). Indeed, we have

J ey P = [ 1 R e < o [0y <

We derive that h is s+ times differentiable if s+ v is assumed integer and these derivatives up to order
s+ belong to L?(R). Then, it belongs to WI‘?V(L) if and only if the functions x°tYTh() belong to
L2(R) forn=0,...,5 4+~ — 1 (see Section 2.3).

For some classical functions, we can obtain the exact order of bias of the unknown function f and the
regression function h. We only calculate the rate for f(g 4, these results extend naturally to f(d) (see
Equation (27)) considering (A4).

3.3.1. Rate of convergence for f Gaussian. Let

(29) fol) = ——exp (—;) |

we can establish the following result.




10 O. SACKO

Proposition 3.3. Let assumptions (A0Q) to (A3) hold and f = f, where f, is defined in (29). Further
suppose that g € LY(R) n L%(R) for a an integer which can be chosen as large as possible and | =
0,...,a— 1. Set dop = [nV/@+V] and 02, = Blog(n) with § = o/(a + 1)0?, we have

E [ Ry — 112] = 2200

na+1

where v is given in (A3).

Note that the condition z%g € LL!(R) n L2(R) holds for classical ordinary smooth functions (Laplace or
Gamma distributions). As « can be chosen large, then, for &« — 400 (which corresponds to dgp = 1),
f(bopt)sdope 18 Order log(n)7/n. In this case, the rate log(n)?/n is better than the rate obtained in the
classical density deconvolution since the rate is order log(n)?+1/2/n, see Butucea (2004).

3.3.2. Rate of convergence for Gaussian kernel. By reversing the role of f and g in Proposition 3.3, namely

that g(z) = (2mo?)~Y 2727 and f € W#(L), we recover the classical rate of the density deconvolution
framework, see Fan (1993) and Pensky and Vidakovic (1999).

Proposition 3.4. Let Assumptions (A0), (A1) and (A3) hold, g(z) = (2r02)~1/2e” 202 f € Ws( ) and
2% f e LY(R) nLL2(R) for a an integer which can be chosen as large as desired and | = 0, . —1. Then,

we have for dop = [n'/(@+D] and 02 = ot +1) log(n) that

E {1 fitpe) don — F12] < log(n) ™"

3.3.3. Rate of convergence for f and g Gaussian. If f and h belong to Wj;(L) and are of Gaussian-type,
the order of the bias term decreases exponentially (see Belomestny et al. (2019), section 4.3 and Lemma
2 in Comte and Lacour (2011)). The rate is therefore imposed by the variance term.

22 22
Proposition 3.5. Assume that (A0), (A1) and (A2) hold, f(x) = (2mo?)~/2e” 27 and g(x) = (2m6%)~12e” 202

2
with 0% + 02 # 1. Then, for dyy = [log(n)/Asg] with, Ay g = log [(g;igiﬂ) }, we have

~ log(n)
E —h?| < .
(30) |ithopt h” :| ~ n

Consequently, it comes for ﬁgpt = U2+92 log(n) — loglog(n) that

292+ 2

2
2 o2_0

E{1fitupe) dope = FI7] <0755 10g(n) 507

The same result holds if f is a mixture of Gaussian random variables. It is known that the rates in double
super smooth case are of type n~® with § > 0 up to a certain power of log(n) (see Lacour (2006), Theorem
3.1 in density deconvolution setting).

Note that if 02+ 602 = 1, we have h = f*g = (\/5)_1(77)7&900 where ¢y is the first function of the Hermite
basis given by (3), in this case hq = h and |k — hg|| := 0 which implies that the rate can be better than
the one given in Proposition 3.5.

3.3.4. Rate of convergence for the Gamma case. When f is T'(p,6) and g I'(q,0), where I'(a,b) is the
Gamma distribution of with shape parameter a and scale b, then, the regression function h is I'(p + ¢, 0).
If in addition the shape parameter is an integer, we can derive the exact bias order of h and then the rate
of convergence.
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Proposition 3.6. Let (AO) to (A3) hold, p and q be two integers such that p + q > 2. Assume that
f~T(p,0) and g ~T'(q,0). For dop = [nl/(PJrq—l)]’ we have

~ 2 _ptg—2
E|lha,, — bI?] < 0”550
. p+q—2
Therefore, it follows for £y oc nPta-DEr+2a=1) that

~ 9 __ (p+g—2)(2p—-1)
E [Hf(ﬁopt),dopt _ fH ] =0 n Gte—D@p+2¢-1) | .

The estimator ']?(gopt),dopt converges with rate n~(P+t2=22p=1/(p+¢-1)(2p+2¢-1) jf £ and g are Gamma func-
tions. The same results holds if f is a mixture of Gamma function.

Let us now summarize the previous results in the Table 1:

g Gaussian Gamma
/ N(0,6%) I'(g,0)
Gaussian | 2 o202 log(n)qn*%ﬂ
N(O, 02> n o2+62 log(n) o2+62 o large
Gamma ol a1
F(q, 9) log(n) 2 n  @+a—1)(2p+2¢-1)

TABLE 1. Rate of convergence for the MISE of f (Lopt),dope 111 the specific cases.

3.4. Adaptive procedure for Fourler-Hermlte strategy. The objective of this section is to propose
a way of selection for the estimator f . First, we remark that f ¢),4 cannot be written as a minimizer of
a contrast. Thus, we cannot use a procedure by penalization. This is why, we describe an adaptive choice
inspired by the ideas developed by Goldenshluger and Lepski (2011). The procedure is mainly based on
the comparison of estimators of f. From now, we set £ = v/2d and introduce the following estimator

N R 1 (v R (u
(31) fay (@) = fyza,a(®) = 5 J_me—m gigui

This choice of ¢ is motivated by the results obtained in Proposition 3.1 and Theorem 3.2. Indeed: the
optimal choice of ¢ is the order of v/d and as the minimal admissible choice is £ = v/2d; this is why, we

set £ = /2d.

Consider the following collection of models

2 /57
Mg)::{lgdgn’ Mgl}
n
where A(d) is given by (26) and X in (A0). Define
(32) A= s { (17 = Fanal? - mavi@) },
d’eM +
where k1 > 0 is numerical constant which must be calibrated in practice by simulations and
AdT
(33) V(d) = 2(1 + 24log(n)) o2 A(vV2d) —.

n
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Then, we select d as follows

(34) d := arg min {A\(d) + ﬁgV(d)},
demP

where k1 < ko and ko must be also calibrated. The term ﬁ(d) is an estimator of bias of ]‘N’(d) and its
construction is based on the comparison of estimators of f. We add the following assumption on the noise
(A5) 7 is sub-Gaussian variable with proxy variance b > 0, that is for every ¢ € R, it holds
b2t?
2 )
It is also said that €1 is b-sub-Gaussian or sub-Gaussian with parameter b. The natural example of a
sub-Gaussian random variable is a centered Gaussian. If £ has N (0, 0?) distribution, it is easy to check

E[exp(te1)] < exp(

Elexp(te1)] < exp( ) then, &1 is sub-gaussian with parameter o?. Assumption (A5) is also satisfied if
£1 is bounded. N
The following non asymptotic result holds for f( i

Theorem 3.7. Let assumptions (A0Q) to (A3) and (A5) hold, f(d) be defined by (51), d selected by (34).
Then, for k1 = 12, we have

- log(n
(35) Bl — /111 <0 it (I~ fiymal + Bald) + V(@) + ¢,
deMn n
where Ry(d) == max,,_, ) ,_. <A(\/ 2d")|h — E[?Ld/]\|2> C is a numerical constant and C' = C'(E[e1], v, c1, &, A, C)
with ¢y~ given in (A3), £,C% in (7) and X in (AO).
In addition, if f belongs to W*(L) and h to Wi (L') with s+ = 17/6, it holds

10g( )

(36) Eflfg — fI71<C1 inf (4= +V(d)) +C
deMy,

where Cy is a constant depending on C, L, L', s, v and C| depending on C', s and .

The term Rj(d) has the same order as the classical bias of f (||f — foma H ) under adequate regularity
conditions on f and g. Inequalities (35) and (36) are non asymptotic. In the assumptions of regularity, the
values of s (for f) and 7 (s+ for h) need not to be known for implementing the procedure or computing

the estimator. The two inequalities show that ]?(A realizes automatically a bias-variance trade-off up to

d)
log term, and an additional residual term C’ %, which is negligible in general. Moreover, we derive

from Theorem 3.2 with n replaced by n/log(n) that under the assumptions of Theorem 3.7

E[lf; - £I7) < O(

)" F

log(n)

where C' > 0 is a numerical constant.

4. HERMITE-HERMITE STRATEGY FOR THE ESTIMATION OF f

Our aim is to build a projection estimator of the unknown function f using the Hermite basis. The ideas
is to decompose both functions f and h in the Hermite basis.
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4.1. Estimation strategy. Let (xy,y(2k))—n<k<n—1 from model (1), m > 1, integer and consider S,
defined in (11). Assuming that f belongs to L2(R), we decompose f in the Hermite basis (p;);=0:
f= Z;O:o aij(f)ej.ai(f) ={f, ;) =§ f(x)p;(x)dz and the orthogonal projection of f on Sy, is given by:
fm = Z;”;()l a;(f)p;. To estimate f, we bu1ld m estimators of the coefficients a;(f). Under (A2), using
the Plancherel theorem and as h = f * g, it follows that:

(37) a;(f) = 217T<Z *>—1fh*§3; Wor Z:Egso]

Replacing h* by ﬁ; defined in (23) and plugging this in (37), we define the following estimator:

¢} (u)dx = (u)du.

m—1 N
n - o (=) [ hg(w)
38 = ajigPi, @jq= (u)du,
(38) Jm.d ;} 3,dPj j,d o ) g*(w) pj(u)
provided that h h©;/g* is integrable for j = 0, . — 1. The coeflicients @; 4 are real. Indeed, using that

©j(x) = (—1)7pj(—2) (since Hj(—xz) = (— )JH( )),we have

@Y [hiw) (i)Y ()
j,d m g*(’U,)SOJ( )d m g*(u)gpj(

where Z is the complex conjugate of the complex number z. Under (A3), the integrability condition of

w)du = a; 4,

the ratio h* h@i/g* is ensured (see Equatlon (7)). The two dimensions m and d must be optimized. As for
f (@) Or f .d> the performance of fm 4 depends on hd which has good statistical properties (see Section 2).

4.2. Risk bound for the projection estimator of f. The following risk bound holds for fm,d'

Proposition 4.1. Assume that f and h belong to L?(R) and set

m—1
(39) S(m) = sup |g*(u)| 2+ ), J i (w)*lg* (w)|*du,  p> 0.
lu|</pm |u|=/pm

For fm,d given in (38), we have
(40)
~ _ T _
E [Hfmd - f|\2] <|f = ful® +25(m) (yh = hall® + Amaz (U5 ") [h = hallz + 02— (tr (T 1) A 27r2m)> :

Note that the constant p > 0 is independent Afrom n, m and d. The same comments given after Propo-
sition 3.1 for the deconvolution estimator f) 4 hold here. The difference with f, 4 can be found
on the bias of fmd and the term X(m), the regression part does not change. Moreover, the term

m:_ol SI%I%/W lp;(2)]?|g* ()| ~2dx is exponentially decaying in m for p > 2 (see Proposition 3.1 in Sacko
(2020)) and thus negligible with respect of sup|x‘<\/m(]g*(3:)|_2) = A(y/pm), where A(Y) is given in (26).
Thus, for f € W (L) and choosing ¢ = y/m, the estimator ]/”\(g),d and fmd have the same order and then

rate of convergence (see also Comte and Genon-Catalot (2018) and Sacko (2020) in the framework of
density deconvolution).
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4.3. Rate of convergence of fmd. As for f(d), we propose a two-step bias-variance trade-off.

Theorem 4.2. Suppose that (A0), (A3) and h belongs to Wiy ' (L). For dop = mepr = [nY/T7TD] with
s+v>11/6, we derive that
Sup E I:“fmoptydopt - fH2:| = O (ni S+f/+1> ?
feWg (L)
where W3, (L) is the classical Sobolev-Hermite ball defined in (9).

The estimator fmom’ achieves the same rate as f(dopt) obtained in Theorem 3.2. Note that the results

dopt
for some special functions obtained for f(q,,,) in Proposition 3.3, 3.4 and 3.5 apply here. If f is a Gamma
function (see Proposition 3.6), we have a loss on the order of the bias of f, |f — fin|? which is linked to
the Hermite basis. Indeed, for ¢ = m, Jm.a and f(g) 4 have the same variance order but the bias is order:

If — finl? < €72P** contrary to the Fourier bias where | f — fo||? = ¢=2P*1 where p is the shape parameter

of Gamma function. For fmyd, we get for mgy; = dgpt = [n2@+a=1] the following rate of convergence
N 2 __p=2_
(1o = 12] = 0 (n77577).

4.4. Adaptive procedure for Hermite-Hermite approach. As for the Fourier-Hermite method and
in view of Theorem 4.2, we set d = m and we consider the following estimator

(41) f m = f m,m;
where fmm is given in (38) Now, we are interested in the choice of m. Let us define the collection of

models Mg) by

2
Mg) ::{1<m<n’ Mgl}’
n
where X(m) is given by (39) and X in (AO0). Analogously to FH approach, we estimate the bias by

42 Bom) = e § (1o = Tl = W) W) = 4014 24l0g0)) 25 (m)
m’eMgf) + n

where k] > 0 is a numerical constant which must be adjusted in practice. Then, we set
(43) m := arg min {E(m) + ﬁéW(m)} ,
mEMgf)

with k), > k) > 0 must be also calibrated in practice. We can prove the following oracle inequality

Theorem 4.3. Let Assumptions (A0) to (A3) and (A5) hold, fi, be defined by (41), i selected by (43).
Then, for k) = 12, it yields
log(n)

(44) E[|fs— fI) < C inf (If = full® + Ri(m) + W(m)) + o=,

me./\/lg)

where Ry(m) = max_, ) S(m')|h—=E[hw]|2, C is a numerical constant and C' = C'(E[e4], v, c1, & A, CL)
with ¢y, given in (A3), £,C% in (7) and X in (AO).
In addition, if f belongs to W§(L) and h to Wy (L) with s +~ = 17/6, we derive
~ 1
(45) Bl Fn— A7) <G it (m + W(m)) + €5

)
meM,, n

where C1 is a constant depending on C, L, L', s, v and C depending on C', s and ~.



HERMITE ESTIMATION IN NOISY CONVOLUTION MODEL 15

The same comments for HH strategy given after Theorem 3.7 hold for f,% In particular, we deduce from
Theorem 4.2 (with n/log(n) playing the role of n),
~ n
[ f — 117 < C(;

___ s
Y
og(n) B

where C' is an universal constant.

5. NUMERICAL ILLUSTRATION

5.1. Practical implementation. In this section, we present the results of a simulation study to illustrate
the performances of our strategies. We compute the estimator f( 4 given in (31) with d selected by (34)

and f defined in (41) with 7 chosen in (43). We consider the following test functions which are estimated
on the interval I
(i) f(z) = exp(—227) , I = [-2,2],

(i) Gamma dlstrlbutlon I'(4,4), I =10,2.5],

(iii) f(x) = \/%(0.4 exp(—8(x + 1)2) + 0.6 exp(—8(x — 1)?)), I = [-2,2],

(iv) f(z) = —22(1+ 272 1 =[-2,2].
For the kernel g, we choose a I'(2,6) distribution i.e. g(z) = 6%z exp(—60z)1,50 with §# = 4. The errors
(er) are centered Gaussian with standard deviation o, € {1/8,1/4}. We also choose T' = 10 and consider
two sample sizes n = 250,1000. The regression h = f x g is computed for each test function f and
kernel g by Riemann sum discretization in 500 points. We consider the following collection of models
Mf) = /\/l(l) {1,2,...,25}. The Fourier transform of g is equal to g*(t) = (1 —i5)~2 with § = 4 then,
we consider the following variance term in practice for the FH method:
27d)2 AdT
627 n’
For the HH method, we take W (m) = 2V (m). The adaptive procedure is implemented as follows:

(46) V(d) = 2(1 + 24log(n)) o2(1 +

— For each d € /\/lg), compute A\(d) = max, .. {(fd/ - NdAd/)Hz - mV(d’)) }, where the
+

integral Hfd/ — f(dA d’)H is computed by Riemann’s approximation and V'(d) given in (46),
— Select d such that d = arg min M(l) {A(d) + HQV(d)}

\/> _'LUZL'
S d( ) du

This description remains valid for the HH strategy by setting ] = 2k1 and k), = 2k9 where 2V (m) plays
the role of V(d). In the sequel, this procedure is called « GLM >» (for the Goldenshluger and Lepski
method).

Choice of constants k1 and ko. We can choose k1 = k1 and have just one constant to calibrate, it is in
this kind that the procedure (Goldenshluger and Lepski) was developed. Recently, Lacour and Massart
(2016) suggested the idea of considering two different constants (k1 # k2) and propose to take ko = 2K
for kernel density estimation using Goldenshluger and Lepski (2011) method. Here, we adopt the same
idea to find the values of k1 and k9. In a rather "rough” way and after some numerical tests, we choose
k1 = 1.5 x 1072 and k9 = 3 x 1073. Then, we illustrate the procedure by some graphs.

As GLM method is slow and therefore difficult to calibrate, we implement the penalization method, which
allows us to perform repetitions and propose risk tables. The penalization strategy has the advantage to
be faster. Furthermore, we must only calibrate one constant denoted k). More precisely, the method
(called « PM » for the penalization method) is described (only for the FH method) as follows

— Compute f
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e For each d € Mg), compute A(d) = —|| de2 by Riemann’s approximation.

e Choose d via d = arg min deMm {/T( )+ K )V(d)}.

f o hE(u

S UT gi( )du

Calibration of constant /i( ). To ﬁnd the value of k), we have evaluated the MISE for different test

functions and different proposals for (). This preliminary study leads to fix kK1) = 1.5 x 1073 for the
FH procedure and 1072 for the HH method.

e Compute f

5.2. Numerical simulation results. First, we illustrate the methods by presenting some pictures.
Figure 1 presents the true unknown function (the bold red line), and twenty estimators chosen by the
GLM procedure in green dotted lines, for each test function (i), (ii), (iii) and (iv). The dimension selected
by the procedure and the value of Signal-to-noise ratio s2n are given under each graph. Note that s2n is
defined here by:

LSl b X yw)? - o?

B Diimn 1 o¢ ’

where the above approximation is obtained using the law of large numbers. We observe that the GLM
procedure give very satisfactory results, visually.
In Figures 2 to 5, we plot the true function in bold red line with 20 estimators in dotted lines for the
test functions (iii), (iv) by considering the PM algorithm for the two estimation procedures. The first
line illustrates the influence of sample size and the second line shows how the noise level can affect the
performance of the estimates. We observe that increasing n improves the estimation and, on the contrary,
that increasing the noise makes the problem more difficult. We can also see some oscillations when
oe = 1/4 which corresponds to a s2n ratio less than 1 (see Table 3), this effect decreases when the sample
size increases. The mean of selected dimensions are given in Table 2. We observe that these averages are
comparable to the dimension obtained in Figure 1 for (iii) and (iv) with GLM algorithm.
In Table 3, we report the values of the MISEs with standard deviation in parentheses multiplied by 100

computed from 100 simulated samples for the estimator f( ) and fm with d and M selected using the PM

s2n =

algorithm. We also provide the average of d or m selected by each procedure. As for graphical study,
we see that increasing the sample size or decreasing the variance of noise (which corresponds to a larger
s2n, see Table 3) improves the estimation. When n increases, the average of d or M is increasing except
in the case of function (i) with 0. = 1/4. This case corresponds to a s2n equal to 0.58 see Table 3 and
then the estimation is most difficult; this can explain why the procedure chooses a large dimension for
n = 250. Clearly, the influence of signal-to-noise ratio s2n is important, see Figures for graphical analysis.
Comparisons between FH and HH procedures. We observe that the two estimation methods seem to be
equivalent. The computing time is the main difference between the two procedures. For example: we need
about 25 minutes to obtain the MISEs for n = 250 and almost 1 hour for n = 1000 for the FH method,
while the HH procedure takes only about 4 minutes for n = 250 and less than 10 minutes for n = 1000.
This difference in computation time is probably related to the fact that the Hermite basis allows to build
low complexity estimators, see Belomestny et al. (2019).
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d=11.20, 52n = 2.38, s —> © d=13.85,52n = 1.60, s = 3
(iii) (iv)

0.0 02 04 06 08

= =

d =20.05, s2n = 1.18, s —> o d=12.65, 52n = 1.87, s —> 0

F1GURE 1. 20 estimates of f( P for the GLM algorithm. The true function is in bold red
and the estimate in green dotted lines for n = 1000.

O = O =
n 250 1000 250 1000

f FH HH FH HH FH HH FH HH

(iii) 13.30 13.75 22.20 21.45|14.05 11.75 17.20 13.05

(iV) 12.65 10.25 12.95 11.40 | 10.05 9.65 12.90 10.45

TABLE 2. Mean of selected dimensions d or i presented in Figures 2 to 5.

ol
b~

6. PROOFS
6.1. Proofs of Section 2.

17
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FIGURE 2. 20 estimates of (iii) with FH method, and n = 250 (first line) or n = 1000 (second
line) using the PM algorithm. The true function is in bold red and the estimates in green dotted
lines (left 0. = 1/4, right 0. = 1/8).

0.6
|

0.2
1

-0.2

-06
1

0.2 0.6
1

-0.2

-0.6
|

FIGURE 3. 20 estimates of (iv) with FH method, and with n = 250 (first line) or n = 1000 (second
line) using the PM algorithm. The true function is in bold red and the estimates in green dotted
lines (left 0. = 1/4, right 0. = 1/8).
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FIGURE 4. 20 estimates of (iii) with HH method, and n = 250 (first line) or n = 1000 (second
line) using the PM algorithm. The true function is in bold red and the estimates in green dotted
lines (left o. = 1/4, right 0. = 1/8).
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FIGURE 5. 20 estimates of (iv) with HH method, and n = 250 (first line) or n = 1000 (second
line) using the PM algorithm. The true function is in bold red and the estimates in green dotted
lines (left o. = 1/4, right 0. = 1/8).

Proof of Lemma 2.1. Let @ = (wo, ..., wq_1)", with U g = 0. Then, it holds

d—1 2
(Z wj%‘@z’)) =0.
=0

T voopr o T 9 T &
— T 0T 00 = = |0q3 = = ]
i B B = — [ @ity = —

i=—n
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Oe = % Oc = i
n 250 1000 250 1000
f FH HH FH HH FH HH FH HH
(i) 11.75 9.53 11.35 10.83 10.10 7.51 9.95 8.65
2.37 2.36 2.36 2.36 0.58 0.58 0.58 0.59

1.40(082) 1.51(0gs) 0.61g2s) 0.650005 | 448304 3.11(100) 0.46(022) 1.47(c3)

(ii) 13.23 11.87 15.31 14.66 11.94 9.07 12.21 10.67
1.58 1.57 1.57 1.57 0.37 0.39 0.39 0.39
(iii) 18.96 15.39 22.33 21.93 13.42 11.20 16.59 13.60
1.19 1.18 1.17 1.18 0.28 0.30 0.29 0.30

1.60(1.05y 1.38(0.83) 0.490.27) 0.450.24) | 5.10412) 4.53(3.69) 146073y 1.41(05s)
(vi) 12.71 10.41 13.11 12.74 10.45 8.87 10.65 9.39
1.88 1.89 1.90 1.90 0.48 0.48 0.48 0.47
TABLE 3. First line: empirical 100x MISE (with 100xsd) for the estimation of unknown function

f computed over 100 independent simulations; second line: mean of d in the for f( 4) Or mean of m

for fm, selected by the PM algorithm; third line: mean of Signal/Noise ratio.

Therefore, for all —n < i < n — 1, we have, Z?;é wjpj(x;) = 0. As gj(z) = CjHj(x)e_“32/2, we derive

Py(z;) = Z?;é wjcjHj(x;) = 0 i.e., Py is a polynomial of degree d — 1 admitting n > d distinct roots.

Consequently, it follows Py = 0 and thus @ = 0. O

Proof of Proposition 2.1. Denote Ilgh = ®gb(@ = (4 04) L OLR(T) with h(Z) = (h(z_p), ..., h(zn_1))!
the orthogonal projection of h on S, for the empirical norm || - |2.

Proof of part (i). We have

[oa = B2 = T = B2+ 1 = TR = i = A + g — a2
Taking the expectation gives
(47) E | — bl | = inf ¢ =B} + B |[ha o[

—
~

= ~ ~ t = ~
Then, for b9 given in (13), we can write hg(Z) = (hd(acfn), e hd(xn,1)> = ®4bD and TIyh = E[hy(F)].
Setting P(Z) = ®4(P,®4) @Y, we have

A . Tty T
|ha — ahl; = |P(@)el7 = ggtl[’(:'«“)tp(ﬂf)8 *

[l

\

™
o)
—
8
N—
My
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Moreover, it yields
n—1
E[E#P@E)E =E[ ),  ee[P@)ix]] =02 ), E[P(&)ii] = o2tr(P()) = o2tr(Iy) = o2d.
—n<i,k<n—1 i=—n

Consequently, it holds E [H?Ld - HthfL] = UET%. Plugging this in (47) ends the proof of (14).

Proof of part (ii). By Phythagoras Theorem, we have
E[lha — k] = Ellha — hal*] + [} = hal?
= E[|ha — E[ha]|*] + [E[ha] — hal? + [ — hal*.
We study the two first terms in the right hand side of the previous equality. For the first term, using the
definition of hy given in (23), we get
E [||ﬁd —E[hy] \|2] — E[p@ — EbD|2, = 27K [(W I ACNTGON E5<d>)] .

—

Note that b@ — Ep(@ = (@4,®,4) "1 ®!, this implies
E IR — Elha] | = E [#@a(@}00) " (@400) " 04e] = B[ M(7)2],

where M (Z) = ®4(®,®,) 1 (®4D,) @Y. As ¢; are i.i.d. of variance o2, it holds

BEM@E =B Y cedM@d] = o? Y] EM(),]

—n<i,k<n—1 1=—n
= oZtr(M (7)) = oZtr((®g2a) ).
We derive that E [£*M (Z)¢] = 02L+tr (\1151) and

(48) E [[hs — E[ha ] = Jsgtr (w:1).

For the other term, we have

~ _ 2
Hh‘d - E[h’d]HQ = H<<h7 (P0>7 cee ?<h7 @d71>)t - (‘I)Z‘I)d) 1(1)3 (h(il}_n), SRR h(xn))tH]Rd :
Now, we remark that

d—1
(ha(@—n), - ha(en1))" = Y o) (@r(@—n), - pr(@n-1))" = Pa (o), -, by pa-1))'
k=0

and therefore,
(®4®a) "0 (ha(z—n), - - ha(wn-1))" = (B0, - (hypa—1))' -
Thus, it follows
n—1
|ha = E[ha]|* = |(®42a) "' D (ha(F) — (D)) [fa < |(@4Da) 'G5, D) (halzi) — h(x:))?,

i=—n
where |A[2, is the operator norm of the matrix A defined as the square root of the largest eigenvalue of
A'A. Then, it yields

_ _ _ T _
(49) H((I)(tiq)d) I(I)fngp = Amax(q)d(q)tdq)d) I(CI)Z(I)d) 1(1)2) = g)\max (\del)
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This implies
(50) 1ha — E[hal|® < Amaz (T71) B — hal?,

From (48) and (6.1), we derive
~ T
(51) Ellhg = hI*] < o2 —tr (U0) + b = hal* + Amaz (€5 7) [ = bl
U

Proof of Proposition 2.2. For h € W§(L) with o > 11/6, we have from Proposition 2.1 (i) and Lemma
2.2 that

- d d
E [||hd — h||§] < [ha = BI* + (02T + Ca, L)T?) =~ < Ld ™ + (02 + Cla, L)T?) —,

where C(a, L) > 0 depends on « and L. The choice d = dgp = [n/(@+1)] yields
E |y, — bl | = O(n~5).
Hence the part (i) of Proposition 2.2. The part (ii) is similar considering (AO). O

Proof of Theorem 2.3. Inequality (19) follows from Corollary 3.1 in Baraud (2000), where all terms are
multiplied by T" with ¢ = 1 and p = 8. The constant C” is given by:

E[8
o' = o) 2EL (1 . d‘2> < +oo.
o
€ deMy,
Let us now prove (20). We recall that (see Equation (17) in Baraud (2000))

t
(52) VdeN , sup e _ Amaz (U 1),
teSat0 [tln
Using that
Ellhg = h|*] < 2E[|hg — hal*] + 2| ha — h|?
Under (AO) and as h g — ha € Sq,,, where d;, < n is the maximum dimension of the collections of models
M, it holds from (52) that |z — ha> < 232z — h|2 + 2X2|h — ha|}%. Thus, for any d > 1,

E[hg — h|*] < 222E[|h; — h|2] + 2X%|h — ha|% + | ha — .

From (19), we derive that

!

~ d C
o 2 < 2 : : o 2 2m ™ ~ 2 o 2 o 2
Bl1h - ] <22 |00 int (inf e =02 + 270 ) + | 4 20200~ hal? + o~

c'T

n

d
<max(1,2)2C(x)) inf ((2/\2 + V|| — hg|2 + |ha — R|* + ang> + 2\
eMn

This gives (20) and ends the proof of Theorem 2.3. O
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6.2. Proofs of Section 3.
Proof of Proposition 3.1.

Proof of Equation (27). We have

Ell fua) — £12] < 2E[| fa) — fio.al®] + 2E[ fioy.a — FI)-

We examine the first term. Using successively the Cauchy-Schwarz inequality, (7) and under (A3), we
deduce that

2

7 oL P, 1p o [Rie) - BRw < BRG]
_ _ L L L )
(d) (‘e)7d I |u‘>£ ’g*(u)|2 21t |u‘>£ ’g*(u)|2
— d ~(d 2
‘Z;Lé( (@) Eb( )+Eb§- )) goj(u)’
= J 3 du
Jul> |g* (w)]
N (59 i@ g @S [ e’
<> (5 - f du
;)(J g ) ]ZO fuf>¢ 9% (W)[?
-1 ~ R o o
<ac2 Y (7 B + Ebg.d)) de= 5 [ e (14 u2)du.
7=0

As Se (1 4+ u?)Vdu < ) < o0 with ¢} = ¢} (7,€) and £ > v/2d, then, it follows that

~ -1 ~ N 2
(53) E[Ifi ~ fioal?] < el CLE [Z (5" = + E5”) ]de‘fd~

J=0

~ ~ 2 '~ ~ 2
By the definition hq given in (13), it yields E [ZJ - (b( I N o b§d)> ] —E {zg_g (b§d> ~E b§d)) ]+

. ~d)) 2 ~ = At n .
S0 (60 and |ER? = |EBOYZ, = [(@400) 1052, < [(@400) 1012, S5, (b))%, Using
(48) and (49) (where hy := 0), we derive that

-1 R 9 R R R T
E [Z <b§d) ~EB + Ebgd)) ] = E[[hq — EalP’] + | Ehal® < 02— tr(¥3") + Max (257) 117
j=0

Under (AO) and (A4), we have o2 tr(\Iffl) + Amax (U71) |22 < max(02,2||h|%)AT. It comes that
E {2 (g(d) Eb(d) + Eb(d)> ] < max(o2,2|h|%)AT. Injecting this in (53), we obtain

E[| fay — fio.al?] < 1t C2 max(02,2|h]|%)de ¢ = CATe™ g,
where C' = C(Cl,, c1, |h]|oo, {) and therefore that

E[| fa) = fiey.al*] < OATe ™ + 2E[| fga — fI7]-
Proof of Equation (28). For all £ > 0, d > 1, we have the following decomposition:

(54) E{1figya— FI2] = 1 = fol? + E[ i) — Fional?] -
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We evaluate E [H fo) — ]?(5)761\\2] using the Plancherel formula :

~ 1 ¢
Bllfia = fol1 - 3B | |

Plugging successively (15) in the above bound and in (54) gives (28). O

~ 2
hi(uw) — h*(u)

) du| < A(OE [Hﬁd - h\\?] :

Proof of Theorem 3.2. Under (A3), (A0) and for h belongs to W with a = s + 7, we get from Lemma
2.2:

- dr T?
E [Hf(w - fHQ] SLE»+(1+02) [U?An + (L+A)Ld ™+ C(a, L)n] :

The choices dopr = [nl/(o‘+1)] and lopr = n2(&1+1) end the proof. O

Proof of Proposition 3.5. As f is Gaussian, then it belongs to W (D) (see (9)) with « as large as desired,
since f is infinitely differentiable and f,..., (@ 29t f® for [ = 0...a — 1, see Section 2.3. Using the
differentiation under the integral sign theorem, we have that h = f * g is also infinitely differentiable for
g € LY(R) and we write h(®) = f() x g. Besides, it yields |[A| < ||f@||lg|1. Then, h belongs to W(-)
(Sobolev ball) since these derivative up to order a belong to L*(R). Thus, h € W&(-) if the function
22~ th( is square integrable. This is equivalent to prove that z*h® is square integrable. Now, we write

Joh O = 2] (an0) " 2 = 2] ()12 = 2] [g* (F0) ]|

As 2%g € LY(R) n L?(R) and z®f® e LY(R), we get by the Leibniz Formula and the Cauchy-Schwarz
inequality that:

pen0 <2m) 35 () )Ly
=27rf i

k=0

<Cla), g IGOVTOE <) [1e® 0P

0<k<a—l

2

(2‘) (0P @I(F) 1 )| du

Moreover, it holds §[(g*)® (u)[2du = £ {|zkg(z)|?dz < S|$|<1 lg(z)|?dx + S|$|>1 |2 g(z)2dz < +oo0.

Therefore, [2*h)|? < +00 and h belongs to W (L). Proposition 2.2 (ii) gives E[H?Ldopt —h|?] < nTa,
Plugging this in (28) and using Lemma 2 in Comte and Lacour (2011) yield

r -1 _—0f? _ o
E |:Hf(z)7d0pt - fHQ] SO tem o a(l+ 52)7n atl,

Replacing % by 2, = W log(n) ends the proof. O
Proof of Proposition 3.4. The proof is similar to that of Pl“OpOSlthIl 3.3. The regressmn part does not
change i.e. for the choice dyy = [n'/(®*1)], we have always that IE[thopt —h|?] s n” att, (see the Proof
of Proposition 3.3) with « as large as desired. But for the deconvolution part, the rate change since the

order of the bias of f and A(¢) have changed. Now, these order are: A(f) = supj, < lg*(u)] 72 < et
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because g*(u) = exp(——) and | f — fio? = 3= S|u|>€ |f*(w)|>du < €725 for f € W5(L) (see (10)). From
the previous results, we derive from (28)

N _ 202 __o
E [Hf(z)@o,,t - fHQ] <O 47 T,

Choosing (2,; = (W log(n)), it yields that

E {1 ftupe) o = F12] S log(n) ™"
O

Proof of Proposition 3.5. First, note that as f and g are Gaussian densities, then h = f x g is it also a
Gaussian density with variance o + #2. It is proved in Belomestny et al. (2019) (see Proof of Proposition
7, p. 55-56) that the bias for Gaussian density is exponentially decaying and its order is given by

2
|h—hg|? < = exp( Ao0d), where \, g = log [("2“92“) ] > 0. We derive that:

02+602—1
~ T 1 T2
E _hl2] < A2\ 4 _
(5) (1= hI?) 5 20 + = exp(=Arpd) + ()

Injecting dopr = [log(n)/Asp] in (55), we have (30). Injecting this in (28), it comes
log(n)
—

E{1fiyaope = FIP| < If = fiol? + A0

As g*(u) = exp(——) then, it holds A(f) = supj, <, lg*(u)| 7> < e”*?. Using Lemma 2 in Comte and
Lacour (2011), we have

If = fol? = 7 f £ (u)|Pdu = ¢ te "t
T Jlu|>¢

Consequently, we get from (28)
£ 1 242 2,2 log(n
EHﬂ&%m—fV]séle €-+Jflé),

Replacing Zopt (02102 log(n) — W loglog(n) gives the announced result. O

Proof of Proposition 3.6. Recall that as f is I'(p, ) and g I'(g, #), then, the regression function h = f*g ~

I'(p + q,0) and belongs to h € WI(}quz) since p + g > 2. We have
~ T2
EWM—W]<&N“qm+¥Ad+O()

Replacing d by dgp = [n"/PF97D], we derive

~ __ ptq—2
Ellha,,, —hI*] < " wrat

Now, we consider the deconvolution part. The Fourier transform of g and its modulus are given by

g0 = (1

Then, it holds that
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and using Lemma 2 in Comte and Lacour (2011), it follows | f — f»|? = 5= S|u|>€ £ (w)Pdu = (§)72PFL,
Plugging the previous results in (28) yields

E{1fiera — 7] 5 5

Choosing lop; 1= neta- 2D gives

~ 9 __(p+g—2)(2p—1)
E [Hf(zopt),dopt — f” ] = 0O (n G+ra—DCp+2¢-1) | .

Y ptg—2
) L4 of?an T vt

g

Proof of Theorem 3.7. Let us start by the proof of Inequality (35). First, we have by definition of /Al, d
and Vd € ./\/l,(ll) )

HJ?(J)—fHQ = HJ?(J)—J?(JAd)+J?gAd —fd +fd — fI?
<31fig = Fanal” + 31 gna) — JaI” + 31Fa) — 11
< 3(A(d) + /ﬂV( D) +3(A(d) + 1V (d) + 3 fa — /I
< 6(A(d) + raV () + 3| Ju— fI”
Taking the expectation in the previous inequality, we get

(56) E[1f4 — fI?] < 6E[A(@)] + 6x2V (d) + 3E [|Fa — f1?].

A

Now, we are interested in the study of E[ﬁ(d)] For all d € Mg), we use the following decomposition
Hf @ — fded I? = Hf &y — E[f(d’)] + E[J?(d’)] - E[J?(d/m)] + E[f(d/m)] — J?(d'Ad) I
<31fia) — ELF @)1 + 31 Elfiw na)] = Firnay I + 31 Elfian)] — Elf(a nap]I*
Using this, it comes
A _E[f 2_ M / £ _F. 2 k1 /
Ay <3 max (1)~ BTl = V(@) |8 e 4 (1Bl = T = V)|

+3 max {|E[fa)] —Elfiwra)l?}-

d e./\/l

Let us remark that if d’ < d, the last term is equal to zero. We have

max |E[fu)] ~ Elfwna]l® =  max | E[f,ygm 0] - Elyag.dl?
dremP dreMP d<d’

o {!\E[f(m>,df]—f<m>+f(m>—f<mﬁf(m>—E[f<m>,d]H2}
reMb d<d’

<3 max  ELfyam el — frvam|? + 31F va — I ELF, vam.d]
deMiP d<d’

”

+ 3 max Hf(m) — f(m)w
deMP d<d’

Besides, by definition of f(\/ﬁ) 4 given in (25) and f(m) in (26), we have for all d > 1

~ 1 (V2 | E[R%(w)] — h*(w)]? ~
|80 — fvan = 55 | = O < AR I - B
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and for d' > d

vz~ foml = |

2 % 9 9
v d“<f Fr@)Pdu = If = fiyzg
\/ﬂ<|u|<\/fd’| | ‘u‘%/ﬁ' (u) | (@)H

This implies

1 n n 2 K1 /
Ay <3 mo, {1z ~ Bl my - 5va) )

~ ~ 2 K1 /
+ 3dlfenﬁ>(<nl) {(| E[f( 2d/m/ﬁ),d/Ad] - f( 2d'A\/ﬁ),d/AdH - Ev(d ))+}

+9  max  AN2d)|h—E[hg]|* +9)f - Foval®-
demM P d<dr

As
N N 2 K1 ! N 2 1 ’
d%){(f(m),d,—E[f(m,d,]r ORI R (R b

d/e/\/lgll)
and V(d') = V(d' A d), then, we have the following bound

f n 2 K1
dxrenja}((nl) {<|E[f( 2d’/\\/ﬁ),d//\d] - f( 2d//\\/ﬂ),d/AdH _ 6v(dl))+}

~ ~ K
< max {<|E[f(m),d’] - f(\/Td’),d’”2 1V(d/))+}

dem®P dr<d
2 K1
~ My )
2= va) |

<2 % (1w~ Elam i - Tva) |

d’e/\/lgll)

(1B d - Foma

Consequently, it follows

~ ~ n K1
E[ia] <9 3 E|(1fum.e —Elvamal - 2va) |
d’eMg) -
£9 max AW~ Efia]l? + 911 - £y P
deMD d<d’
Next, we have to control the term 3, \ o) E {(‘J?(\/ﬁ),d' —E[ﬁm)d]“? _ ”61V(d’)>+], We use the

following technical Lemma.
Lemma 6.1. Under the assumptions of Theorem 3.7, it holds for k1 = 12 and Cy a positive constant,

~ ~ Col
% &| (i - B - Svi) | < 225,

de MY K
where Cy = Co(E[e1], 7, c1,&, A, CL).
By Phythagoras Therorem, we have
(57) I~ Elhal| = A — hal* + |ha — ElRal|*.
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Then, we deduce from Lemma 6.1, (56), (54) and (48) that:

+ BTRy(d),

(58) E[1F g, — £12] < 5715 ~ fyyma|? + TmaV () + 540 25"

where Ry(d) := [maxd,eM(l) g AV2d)||h — E[ﬁd/]HQ] . Taking the infimum d and choosing C' = max (57, 7k2),
C’ = 54C) in (58) ends the proof of Inequality (35).
Now, we prove Inequality (36). From (57)-(50) and (AO0), it holds

AW2d)|h = E[hg]|?> < (1 + NAW2d)|h — ha|? + AAN2d) |k — ha |

Under (A3), it comes from Lemma 2.2 (ii) and for h e W5, (L'),

AW2d)|h = E[ha]|? <cr(1+ N1+ 2d) L (d) 7 + CA(@)ZZ)

2
<C (d’ 5+ T)

Then, for d’ > d, we derive that Ry(d) < C (d*s + %2> Plugging this in (58) and using ||f — f\/ﬁ”2 <
27°Ld~*° because f € W*(L) concludes the proof of Theorem 3.7. g

6.3. Proofs of Section 4.

Proof of Proposition 4.1. By the Pythagoras Theorem, we have
(59) B[ fma— £I2] = 1 = fonl + E [|Fona = Sl
Let us study the term E [Hfm,d — meQ]. On the one hand, by definition of fm,d and fy,, it yields

£ [l ] -2 S s ) - 2| 5, 2 ,%»2]
7=0

]:

RS h¥ 1 B — p*
<-E Z P eyl | + “E Z|< sy o)

7=0

By the Bessel Inequality, it holds

-~ ~ 2
mel hr g D f I (u) — h*
1. N 2V /pm —— | du
;)< g* Hsve J> ” g* |< P H |z|<+/pm g*(u)
— h*|*du.

1 ~
< s o [ Ryl
lul<pm 9% (u)[?
The Cauchy-Schwarz inequality gives,

h —h* 2 < T w02y P 2
< g* 1||>W7¢3> lhg — h¥| Hgf*]l\-@\/mu .
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Consequently, we get

- 1 1 = ()2 -
E | fma = fml?] < = L% PR ZO fmwm ',jigui:m] E|IAg - »*|7?]
— 25(m)E [[ha — nI?|.
Injecting this in (59) and using Proposition 2.1 (ii), we get
(60)  E|fa— fI2] < If = funl® + 25(m) (|h Bl + A (") b~ Bl + 02t (%1)) .
On the other hand, from (59), we have
(61) E{1fna = FI2] = 1S = fl® + 1ELfona] = fnll® + B |1 vt — Bl all?]

We study the last two terms on the above expression. Start by the second. To do this, we introduce the

matrix:
* %
: *
R 9 0<j<m—1, 0<k<d—1

By definition hq given in (13), we remark ajq = [Mg(d)] ; with b( ) = (B[()d), . b( : E We set

Fma = @0+ Gm-1.0)" = [MbD]o<jcm 1
Then, it yields
E || fna — Elfmall?] = E [ufmd ~ E[fn ] Ilfw] = E [|M(®24) " el ]
= o2tr [Dq(D40q) T MM (DLD,) 0]

2
T

= 2 [ MM,
n

As \Ilgl is a definite symmetric positive matrix, then, it is diagonalizable \Ilgl = PDP! with D =
diag(p1, - - -, f1q), where the u; > 0 are eigenvalues of matrix \I/gl and PP = P'P = I;. We can define
the root square of ¥, and derive (see Proof of Theorem 3.7 when we compute M) tr[¥ ;' M!M] <
Amaz (W7 )tr[MM]. The Frobenuis norm and Bessel inequality give:

|MIF = [MM] = 3] >

JOkof 221%“

m-1 |0 (w)]?
7T2 . — J u | .
<4 ( A(y/pm) + ]ZO Juz\/m |9*(u)|2d )

m—1d—1

Consequently, it holds

m—1
E || fmd —E[fmall?| < 4x% [ mA
[1Fnt = Bl all?] < 4 (m (vom + 3, L|>W|g*<u>!2

)

Iw;‘(u)Pdu) ,T

Similarly to the study of quantity E [H fm,d — meQ] where fm,d is replaced by E[fm,d], we have

| E[fmal = frl? < 22(m) (| — hal® + Amaw (€51) |2 — hal2) -
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Plugging the two last terms on the above bound in 61, we obtain

n

~ _ _ T
E{1fma— fI?| < 1f = fml + 25(m) (|h = hall* + Aoz (¥") [h = hallz + 2702 Anaa (24) m) :
Combining this and (60) ends the proof. O
Proof of Theorem 4.2. Under (A3), (A0) and for h belongs to W (L'), it holds from Lemma 2.2:

~ d T2
E [Hfm,d - fH2] < Lm™° 4 2X(m) [(1 + N L'd™* + AU?T; + Cla, L)n]
Besides, under (A3) and from (7) with p > 2, we have

m—1
s ()2lg* ()| 2dw < 3 C2etom f (1+ u2)e$% du < C(E)me—Eom.
=0

m—lj
§=0 [u|=/pm

As SUp|z < pm 19° (7)]72 < e1(1+(mp)7), then, there exits a constant, denoted C; such that ¥ (m) < Cym”.
Then, we obtain

~ d T2
E [Hfm,d - f|\2] < Lm™% 4 2C1m” [(1 + AL d™® + \o2T = + Ola, L)] ,
n n
and the choices mop; = dopr = [nl/(a“)] with a = s + 7 > 11/6 end the proof. O
Proof of Theorem 4.3.

Proof of Inequality (44). By definition of é, m and Vm € Mg), we have
T = 112 < 6(Blm) + koW (m)) + 3 Jn — 11,
by analogy with the proof of Theorem 3.7. Then, it yields

(62) E|1fn = fI2] < 6ELBOn)] + myW (m) + 3E || — 17

~

Next, we study the term E[B(m)]. For all m,m’ € MP , we have the following decomposition
Hfm/ - fm’x\m”2 < 3Hfm’ - E[fm’]H2 + 3Hfm’/\m - E[,}(‘m’/\m]u2 + 3” E[fm’] - E[fm’/\m]H27

which implies

/ /
B(m) <3 max {<|fm/ — IE[fm/]H2 — RlW(m’)) } +3 max {(‘fm’/\m — E[for am] HZ — HlW(m’)) }
m’eM,(f) 6 + m’eM,(f) 6 +

+ 3 max {HE[fm’]_E[me’/\m]HQ}

m’EMg)
Note that for m’ < m, the last term is null. More precisely, we have

max {|E[fo] = Elfwam] P} = max  {IE[fw] = El[fwam] I}

m’e./\/l;2 m’e./\/l512),m<m’
<3 max  {IE[Jwl = fwl*} + 31 fm — ELFu] P
m/e./\/lsf),m<m/

+3  max  |fy — ful®

m/eM,,’ ;m<m/
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Moreover, it yields
2

T2 i
| = BTl = 5-

&R (w) — E[RE ()]
5 [ et
1 h* (u) — E[h%, (u)]

Sl f h*(u) — B[h%, (w)]
™| 2 Jui<yom g*(u)

m—1

+

X

2
©j(u)du

From Bessel, the Cauchy-Schwarz inequalities and Parseval equality, we obtain || f—E[fm][? < 25(m)||h—
E[hm]|?. For m < m/, we have |[f, — fumll> < |f — fm|? Consequently, it holds

Bm) <3 maax, { (15~ B AP - wm)) §o3 max A (1Foram - Blwranll? = ) )
m/eM,, + meMy, +
£18 mac S - Bl )2+ 91f — ful?

2
m’e/\/lgl ),mSm

Notice that

max 3 ([ fr — B[] | - ’“1W< Vot S (1 B - *’“1W< )t
A ).t 2 ).}

m'eM§; e

and W(m') = W(m' A m), then, we have the following bound

s, { (1ot~ Elfucsnll? = o)) Y2 3 (1wt o)

m’e./\/lgl2 ’EM<2
Finally, after taking expectation, we get

~ ~ ~ K

BB <9 Y E|(1fw—ElFA12 - W) |

m’EMSE) +
+18  max  B(m)|h = E[h] | + 9 f — furl®
m’e/\/l(g) m<m/
Lemma 6.2. Under the assumption of Theorem 4.3, for k| = 12, we have

> E Klfmf —E[f]|? - ’Z}W(m/))J < Oologrgn).

m’EMgLQ)

Lemma 6.2 implies that

log(n)

E[B(m)] < 9C, +18  max  S(m)|h —E[hu ]| + 9] f — fnl?

2
m’eM% ) m<m/

Injecting this in (62) and from (57)-(50), we obtain

(63) E [Hfm - f”2] < 57| f - me2 + 108Ry(m’) + TR,V (m) + 54C) logTE n)

Choosing C' = max(108,7x}), C' = 54C) and taking the infimum on m € ./\/11(12) concludes the proof of
Inequality (44).

Proof of Inequality (45). Recall that for f € W#(L), it holds |f — fm|? < Lm~%. Similarly to



32 O. SACKO

the proof of (36), we derive for h € W37 (L) with s+~ > 17/6 that Rj(m) < C(S,v, A, 02)(m~*+T?/n).
Plugging the two previous inequalities into (63) gives (45). O

REFERENCES

Abramovich, F., Pensky, M., and Rozenholec, Y. (2013). Laplace deconvolution with noisy observations.
Electron. J. Stat., 7:1094-1128.

Abramowitz, M. and Stegun, I. A. (1964). Handbook of mathematical functions with formulas, graphs,
and mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. For
sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

Ameloot, M. and Hendrickx, H. (1983). Extension of the performance of laplace deconvolution in the
analysis of fluorescence decay curves. Biophysical journal, 44(1):27-38.

Askey, R. and Wainger, S. (1965). Mean convergence of expansions in Laguerre and Hermite series. Amer.
J. Math., 87:695-708.

Baraud, Y. (2000). Model selection for regression on a fixed design. Probab. Theory Related Fields,
117(4):467-493.

Baraud, Y. (2002). Model selection for regression on a random design. ESAIM Probab. Statist., 6:127-146.

Barron, A., Birgé, L., and Massart, P. (1999). Risk bounds for model selection via penalization. Probab.
Theory Related Fields, 113(3):301-413.

Baudry, J., Maugis, C., and Michel, B. (2012). Slope heuristics: overview and implementation. Stat.
Comput., 22(2):455-470.

Belomestny, D., Comte, F., and Genon-Catalot, V. (2019). Sobolev-Hermite versus Sobolev nonparametric
density estimation on R. Ann. Inst. Statist. Math., 71(1):29-62.

Benhaddou, R., Pensky, M., and Rajapakshage, R. (2019). Anisotropic functional Laplace deconvolution.
J. Statist. Plann. Inference, 199:271-285.

Bongioanni, B. and Torrea, J. L. (2006). Sobolev spaces associated to the harmonic oscillator. Proc.
Indian Acad. Sci. Math. Sci., 116(3):337-360.

Butucea, C. (2004). Deconvolution of supersmooth densities with smooth noise. Canad. J. Statist.,
32(2):181-192.

Cao, M., Liang, Y., and Stantz, K. M. (2010). Response to letter regarding article: “developing dce-ct
to quantify intra-tumor heterogeneity in breast tumors with differing angiogenic phenotype”. IEEE
Transactions on Medical Imaging, 29(4):1089-1092.

Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer.
Statist. Assoc., 83(404):1184-1186.

Comte, F., Cuenod, C.-A., Pensky, M., and Rozenholec, Y. (2017). Laplace deconvolution on the basis of
time domain data and its application to dynamic contrast-enhanced imaging. J. R. Stat. Soc. Ser. B.
Stat. Methodol., 79(1):69-94.

Comte, F., Duval, C., and Sacko, O. (2020). Optimal adaptive estimation on R or R of the derivatives
of a density. Math. Methods Statist., 29(1):1-31.

Comte, F. and Genon-Catalot, V. (2018). Laguerre and Hermite bases for inverse problems. J. Korean
Statist. Soc., 47(3):273-296.

Comte, F. and Genon-Catalot, V. (2019). Regression function estimation as a partly inverse problem.
Annals of the Institute of Statistical Mathematics, pages 1-32.

Comte, F. and Lacour, C. (2011). Data-driven density estimation in the presence of additive noise with
unknown distribution. J. R. Stat. Soc. Ser. B Stat. Methodol., 73(4):601-627.

Comte, F., Rozenholc, Y., and Taupin, M.-L. (2006). Penalized contrast estimator for adaptive density
deconvolution. Canad. J. Statist., 34(3):431-452.



HERMITE ESTIMATION IN NOISY CONVOLUTION MODEL 33

Cuenod, C., Fournier, L., Balvay, D., and Guinebretiere, J.-M. (2006). Tumor angiogenesis: pathophysiol-
ogy and implications for contrast-enhanced mri and ct assessment. Abdominal imaging, 31(2):188-193.

Delaigle, A., Hall, P., and Meister, A. (2008). On deconvolution with repeated measurements. Ann.
Statist., 36(2):665-685.

Dey, A. K., Martin, C. F., and Ruymgaart, F. H. (1998). Input recovery from noisy output data, using
regularized inversion of the laplace transform. IEEE Transactions on Information Theory, 44(3):1125—
1130.

Fan, J. (1991). Asymptotic normality for deconvolution kernel density estimators. Sankhya Ser. A,
53(1):97-110.

Fan, J. (1993). Adaptively local one-dimensional subproblems with application to a deconvolution prob-
lem. Ann. Statist., 21(2):600-610.

Gafni, A., Modlin, R. L., and Brand, L. (1975). Analysis of fluorescence decay curves by means of the
laplace transformation. Biophysical journal, 15(3):263—-280.

Goh, V., Halligan, S., Hugill, J.-A., Gartner, L., and Bartram, C. I. (2005). Quantitative colorectal cancer
perfusion measurement using dynamic contrast-enhanced multidetector-row computed tomography:
effect of acquisition time and implications for protocols. Journal of computer assisted tomography,
29(1):59-63.

Goh, V., Padhani, A. R., and Rasheed, S. (2007). Functional imaging of colorectal cancer angiogenesis.
The Lancet Oncology, 8(3):245-255.

Goldenshluger, A. and Lepski, O. (2011). Bandwidth selection in kernel density estimation: oracle in-
equalities and adaptive minimax optimality. Ann. Statist., 39(3):1608-1632.

Indritz, J. (1961). An inequality for Hermite polynomials. Proc. Amer. Math. Soc., 12:981-983.

Klein, T. and Rio, E. (2005). Concentration around the mean for maxima of empirical processes. Ann.
Probab., 33(3):1060-1077.

Lacour, C. (2006). Rates of convergence for nonparametric deconvolution. C. R. Math. Acad. Sci. Paris,
342(11):877-882.

Lacour, C. and Massart, P. (2016). Minimal penalty for Goldenshluger-Lepski method. Stochastic Process.
Appl., 126(12):3774-3789.

Ledoux, M. (1997). On Talagrand’s deviation inequalities for product measures. ESAIM Probab. Statist.,
1:63-87.

Loubes, J.-M. and Marteau, C. (2012). Adaptive estimation for an inverse regression model with unknown
operator. Stat. Risk Model., 29(3):215-242.

Mabon, G. (2017). Adaptive deconvolution on the non-negative real line. Scand. J. Stat., 44(3):707-740.

McKinnon, A., Szabo, A., and Miller, D. (1977). The deconvolution of photoluminescence data. The
Journal of Physical Chemistry, 81(16):1564—1570.

Meister, A. (2009). On testing for local monotonicity in deconvolution problems. Statist. Probab. Lett.,
79(3):312-319.

O’Connor, D., Ware, W., and Andre, J. (1979). Deconvolution of fluorescence decay curves. a critical
comparison of techniques. Journal of Physical Chemistry, 83(10):1333-1343.

Pensky, M. and Vidakovic, B. (1999). Adaptive wavelet estimator for nonparametric density deconvolu-
tion. Ann. Statist., 27(6):2033-2053.

Rice, J. and Rosenblatt, M. (1983). Smoothing splines: regression, derivatives and deconvolution. Ann.
Statist., 11(1):141-156.

Sacko, O. (2020). Hermite density deconvolution. ALEA Lat. Am. J. Probab. Math. Stat., 17(1):419-443.

Stewart, G. W. and Sun, J. G. (1990). Matriz perturbation theory. Computer Science and Scientific
Computing. Academic Press, Inc., Boston, MA.



34 O. SACKO

Szegd, G. (1959). Orthogonal polynomials. American Mathematical Society Colloquium Publications, Vol.
23. American Mathematical Society, Providence, R.I. Revised ed.

Talagrand, M. (1996). New concentration inequalities in product spaces. Invent. Math., 126(3):505-563.

Vareschi, T. (2015). Noisy Laplace deconvolution with error in the operator. J. Statist. Plann. Inference,
157/158:16-35.

Vershynin, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Compressed
sensing, pages 210-268. Cambridge Univ. Press, Cambridge.

APPENDIX A. PROOF OF TECHNICAL LEMMAS
Proof of Lemma 2.2. Recall that |hy — h|? = Zz——n(hd(‘rl) h(z;))?%.

Proof of part (i). We write = Zz——n(hd('rl) h(z;))? =1L Zz__n(hd(a:i) —h(z;))? —STT(h—hd)Q(u)du+
S_T(h — hg)?(u)du. Using Lemma B.2 given in the Appendix yields

T

n—1
- D7 (ha(as) = h(x))? —J (h — hg)?(u)du

n
t=—n -T

T2
< Yoo —,
n

where (z) = (X4 aj(h)pj(z))? Using (5), (8) and the Cauchy-Schwarz inequality, we have for h €
W (L) that

N

11
T2

NI
[N])s)

S i@ < | DllumP | | Sirt) s (eerin) —a

j=d j=d j=d

provided —a+5/6+1 < 0, that is & > 11/6. Then, ¢ is differentiable and o' (z) = 23, ; a;(h)¢}(7) X;5 4 aj(h)pj(x).
Again, using (5) and the Cauchy-Schwarz inequality, we have for h € W (L) that

2
.o .,Q,L _o—1L _a, 5
2 lai(ei(@)l < 352 la(WIi~2 7= < | X5 5%a (WP | | D078 | Sd it

j=d j=d j=d j=>d

Consequently, it follows for o > 11/6 that %Z?g}n(hd(xi) — h(z;))? — ET(h — hg)?(u)du < C%Q and
therefore |h — hy|2 < C(a, L)%Q + | — hg|?. This gives the part (i).

Proof of part (ii). Let us start by writing

Hh—hdni: Z h— hq)?(x;)

i=—n

3\’%

(h — hq)?(z;) (h_hd>2($i+l)}
2

M‘ ”MI

3\%

2 -7 -T

From Lemma B. 2? )
— :Ci - :Ui+ g
%Z [m ha)?( >+2<h ha)*( >]j (h — hg)*(x)dz

-T

byl
{ (h — hq)*(z;) + (h — hd)2($i+1)] _2JT (h— hd)Q(:v)d:L"%-?fT (h — hq)?(z)dx.
gl

ven in Appendix, we have
T3

"
< ko g

i=—n
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where ¢(z) = (h—hg)?(z) = (Xj=d a;j(h)p;(z))? with a;(h) = {(h, ;). Next, we evaluate the term ||} ||s.
By induction on d, the d-th derivative of ¢; is given by (see Lemma 5.2 in Comte et al. (2020) for the
proof)

d
<P§ ) = Z bi(c,])'@j%v where bl(w) =0("?), j=d= |kl
k=—d

Using this for d = 2 and (5), it follows |¢](2)] < j(j + k‘)_% < j12 and then we get for Wg (L) and
a>17/6
1
2 2
[ Y amef@l< | X a)? | | X | s @t t)i=ast
j>d j>d j>d
This implies that ¢ is differentiable of order 2. Then, for any j > d, it holds

W(x) =2 | D aj()ef(z) D ai(h)p;(@) + | D] ai(h))@) | |,
Jj>d j=d j>d
where the bound of last term is d"*6 for h e W (L) (see Proof of part (i)). Besides, the order of
Yi=aaj(h)pi(x) is d~%+13. Therefore, it comes "o < d~°*% and then
T3
12n2°
This ends the proof of part (ii) and then the proof of Lemma. O

|h — hallz < 2|h — hq|? + C

Proof of Lemma 6.1. Consider the process v, (t) = {t, jﬁ(m)d — E[]’“\(m)’d]) Let us denote by Sy := {t €
L1 (R) nL2(R), supp () < [~v2d, v2d]}. We have, |va(0)* < [17]f /50, — BLFzq)a) | with equality
int = f5a .4~ Elf vaay.al/(fyza).a — Elf (vza)ql) » then, it holds

1fivazya = Elfvaaall? = sup  [wa()*.
teSa,t]=1

By definition of hy given in (13), we write,

- - 1 (V2 pE(u) — B[R ()]
v (t) =(t, — E[f =J d ¥ (—u)du
(t) = f(\/ﬂ)d [ (\/ﬁ),dD o )_y3a g*(u) (—u)
T VR DS [V ) i
2rn J_\aq g*(u)
Using that [W; 1048 __, | = [2?;}n[qf(;1<bg]j,igi]Ogjgd_l, it holds
_ d—1 -1t * -1
17T % ! Zj:o [‘I’d ‘I)d]ji@j 1 %
vn(t) = ggi:_n eilt™, g* ﬂ|-\<m> = %z;n ,d,i(€:)

where

d—1 —15t *
i) o Lee, 20 Ve 2al;i 0]
t,d,i\T _"1:7_(_ ) g*

| <vad)-
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As the noise is not bounded, we cannot apply directly the Talagrand’s inequality to the process v, (). In
this respect, we use the following decomposition

gi=G+&, G =¢cl <k, —Eleils <k, §i = il sk, — Eleilie, >k,
where k,, is chosen in the sequel. Then, it follows that

1 n—1 n—1

vn(t) = vD @) + P @), v = o D] anailG). vP() = % D anai(€),

i=—n i=—n

and

3

E sup  |va())? — 2V (d) <2E sip OOR - Lya)
teSaltl=1 6 n teS4,|t|=1 12 .

+2FE [ sup |y§f>(t)|2] :

tesdvut“:l

This implies that

y E[(nﬁm),d—mﬁ@du\?—’gv<d>)+]<2 Z(UEK sup V£L1><t>\2—’f;v<d>)+]
deM

deM teSa,|t)=1
(64) +onE| sup P2
teatl=1

Now, we study the last two terms. We start by the second.

Upper bound for nE [suptesdjut”ﬂ |V7(12) (t)]z] . For t € §4, we remark that

d—1 1§t & . .
@ 17 (v i [‘I’d (I’df]j #j (1) . 1 (V2 R (u) — E[R%(u)] .
v (t) = —— ” t*(—u)du = — ” t*(—u)du,
2t n J_/34 g*(u) 27 J)_2d g*(u)

where (see Equation (13)) hy = Z;l 5 g )goj, b — (B(d) .. E(d) D= (40 teky = Lu ety § =
(i) + 40]

(H(z=n), - §(@n-1))" with gi(z;) =
It comes that

&i, here and only for the study of n E [suptesd It]=1 |V @ ) ] .

. [ p |u,<f><t>|2] < [P ACVEDE [a — Elha] ]

tEdeHtHzl

The bounds obtained for hq extend to hg. Then, it yields from (48) (with o2 replaced by E[¢?]) and under
(AO) that E [Supteé‘d,HtHzl |1/7(12) (t)]Q] < A(V2d)AE[£2]L. By the Cauchy-Schwarz inequality, we have

E[£7] < E[eT1), 5k, ] < A/E[ef]VP(le1] > kn).

We introduce the following technical Lemma to obtain a bound of E[¢?].
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ka
Lemma A.1. Under (A5), it yields P(|e1| = ky) < 2e” 22. Moreover, €1 admits a finite moment of any

order, E[|e1|P] < (2b2)g]pf(§), where T'(+) denotes the gamma function defined by:

+oo
I'(t) = J o7 le™%dx, VteR.
0

Using Lemma A.1 with p = 4 and choosing

(65) kn = 2v/2b7/1og(n),

we get

(66) nE [ sup |y,g2>(t)|2] < nA(W2A) B[P > kn)% < %

tGdeHtuzl

since A(vV2d)AdT < n by definition of MP.

Upper bound for >, , o) E [(suptesd =1 ‘Vr(zl)(t)|2 - %V(d)) ] We bound this term applying the
n ’ +

Talagrand inequality given in Appendix C.2. Let us first compute the three constants H?, M; and v.

Computing of H?. Similarly to the study of E [SupteSd,HtH:I |1/7(L2) (t)|2], we have under (A0) and from
(48),

dTl dr
< A2A(W2d) = :

= = H?2
n n

E[ sup |u,<3><t>|2] < AE[C?]A(V2d)

tESd7Ht“=1

Computing of v. For t € Sy, it holds by the Cauchy-Schwarz inequality, E[¢] < 02 and as |t]|> = 1,

n—1

n—1
= 3 Vartanas(6) o 3 E[aras(Gara@)

2

_ d—1[g—1
) T S o Zj:O [\I]d (I)fi]j,i(p;‘]l
RGP I L e Hevad)
2
d—1 g1
<ot 7121 t*H?Jm ‘ijo [va" 4l @;(U)‘ du
~Ye 2 2
2nm? A —vad g% (u)|
T2 n—1 /24 |d—1 2
2 —1Ft *
=0-—A(V2d) J U0 i (u)| du.
Enﬂ' l_Z:n —\/ﬁ]z_;)[ d d]]z J
The Fourier transform of (y;), see (6) gives,
1 n—1 T2 n—1 d—1
37 20 Vr(aeai(Q) < 202 ANV) 3 [ 13 [0 5P
i=—n i=—n j=0
2 n—1 d—1 5
=202 —AN2d) Y Y[ tey]
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where we use the orthonormality (¢;). Recall that for A = (a; j)1<i<m,1<j<n & matrix with real coefficients,
the Frobenius norm of A is defined by

A =3 Y a2, = [AA].

i=1j=1
Then, under (AO0), it yields
% Z_] 2 1<1>t = Ttr [@q0; ' W1 0h] =tr [U;!] < Ad,
which implies o
sup ”Z:l Var(ayq.:(¢i)) < 202TAIA(V2d) =: v.

t€3d7\|tH 1 Qn i=—n

Computing of M;. Using successively (6), the Cauchy-Schwarz inequality and the orthonormality
(1)

of ¢;, we have on the process vy,

d—1 *
i)
sup  |laraillo = sup  sup|agqi(z)] = sup sup|zly<p, <t* A RS >
teSult]=1 N esalil=1 zeR teSyt|=1zeR | ;)[ L gt lsvad
1
Ve | YT [w el e
< sup | 2k th*||\/ f o [ d];” L du
teSt|=1 Vad lg* (w)]
1
— 2
<4knT< Z v leh) ) :
To bound the termz [ 1<I>t] we use:
d—1 —1
i 1<I>t Z WY [0y Y], = [Raly Y] = e,
—~ =

where (&) _n<i<n_1 is the vector of the canonical basis of R?". The matrix \Ilgl is a definite symmetric,
then diagonalizable and we can write

;' =PDP', P'P=PP'=1;, D=Diag(u,...,/d),

<i<d are the eigenvalues of matrix \Il(zl. We can define its square root and we have for

d—1
o R G N
[\I’dlq)zti]j,z’ S T TR i IRl Z $iw; < Amaa (¥ )"0,

The definition of operator norm implies,

d—1 11

2 1<I>t < Amaz (1) “SIH1p (:md\pd 2, 2@3:3) = Amaz (U7 ) Amax (@a ¥, 1 0).
— Z|=1
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Furthermore, the matrix ®,¥;'®! = 2®y(PL®,) 1Y is an orthogonal projection matrix, then, it comes

— _n
(67) Z vleh)” \Amax(q/dl)f.

Under (AO0), we obtain

< 4k, T2 (A(V2d)An)2 = M.

sup v ,dillo
tesd:Ht”Zl

For 6 > 0, the Talagrand inequality gives,

Wl 2 4
E|{ sup ’yn (t)‘ —2(1+ 20)H < ——(Tu+Ua),
teSa, |t =1 + !

where
202 A\TdA(V/2d) K16 196AE2TA(v2d) £\ o2
T — € —_— d = n _K/ 6 5 £ d
I - exp < 5 ) and Uy K,C2(3)n exp 1C(OVS o v |,
Ky =1/3,C(6) = (v1+d—1) A 1. It follows that
> E [( sup [ D@7 —201 + 25)H2> ] < > [Tu+Ud.
dem teSq,[t]=1 " dem(D)
As TdA(V d) < n, then, it yields Zde/vtﬁf) Ty < nexp(—K10/2). The choice § = Kil log(n) ensures that
ZdeMu) Ty < =. With this choice of § and k,, given by (65), we derive C'(§) = 1 and
1 1
3 U, cog( "oy AW2d)exp (~Cd) < C olosm),
deMP deMV "
since
Z <A(\/2d) exp (—Cﬂ)) < Z d7 exp <—C’\/8) <
demP demY
Finally, it holds for x; > 12 that
W2 k1 log(n)
Z E sup |y (H)]F — =V (d) <C
o L \tesaltl=1 12 . n
Plugging this and (66) in (64) concludes the proof. O

Proof of Lemma A.1. Let us prove the first bound. Using the Markov inequality, we have for any t,s > 0

Elef1] w2
est sez

—st
)

P(e; > s) < P(ef! > %) <

where the last bound is obtained using the fact that 1 is b-sub-Gaussian. The above inequality holds for

any t > 0, then, for the ¢ which minimizes the bound. Set r(t) = % — st, we have r'(t) = 0 in t = s/b?

and r”(t) > 0 for any t > 0. It follows that ¢t = s/b? is the minimizer of 7(¢) and inf;>qr(t) = —s2/(2b%)
2 2

and then, P(eq > s) < ¢~ 22, Likewise, it yields Pe; < —s) < e~ 2. Consequently, we get P(ley] > s) <
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52
P(e; > s) + P(e; < —s) < 2e” 2. This prove the first part by setting s = k,,. For the second part, we
have by the definition of the expectation for non negative variable

+oo o2
Efje1 ] = jo P(esP > 2)de < 2 L e

p 0 p
= (2v%)2p J e Yy ldy.
0

Using the definition of the gamma function, we get E[|e1|P] = (2b2)§pF(g). O
Proof of Lemma 6.2. Define the linear process vn(s) = s, for — E[fw]). For all function s, it holds
| fmr —E[fm]|? = SUDges, 5] =1 |Vn (8 )|2. By definition of f,, given in (41), we have

N N m—1
Vn(s) = JR s(u) (for — Elfrr]) (u)du = fR JZE) (@.m — E[@m]) s(u)p; (u)du

( [ Bt Bl o, <v>dv> 1 (0) ()

7=0
1T mol P [V @], ek ) |
“grn 2 JR 2 ( jR e o <v>dv> 5 (1) s(u)du
B 17T n—1 m—1 | k 0 [\If I(I)t ]klgok( )
a2 o (L o))
1 n—1
= % ZZZ_n Bs,m,z(ez)

where

el ] ok (v
Bsmi(x) = xi Z ¥j (J [ g*(v)]hZ ol )‘P;(U)dv>>.

As the noise is not necessarily bounded, we cannot used the Talagrand inequality directly to the process
Vp, then, we split the noise as follows:

€i=G+&, G=c¢cl <k, —Eleilie; <], & = €ilje sk, — Eleilie; >k, ],

where k,, is chosen in the sequel. Thus, it comes

n—1
WD (s) = v0(s) + D (), () = 5= D) Bama(Go), LS funiten

i=—n z——n

A [ su I/(I)SQ—i/l m/
SB[ (1 - BFE - W) | < 2 3 [(sesm,&:l'"”' s >>]

mEMg)

(68) +2nE [ sup \V£L2)(s)|2] .
SESm,|s|=1

and
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We study separately the terms on the right-hand side of previous bound. Let us start the last term.

Bounding of nE [Supsesm,HsH:I \1/7(12)(3)\2] . We first remark that:

m—1 7 7
L@ () = hn (0) = Bl (0] v an ) w0 () s () du
D) - %fjgo(fR - soj<>d)soj<><>d,
SV D b

*

93 “(d Y(d — V]
oy 8D = (b7, B = (0a) 0l = Tw ey,
x;) = h(x;) + &;, only here. The Cauchy Schwarz inequality implies

where where (see Equation (13)) hg
= ((x—n),- - §(xn-1))" with g(

2

v v

i, —E[h%] 1" h i, —E[R%]
) ()] < ,so;‘-‘m = Z —m e o0
Splitting {5 (.) S‘ 1< \/W ) + S| |/ (+), using Bessel, the Cauchy Schwarz inequalities and Parse-
val equality, we derive \l/n )(3)| < 2|hm — E[hm]|?2(m). Recall that the bounds obtained for hy, re-

main valid for h,,. In particular, it holds from (48) with E[£2] plays the role of 02 and under (AO),
E |l fE[hm]HQ] < AmE[E3]L, which implies E[sup.cs,, 1oj-1 [ ()2] < 25(m)amE[E3]L < E5

since 22(m))\m% < % by definition of /Vl%z). Next, by the Cauchy Schwarz inequality and as €1 is
sub-Gaussian, we derive from Lemma A.1

ka
BIEF) = BIe o, ] <V EIELVE(E] > ha) < 4v2be sk,

where b > 0 is a constant given in (A5). Choosing

(69) ky = 2b0v2log(n),

we deduce

(70) nE sup [P (s)|? 9
SESm,|s|=1 n

Bounding of ZmeM@) E [( SUDP4esS,,, 5| =1 |1/7(L1)(5)|2 - %W(m)) ] We apply the Talagrand inequality
n ’ +

given in Appendix C.2. We must compute three constant H2, M; and v.

Computing H?. Analogously to the study of nE _Supsesm,HsH=1 |I/7(L2)(S)‘2], we derive under (A0) and as
E[(}] < o2 ‘

SESm,|s|=1

IE[ sup |y V()2 | < 2%(m)dmo?= := H?.

Computing of v. For all s € S,,,, we have by the Cauchy-Schwarz inequality, E[(}] < o2, as p; =
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VER(i)ig; (sce (6)) and [s]2 =
m— m 1 hij 1q>t
Z < Z (J [ g*(v)]kﬁ%( )wj(v)dv>>

o Z Var /Bsmz Cz 2
m 1 2
[\IJ ‘o] ]klgpk( ) ®
(f 7 (0) é W“)

z——n
2

2

1 n—1
<% Z 70‘2HS

1=—n

U lpt
JR s [ ]kz‘Pk( )(pj(v)dv

g*(v)

By splitting { into S| |<W( )+ S‘ |>\/W( ), the Bessel and Cauchy-Schwarz inequalities, p¥ = v/27 (i) ¢,
it yields

= parsal & Gk S IS 4 ) i = g
(71) jZ;) JR 70 @j(v)dv| < 4nE(m kzzg) L
which implies
LS (i) <4 TS el
— ar (G —J
n = S,M,1 1 )
By definition of Frobenius norm, it holds under (A0)
n—1 m—1 T
— Z vt el ] = —tr [0V, 0] | = e [W] < Am.
i=—n k=0
Therefore, we get
n—1 )
sesil,alH o i_ZnVar (Bs,m,i(Gi)) < AXoZTX(m)m := v.

Computing M;. Using the Cauchy-Schwarz inequality, (6) and from (71), it holds

1
_ -1 1t 2\ 2
T mt o [P @], ok (v)
up s< s ol [ Y ()
seSms] =1 seSmsl=1 o\ g*(v)
1
m—1 2
< 4 ( Z mlq)fn k‘z)
k=0

Under (AO) and from (67), we derive
4 1
sup |B mz| S )\TE( 2 .= M.
SESm?HSH 1 ‘ ’ ‘w \/7? ( ) )

Applying the Talagrand inequality, we have for all § > 0,

> E[( sup |u,g1>(s)|2—2(1+25)H2> ]glf Yo Tm)+ ). Vim)p,
(2) i

Sm, =1 1
meM SESm,||s]| memP meM?
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where

T(m) = 4A03Tm2(m)e_ LI (m) = 784kn/\TE(m)€ o) fﬁm
- n ’ - m2K,C(6)2%n
C(0) =(W1+d6-1)al, K; =1/3 and K| > 0 is a universal constant. By definition of MP and choosing
0 = 4log(n)/K, it yields K% 2imer@ T'(m) < C/n. From this choice of § and ky, given in (65), we deduce
from (A1)

4 Z U(m) log Z R el AN Clog( )'
me/\/lg) mer
Consequently, we get for &} > 12

/
1
> E [( sup )~ L <m>> < el
@ 5€Sm, s =1 12 N n
Plugging this and (70) in (68) ends the proof. O

APPENDIX B. STUDY OF tr(¥,;) AND DISCUSSION ON ASSUMPTION (AO)

In this section, T" depends on d. For n large, we have tr (\Ilgl) = d. Indeed, we can prove the following
Lemma:

Lemma B.1. Assume that T > +/2d — 1, we have

T2
(72) IPg — 14]| < 01672£T2d + ¢0d12 —

n
where Cy depends on &, CL, given in (7) and || - || is any matriz norm.

Then, for the choice d = [n¥] such that w = 12/17 —n, with 0 < n < 12/17 and T = +/2d — 1, we have
1Wq— I4)|? = 0. It follows that ||¥4— 14| < 1/2 for n large enough. Using Theorem C.1 (see Stewart
n—-+aoo

and Sun (1990)), we get
1% — Zall |l 7a]l*
1—[[Wq — 14|

w3t — Iall <

This implies

-1 2
vt - 1> — 0.

Thus, for n large enough (A0) holds and is not a strong condition.

In Table 4 and 5, we report the matrix norm of ¥4 — I; and \Ifgl — I for
(73) Al = 1Al = gj&gﬂi; [Aijl, A= (Aiji<ij<n-

Comment on Table 4 and 5. Globally, we see that increasing n makes the norm smaller but on the
other hand the increase of d increases the norm. This is in accordance with the theory. Indeed in (72), we
observe that for d large enough, it is the second term that determines the precision of these two norms.
The increase with d of the norms is thus excepted. The results of Table 5 are better than those of Table
4. This is due to the choice T' = 10 larger than T' = v/2d — 1 for the choices of n et d given in Table 4
(for instance for n = 1000, d = [n'/?] = 31, we have T' ~ 7.81). Lastly, the norm ||¥; — I4|| is smaller
than |9 — I].
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n

p 100 500 1000
/2 | 0091 (0.101) 0.082 (0.087) 0.079 (0.084)
" 10 (4.359) 22 (6.557) 31 (7.810)
/s | 0103 (0.114)  0.094 (0.101) 0.090 (0.097)
n 4 (2.646) 7 (3.606) 9 (4.123)
/ey | 0109 (0.121) 0.102 (0.111) 0.098 (0.107)
n 3 (2.236) 4 (2.646) 5 (3)

TABLE 4. First line: Matrix norm of A—1I; with A = V¥, without parentheses and A = \Ilgl
in parentheses for T' = 4/2d — 1. Second line: values of d with 7" in parentheses.

d 100 500 1000

[n1/2] | 9.19e-16 ( 9.19e-16) 2.03e-15 (2.14e-15) 9.57e-11 (9.57e-11)
[n'/3] | 5.02e-16 (5.15¢-16) 6.07c-16 (6.07¢-16) 4.84¢-16 (4.84¢c-16)
[n1/4] | 7.29¢-16 (8.40e-16)  5.00e-16 (5.00e-16) 3.45¢-16 (3.45¢-16)

TABLE 5. Matrix norm of A — I; with A = ¥, without parentheses and A = \I’Cf in
parentheses for T' = 10.

Proof of Lemma B.1. We prove the result only for the particular norm defined in (73) but the result is
valid for any matrix norm since we are in finite dimension. The general term of (¥4 — I) is

T T . :
(Goiea-1) - (n > wT/matirn - [ <u>@k<u>du>
Jk i=—n 0<j,k<d—1

For 0 < j,k < d—1, we write
T n—1 T n—1 T

= X T el = [ e = 3 T melT/n = | g
—f pj(u)pr(u)du.
|u|=T
Using Lemma B.2, we get
TS T T2 5 T2
= 2 T/ - [ e < e e < ol

From (7) and as T' > +/2d — 1, we have

[ ei@en)d < j

|z|=T |z|=T

loj (@) pp(2)|dx < C2e€T Jeéxzdx < Cre T,
where (' is a positive constant since Se_fodx < +o00. It comes

T2
(74) [@q — 1)1 < d [Cle_5T2 + ¢Odén] .
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B.1. Estimating error in Riemann sums. We give in this section the approximate errors of Riemann
sum.

Lemma B.2. Letn>1,T >0, (z; =iT/n)—n<i<n—1- Then,
(i) For 1 be a function of class C* on [-T,T], we have
T n—1 T

7 2 vl - | vlads

TZ
< [ oo —
n

(i3) For 1 be a function of class C* on [T, T],

Z wxz +1/}xz+1 f w

i=—n

T

Proof of Lemma B.2. These proof are very classic when we approximate an integral by Rieman’s sum.

Proof of part (i). By Chasles’s relation, it yields

J »(u du—rilfmz+l

=N
On the other hand, we write

Ti+1

*waz Z wxz

t=—n t=—n

Then, we have by the mean value theorem that

Zwl fw

i=—n

n—1 CCz+1
Z J U(x;)|du

i=—n

|wm2f (= ) =

1=—Nn

Proof of part (ii). Define the Lagrangian interpolation polynomial of ¢ by
Tit1) — (@i
Ui(e) = (e + LD V)

Ti+1 — X4
This linear function coincide with 1 for z € {x;, z;4+1}. We first remark that:

1 1
© V@) (i) T x’“
R o

i=—n i=—n

- J}z)

Then, it follows that

T nl €Ty Ty T
. Z Y( )+21/1( +1) JT
(

Ti+1

Zf [5(z) — (@) dz.

t=—n

Now, we look for a bound of SZ“ [thi(z) —
fixed x on [x;, ;1]

x)|dz for all x € R. We introduce the following function for

(t — ) (t — zit1)
( — ) (x — zit1)

o(t) = ¥(t) — i(t) — (¢(x) = ¥i(x))
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This function is null in t = z,z; and x;11. By the Rolle theorem, there exists a constant ¢, such that
¢"(cz) = V" (cz) — 2% — 0 which gives 1(z) — i(z) = (z — 2;) (@ — Ti41) Y gc“”). From this, we
deduce that

L:+1 |hi(z) — (z)|dr < |‘/’2||00 L:+1($ — ) (@ig1 — 2)dx < \7?200 (201 — 22)°,

and ’% yon-l % - STT Qp(x)d:):‘ < WHOO%. This concludes the proof. O

APPENDIX C. SOME INEQUALITIES
The proof of the following Theorem can be found in Stewart and Sun (1990).

Theorem C.1. Let A and E be two square matrices. If A is nonsingular and for some norm |[A™'E| < 1,
then we have

|APIE]
1— A=)
Theorem C.2 (Talagrand’s inequality). Let (X;)_n<i<n—1 be independent real random variables, F a
class at most countable of measurable functions.

[(A+E)™ = A7 <

1 n—1

vn($) (s(X;) — E[s(X))]), Vse F.

T on

i=—n
We assume there exist third strictly positive constants My, H, v such that:
n—1

1
sup |8 < My, E[sup |vn(s)|] < H, and sup — Z Var(s(X;)) < v.

seF seF seF N

Then, for all § > 0,

i=—n

4 v o_ nH?2 49M2 —K'C((S)\/gﬁ
E 2(s)] —2(1 + 20)H? < — [ ZeEion= L P oK i
| (suplv2eo)] - 201+ 25 )] = (L L :

where C(0) = (W/14+0—1) A1, K1 =1/3 and K} a universal constant.

The Talagrand inequalities has been proven in Talagrand (1996), reworded by Ledoux (1997). This version
is given in Klein and Rio (2005).
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