Analysis and Comparison of Electromagnetic Microrobotic Platforms for Biomedical Applications
Abstract
Magnetic microrobotics is a promising technology for improving minimally invasive surgery (MIS) with the ambition of enhancing patient care and comfort. The potential benefits include limited incisions, less hemorrhaging and postoperative pain, and faster recovery time. To achieve this, a key issue relies on the design of a proper electromagnetic actuation (EMA) setup which is based on the use of magnetic sources. The magnetic field and its gradient generated by the EMA platform is then used to induce magnetic torque and force for microrobot manipulations inside the human body. Like any control systems, the EMA system must be adapted to the given controlled microrobot and customized for the application. With great research efforts on magnetic manipulating of microrobots, the EMA systems are approaching commercial applications, and their configurations are becoming more suitable to be employed in real medical surgeries. However, most of the proposed designs have not followed any specific rule allowing to take into account the biomedical applications constraints. Through reviewing the different proposed EMA systems in the literature, their various specifications and configurations are comprehensively discussed and analyzed. This study focus on EMA platforms that use electromagnets. From this review and based on the biomedical application specifications, the appropriate EMA system can be determined efficiently.
Domains
AutomaticOrigin | Files produced by the author(s) |
---|