On finite embedding problems with abelian kernels - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

On finite embedding problems with abelian kernels

Résumé

Given a Hilbertian field k and a finite set S of Krull valuations of k, we show that every finite split embedding problem G → Gal(L/k) over k with abelian kernel has a solution Gal(F/k) → G such that every v ∈ S is totally split in F/L. Two applications are then given. Firstly, we solve a non-constant variant of the Beckmann-Black problem for solvable groups: given a field k and a non-trivial finite solvable group G, every Galois field extension F/k of group G is shown to occur as the specialization at some t 0 ∈ k of some Galois field extension E/k(T) of group G with E ⊆ k(T). Secondly, we contribute to inverse Galois theory over division rings, by showing that, for every division ring H and every automorphism σ of H of finite order, all finite semiabelian groups occur as Galois groups over the skew field of fractions H(T, σ) of the twisted polynomial ring H[T, σ].
Fichier principal
Vignette du fichier
Version_arxiv.pdf (505.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03517543 , version 1 (07-01-2022)

Identifiants

  • HAL Id : hal-03517543 , version 1

Citer

François Legrand. On finite embedding problems with abelian kernels. 2022. ⟨hal-03517543⟩
24 Consultations
60 Téléchargements

Partager

More