Energy stable and linearly well-balanced numerical schemes for the non-linear Shallow Water equations with Coriolis force - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Energy stable and linearly well-balanced numerical schemes for the non-linear Shallow Water equations with Coriolis force

Résumé

This work is dedicated to the analysis of a class of energy stable and linearly well-balanced numerical schemes dedicated to the non-linear Shallow Water equations with Coriolis force. The proposed algorithms rely on colocated finite volume approximations formulated on cartesian geometries. They involve appropriate diffusion terms in the numerical fluxes, expressed as discrete versions of the linear geostrophic equilibrium. We show that the resulting methods ensure semi-discrete energy estimates and numerical results show a very clear improvement around the nonlinear geostrophic equilibrium when compared to those of classic Godunov-type schemes.
Fichier principal
Vignette du fichier
main.pdf (1.55 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03509990 , version 1 (04-01-2022)
hal-03509990 , version 2 (29-07-2023)

Identifiants

  • HAL Id : hal-03509990 , version 1

Citer

Emmanuel Audusse, Virgile Dubos, Noémie Gaveau, Yohan Penel. Energy stable and linearly well-balanced numerical schemes for the non-linear Shallow Water equations with Coriolis force. 2022. ⟨hal-03509990v1⟩

Collections

GDR-MATHGEOPHY
442 Consultations
196 Téléchargements

Partager

More