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Energy stable and linearly well-balanced numerical schemes for the

non-linear Shallow Water equations with Coriolis force

Emmanuel Audusse ∗ Virgile Dubos † Noémie Gaveau ‡ Yohan Penel §

January 4, 2022

Abstract

This work is dedicated to the analysis of a class of energy stable and linearly well-balanced numerical schemes
dedicated to the non-linear Shallow Water equations with Coriolis force. The proposed algorithms rely on
colocated finite volume approximations formulated on cartesian geometries. They involve appropriate diffusion
terms in the numerical fluxes, expressed as discrete versions of the linear geostrophic equilibrium. We show that
the resulting methods ensure semi-discrete energy estimates and numerical results show a very clear improvement
around the nonlinear geostrophic equilibrium when compared to those of classic Godunov-type schemes.

1 Introduction

The question of the accuracy of numerical schemes for hyperbolic systems with source terms around stationary
solutions and/or in asymptotic regimes has been a subject of great interest over the last two decades, see the
seminal works [4,14,15] in late nineties and the reference books [6,13] ten years later. In the context of geophysical
flows and for colocated finite-volume methods applied to shallow water equations, a lot of works have been devoted
to the accuracy around the so-called lake-at-rest equilibrium and more recently extended to nonzero velocity one
dimensional stationary states, see [5] and references therein. But for large scales atmospheric or oceanographic
flows, the relevant stationary state is the geostrophic equilibrium, see [27] for a general introduction to geophysical
rotating fluid dynamics. The accuracy of colocated finite volume numerical schemes around such an equilibrium
was less investigated, To our knowledge, the first work in this field is due to Bouchut, Le Sommer and Zeitlin [7], see
also [8] and [9], but was fully accurate only for one-dimensional flows, as exhibited in [1]. Recently two independent
works [19,26] proposed IMplicit-EXplicit type schemes for fully nonlinear equations which are proved to be accurate
near the geostrophic equilibrium but, due to their implicit part, need the solution of a global Laplacian at each time
step, see also [25] for a study about the time discretization of the Coriolis term. Note that there exists also a lot
of works devoted to the approximation of the Coriolis term in staggered schemes, see for example [22] for a linear
analysis and [21] for the fully nonlinear case. Let us also mention the work [24] where the authors compare the
dispersion relations of some mixed Finite Volume / Finite Difference and Finite Volume / Finite Element methods
in a large scale oceanographic context including the Coriolis force.

In this work, we aim at designing explicit colocated finite volume schemes that are proved to be accurate around
the geostrophic equilibrium and stable in the nonlinear framework. Our work is based on the ideas developed
in [1] where accurate and stable Godunov type schemes were designed for the linear two-dimensional rotating wave
equation but we will see in the sequel that further developments are needed to take charge of the non linear case in
a conservative way. All the numerical finite volume scheme we consider in this paper belong to the AUSM family
where the flux is divided in an advective part and a pressure part, see the seminal works [18] and [17] and the
recent review [11]. More precisely, in Section 2, we first introduce the system of equations and we characterize the
geostrophic equilibrium. In Section 3, we define some discrete operators and we prove some of their properties.
Equipped with these definitions, in Section 4, we can define some finite volume schemes and study the two properties
we are interested in : the decrease of the semi-discrete energy and the preservation of the geostrophic equilibrium in
the linearized version. Note that all along the paper the term semi-discrete will refer to quantities that are discrete
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in space but continuous in time. Finally, in Section 5, we illustrate the behaviour of the schemes for some standard
test cases and we exhibit a great improvement when compared to a classical finite volume scheme.

2 Shallow water equations and geostrophic equilibrium

Let Ω be an open bounded domain of R2 and let T > 0. The nonlinear Shallow Water equations with Coriolis force
formulated on Ω× (0, T ) read: {

∂th+ div(hu) = 0 ,

∂t(hu) + div(hu⊗ u) + h(∇φ+ ωu⊥) = 0 ,
(1)

where h is the water height and u = (ux, uy) the horizontal velocity, u⊥ = (−uy, ux) denoting its orthogonal vector
in the (x, y) plane. The Coriolis force is accounted for in the momentum equations through the angular speed ω.
Following [10, 20], the pressure forces appear under a non conservative form through the scalar potential φ = gh,
where g is the standard gravity constant. For the sake of simplicity, a flat topography is considered in the present
work, but the proposed approaches naturally extended to varying bottoms by taking φ = g(h+ b) where b denotes
the topography. It is also easy to extend the method to a varying Coriolis parameter in the β-plane approximation
since all the modifications we introduce in this paper are purely local.

It is well-known that the total energy associated to the system (1) decomposes as E = P +K where

P =
1

2
gh2 and K =

1

2
h‖u‖2

stand respectively for potential and kinetic energies. We recall that the energy E plays the role of a mathematical
entropy associated to the hyperbolic system (1) and regular solutions satisfy the following conservation law

∂tE + div

[(
φ+

1

2
‖u‖2

)
hu

]
= 0 . (2)

whereas for discontinuous solution, the total energy is only non-increasing in time. When developing numerical
methods, main objectives are accuracy and stability. To get stability, a crucial objective is to build numerical
approximations satisfying a discrete counterpart of (2) that ensures that the discrete energy is nonincreasing. To
achieve this, a general strategy is to consider a sufficient amount of numerical diffusion in the scheme. But in some
physical contexts such as low Froude number regimes or near specific stationary states, these diffusive terms may
considerably degrade the accuracy of the approximations and specific schemes are needed. Here we are interested
in flows around the geostrophic balance :

∇φ+ ωu⊥ = 0 , divu = 0 (3)

To address such an issue, based on the study for the linear case [1], we propose a numerical approach involving
discrete versions of these equilibria in the numerical fluxes. As a preliminary step, the strategy can be understood at
the continuous level by investigating how the model (1) behaves with respect to some generic perturbations (q, π):{

∂th+ div(hu− q) = 0 ,

∂t(hu) + div
(
u⊗ (hu− q)

)
+ (h∇φ−∇π) + ω (hu− q)⊥ = 0 ,

(4)

where q and π can be respectively seen as (small) perturbations with respect to the flow rate and to the hydrostatic
pressure. The solutions to the modified equations (4) satisfy the following energy balance:

∂tE + div

[(
φ+

1

2
‖u‖2

)
(hu− q)− πu

]
= −q ·

(
∇φ+ ωu⊥

)
− π divu , (5)

which motivates a choice for q and π involving resp. the quantities ∇φ + ωu⊥ and divu. Let us remark that
these quantities govern the geostrophic equilibrium (3) associated to System (1) linearized around the steady state
(h̃, ũ) = (h0, 0) for a constant h0: {

∂th = −h0 divu ,

∂tu = −(∇φ+ ωu⊥) .
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From a numerical point of view, diffusion terms are thus expected to have regularizing effects in the sense that they
allow to recover a discrete counterpart of (5). Moreover, such terms are intended to vanish close to the geostrophic
equilibrium, which must improve the quality of the approximations in this regime. The rest of the article is then
devoted to the presentation of different ways to implement this idea in a discrete setting.

3 Discrete operators

3.1 Definition of the mesh

Let us first introduce some generic notations related to the discretization of the equations. We consider a uniform
tessellation T of the computational domain Ω ⊂ R2 made of non-overlapping rectangular cells of sizes ∆x, ∆y. The
set of all edges of the mesh is denoted by E and the set of vertices by V.

• A generic cell of T is denoted by K and its boundary by ∂K. A given quantity Φ located on K is numbered
Φi,j .

• A generic edge of E is denoted by e and its length by me. A given quantity Φ located on e is numbered
Φi+1/2,j (respectively Φi,j+1/2) for y-axis (respectively x-axis) edge.

• Given a cell K and an edge e ∈ ∂K, Ke is the neighbouring cell to e (other than K) and ne,K the outward
normal pointing to Ke.

• A generic vertex of V is denoted by v. A given quantity Φ located on v is numbered Φi+1/2,j+1/2.

Notations are pictured on Figs. 1.

ne,K

K Ke

e = ∂K ∩ ∂Ke
me = ∆y

∆x

∆y

(a) Mesh notations (b) Variables numbering

Figure 1: Geometric notations

3.2 Discrete operators

Equipped with these geometrical settings, we can now introduce discrete operators that will be needed to construct
numerical schemes. Since we only consider colocated finite volume schemes, all the unknowns are defined on the
cells K ∈ T. But we will see in the next sections that some other quantities (including the numerical diffusion
terms) need to be computed on the edges e ∈ E or at the vertices v ∈ V. Then we need to define discrete operators
from cells to edges (and vice-versa) and from cells to vertices (and vice-versa) – see Figure 1. In the following
definitions, the notations Xj

i (φj) means that the operator X is applied to a quantity φ defined at the location j and
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computes a quantity that is defined at the location i. For example, the first operator below ∇K
e ϕK is a discrete

gradient operator that is defined for quantities that are defined on a cell K and that allows to construct a consistent
gradient on an edge e. Discrete gradient and divergence are denoted with classical notations. The notation f always
denotes an algebraic reconstruction operator. Let us begin with the operators from cells to edges (and vice-versa).

∇K
e ϕK =

me

∆x∆y
(ϕKe − ϕK) ne,K

fKe (ϕK) =
1

2
(ϕKe +ϕK) · ne,K ne,K

dive
K ϕe =

1

∆x∆y

∑
e⊂∂K

meϕe · ne,K

feK(ϕe) =
1

2

∑
e⊂∂K

ϕe · ne,K ne,K

Then we define operators from cells to vertices, where we use the notation ϕ = (ϕ,ψ)

[∇K
v ϕK ]i+1/2,j+1/2 =

1

2


ϕi+1,j+1 − ϕi,j+1

∆x
+
ϕi+1,j − ϕi,j

∆x
ϕi+1,j+1 − ϕi+1,j

∆y
+
ϕi,j+1 − ϕi,j

∆y


[divK

v ϕK ]i+1/2,j+1/2 =
1

2

[
ϕi+1,j+1 − ϕi,j+1

∆x
+
ϕi+1,j − ϕi,j

∆x

]
+

1

2

[
ψi+1,j+1 − ψi+1,j

∆y
+
ψi,j+1 − ψi,j

∆y

]
[fKv (ϕK)]i+1/2,j+1/2 =

ϕi+1,j+1 +ϕi,j+1 +ϕi+1,j +ϕi,j

4

and from vertices to cells

[∇v
K ϕv]i,j =

1

2


ϕi+1/2,j+1/2 − ϕi−1/2,j+1/2

∆x
+
ϕi+1/2,j−1/2 − ϕi−1/2,j−1/2

∆x
ϕi+1/2,j+1/2 − ϕi+1/2,j−1/2

∆y
+
ϕi−1/2,j+1/2 − ϕi−1/2,j−1/2

∆y


[divv

K ϕv]i,j =
1

2

[
ϕi+1/2,j+1/2 − ϕi−1/2,j+1/2

∆x
+
ϕi+1/2,j−1/2 − ϕi−1/2,j−1/2

∆x

]
+

1

2

[
ψi+1/2,j+1/2 − ψi+1/2,j−1/2

∆y
+
ψi−1/2,j+1/2 − ψi−1/2,j−1/2

∆y

]
[fvK(ϕv)]i,j =

ϕi+1/2,j+1/2 +ϕi−1/2,j+1/2 +ϕi+1/2,j−1/2 +ϕi−1/2,j−1/2

4

We will also need a divergence operator from edges to vertices:

[dive
v Φe]i+1/2,j+1/2 =

1

∆x

(
Φi+1,j+1/2 −Φi,j+1/2

)
· ex +

1

∆y

(
Φi+1/2,j+1 −Φi+1/2,j

)
· ey,

a reconstruction operator from from edges to vertices:

fev (ϕe) =
1

2

∑
e∈E(v)

ϕe

with E(v) = {e ∈ E | v ∈ e} the set of adjacent edges to vertex v and a reconstruction operator from vertices to
edges:

fve (ϕv) =
1

2

∑
v∈∂e

ϕv · ne,K ne,K .

Finally we need to define upwind divergence operators that will be used to discretize the transport part of the
equations in order to ensure the stability of the numerical schemes. In the following definitions, the quantity

ϕ± =
1

2
(ϕ± |ϕ|)

will refer to the positive and negative parts of any scalar function ϕ. From edges to cells, the operator reads

dive,up
K (ψK ⊗ϕe) =

1

∆x∆y

∑
e⊂∂K

me

(
ψK(ϕe · ne,K)+ +ψKe(ϕe · ne,K)−

)
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3.3 Mimetic properties

These discrete operators satisfy some important properties that will be used to prove some results for the numerical
schemes we propose in the next section.

Lemma 3.1. We first mention some local properties about the permutation of the derivative, reconstruction and
orthogonal operators. Computations are obvious.

i) fKv (u⊥K) = (fKv uK)⊥

ii) −dive
v((fKe (u⊥K))⊥) = divK

v uK

iii) divv
K(fKv uK) = fvK(divK

v uK)

iv) divv
K(fKv (hKuK)) = dive

K(fve (fKv (hKuK)))

We now define the three scalar products

〈ΦK ,ΨK〉 =
∑
K∈T

ΦK ·ΨK , 〈Φv,Ψv〉 =
∑
v∈V

Φv ·Ψv

and 〈ϕe,Ψe〉 =
∑
i,j

[
(ϕi+1/2,j · ex)(Ψi+1/2,j · ex) + (ϕi,j+1/2 · ey)(Ψi,j+1/2 · ey)

]
.

Lemma 3.2. We have the following properties for the reconstruction and orthogonal operators

i) 〈uK , (f
e
K qe)

⊥〉 = −〈fKe (u⊥K), qe〉

ii) 〈fvK(fKv (u⊥K)),uK〉 = 0

Proof. Property i) is obtained after a rearrangement of sum under the condition qe = 0 on the edges on the boundary
of the physical domain to eliminate the boundary terms.
Property ii) is obtained after a rearrangement of sum under the periodic boundary conditions on hK and uK to
eliminate the boundary terms.

Lemma 3.3. We have the following mimetic properties for the discrete gradient and divergence operators, including
for some of them the reconstruction operators

i) 〈φK ,dive
K qe〉 = −〈∇K

e φK , qe〉

ii) 〈πv,divK
v uK〉 = −〈∇v

K πv,uK〉

iii) 〈feK(∇K
e φK), hKuK〉 = −〈φK ,dive

K(fKe (hKuK))〉

iv) 〈fvK(∇K
v φK),uK〉 = −〈φK , fvK(divK

v uK)〉

Proof. Property i) (respectively ii)) is obtained after a rearrangement of sum under the condition qe = 0 on the
edges (respectively πv = 0 on the vertices) on the boundary of the physical domain to eliminate the boundary
terms.
Property iii) and iv) are obtained after a rearrangement of sum under the periodic boundary conditions on hK and
uK to eliminate the boundary terms.

4 Well-balanced and stable finite volume schemes

When considering hyperbolic equations, classical finite volume schemes in colocated two-dimensional cartesian
framework are often referred as five points schemes. Indeed the update of the quantities of interest in a cell K of
the tesselation T needs the computation of the fluxes through the four edges of its boundary ∂K, see Figure 1.
For a first order scheme, the numerical flux through an edge e ∈ E is generally computed from the values of the
quantities in the two neighbouring cells. Hence, the update of the quantities in a cell K involves five cells of the
tesselation T. We refer to [16, 23] for more details about classical first order finite volume schemes for hyperbolic
problems.
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In the last section of the paper, devoted to the numerical tests, such a five point scheme, typically the HLLC
scheme, see [23], will be considered as a standard scheme to which we will compare the well-balanced schemes
we designed in the next sections. Because of the fundamentally two-dimensional character of the geostrophic
equilibrium, these well-balanced schemes have to involve a larger stencil. Note that to consider enlarged stencils
is also a common way to design high order schemes in a finite volume framework through the MUSCL strategy,
see [16,23], and is also commonly used in diffusion problems since the computation of the numerical flux needs the
reconstruction of a complete two-dimensional gradient, see [12].

In this section, we present different nine points schemes for the shallow water equations with Coriolis source
term, based on a discretization of the geostrophic equilibrium (3) on the edges.

4.1 Entropic well-balanced scheme

Considering the operators defined in section 3.2 we can see the discretization of the geostrophic equilibrium (3)
on the vertices as a reconstruction of its discretization on the edges. Thus, in this section we define a nine points
mixed scheme in which the geostrophic equilibrium is reconstructed sometimes on the vertices and sometimes on
the edges. The perturbation q, see (4), is defined at the edges e whereas the perturbation π is defined on the
vertices v. The scheme ensure both the preservation of the linearized stationary states and the decreasing of the
nonlinear semi-discrete energy and we thus will later refer to as the ”entropic well-balanced scheme”. Theoretically,
the scheme presents spurious solutions on the velocity, however the numerical results presented in the last section
of the paper exhibit a reasonably good behaviour for all the test cases we have performed.


d

dt
hK + dive

K(Fe) = 0,

d

dt
(hKuK) + dive,up

K (uK ⊗Fe) + hK fvK(∇K
v φK)−∇v

K πv = −ω
(
hK fvK(fKv uK)− feK qe

)⊥
,

(6)

where the interface fluxes are defined at the level of the edge e as:

Fe = fve (fKv (hKuK))− qe , (7)

with the numerical diffusion term on the flow rate

qe = γ
Λ

g
max{∆x,∆y}(ω fKe (u⊥K) +∇K

e φK), (8)

while the numerical diffusion term on the hydrostatic pressure is defined at the vertices

πv = νΛ max{∆x,∆y} fKv (hK) divK
v uK , (9)

where γ and ν are positive dimensionless constants, and Λ is a positive characteristic velocity. Typically, we take

Λ = max
K∈T

{
‖uK‖+

√
ghK

}
.

Semi-discrete energy : We first show the scheme (6) ensures a discrete counterpart of (5) through semi-discrete
mechanic energy estimates. We need the two following lemmas, describing the evolution of potential and kinetic
energies.

Lemma 4.1 (Potential energy). We set PK =
1

2
g (hK)

2
for K ∈ T. Then:

d

dt
PK + φK divv

K(fKv (hKuK))− φK dive
K qe = 0. (10)

Proof. Property iv) of lemma 3.1.

Lemma 4.2 (Kinetic energy). We set KK =
1

2
hK‖uK‖2 for K ∈ T. Then:

d

dt
KK +

1

2
dive,up

K

(
‖uK‖2Fe

)
+ hKuK · fvK

(
∇K

v φK
)

≤ −ω
(
hKuK · fvK(fKv (u⊥K))− uK · (feK qe)⊥

)
+ uK · ∇v

K πv). (11)
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Proof. Using the first equation of (6) we write:

d

dt

(
1

2
hK‖uK‖2

)
= uK ·

d

dt
(hKuK)− 1

2
‖uK‖2

d

dt
hK

= −hKuK · fvK(∇K
v φK)− uK · dive,up

K (uK ⊗Fe) + ωuK · (feK qe)⊥

+
1

2
‖uK‖2 dive

K Fe + uK · ∇v
K πv − ωhKuK fvK(fKv (u⊥K)).

After some basic computations, we get the relations

1

2
‖uK‖2 dive

K Fe − uK · dive,up
K (uK ⊗Fe)

= −1

2
dive,up

K

(
‖uK‖2Fe

)
+

1

2∆x∆y

∑
e⊂∂K

me‖uK − uKe‖2 (Fe · ne,k)
−
. (12)

The second term of the right hand side being non-positive, we get the announced result .

Proposition 4.3 (Decreasing of the semi-discrete energy). We define the total energy EK = PK + KK . Then we
obtain a discrete counterpart of (5)

d

dt

(∑
K∈T

∆x∆yEK

)

≤ −∆x∆ymax{∆x,∆y}

[∑
v∈V

[
νΛ fKv (hK)(divK

v uK)2
]

+
∑
e∈E

[
γ

Λ

g
‖ω fKe (u⊥K) +∇K

e φK‖2
]]
. (13)

Proof. Gathering relations (10) and (11), we obtain the following estimate for the total energy EK = PK +KK :

d

dt
EK +

1

2
dive,up

K

(
‖uK‖2Fe

)
+ φK divv

K(fKv (hKuK)) + hKuK · fvK
(
∇K

v φk
)

≤ −ω
(
hKuK · fvK(fKv (u⊥K))− uK · (feK qe)⊥

)
+ φK dive

K qe + uK · ∇v
K πv.

By telescoping and using periodic boundary condition we get:∑
K∈T

dive,up
K

(
‖uK‖2Fe

)
= 0.

Using iii) of Lemma 3.1 and iv) of Lemma 3.3, we get:∑
K∈T

[
φK divv

K(fKv (hKuK)) + hKuK · fvK
(
∇K

v φk
)]

= 0.

Thanks to ii) of Lemma 3.2 we get: ∑
K∈T

[
hKuK · fvK(fKv (u⊥K)

]
= 0.

Finally, i) and ii) of Lemma 3.3 and i) of Lemma 3.2 leads us to the following semi-discrete inequality:

d

dt

(∑
K∈T

∆x∆yEK

)
≤ −∆x∆y

[∑
v∈V

[
πv divK

v uK

]
+
∑
e∈E

[
qe · (ω fKe (u⊥K) +∇K

e φK)
]]
.

With the choices (8) and (9), we finally obtain the result.

Linearized well-balanced property : The linearized version of the scheme (6) is the following:
d

dt
hK + h0 divv

K

(
fKv uK

)
− h0 dive

K q̃e = 0,

d

dt
uK + fvK(∇K

v φK)− ∇v
K π̃v = −ω

(
fvK(fKv uK)− feK q̃e

)⊥
,

(14)

where

q̃e = γ
Λ

gh0
max{∆x,∆y}

(
ω fKe (u⊥K) +∇K

e φK
)

and π̃v = νΛ max{∆x,∆y} divK
v uK .
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Proposition 4.4. The linearized scheme (14) preserves the discrete geostrophic equilibrium q̃e = 0.

Proof. By construction of operators in section 3.2, we get:

ω fKv (u⊥K) +∇K
v φK = fev

(
ω fKe (u⊥K) +∇K

e φK
)
.

Hence, when the geostrophic equilibrium holds on edges, i.e. when ω fKe (u⊥K) +∇K
e φK = 0, we get

fvK(ω fKv (u⊥K) +∇K
v φK) = 0

and using property ii) of Lemma 3.1 :

divK
v uK = −dive

v((fKe (u⊥K))⊥) = dive
v

(
(∇K

e φK)⊥

ω

)
.

Basic computations then yield divK
v uK = 0, moreover, using iii) of Lemma 3.1, we get divv

K(fKv uK) = 0. Hence
the correction π̃v equals zero when the geostrophic equilibrium holds on the edges and the scheme (14) preserves
this equilibrium.

Remark 4.5. As it contains a reconstruction operator on the velocity, the discrete geostrophic equilibrium q̃e = 0
also contains spurious solution

∀(i, j), φi,j = cst and ui,j =
(
(−1)i aj , (−1)j bi

)T
.

4.2 Other possible 9-point schemes

In the previous section 4.1 we described a scheme which meets our expectations but appears convoluted. In this
section, we present two schemes which seem more intuitive, since the flow rate and the perturbation q appear at the
same place. In both schemes, the geostrophic equilibrium (3) and the perturbation q are located on edges, whereas
the perturbation π is defined on the vertices v. However, none of them succeeds to ensure both the preservation of the
linearized stationary states and the decreasing of the nonlinear energy. Nevertheless, the numerical results presented
in the last section of the paper exhibit a reasonably good behaviour for all the test cases we have performed.

4.2.1 Solely entropic scheme

In [2], we proposed a first numerical scheme for which we prove that , which is a semi-discrete counterpart of (5).
However, we also exhibited the fact that the linearized version of the scheme failed to preserve the geostrophic
balance. Using the discrete operators introduced in Section 3.2, this scheme reads :

d

dt
hK + dive

K(Fe) = 0,

d

dt
(hKuK) + dive,up

K (uK ⊗Fe) + hK feK(∇K
e φK)−∇v

K πv = −ω (hKuK − feK qe)
⊥
,

(15)

where the mass fluxes are defined at the level of the edge e as:

Fe = fKe (hKuK)− qe , (16)

with the numerical diffusion term on the flow rate

qe = γ
Λ

g
max{∆x,∆y}(ω fKe (u⊥K) +∇K

e φK), (17)

while the numerical diffusion term on the hydrostatic pressure is defined at the vertices

πv = νΛ max{∆x,∆y} fKv (hK) divK
v (uK). (18)

Decreasing of the semi-discrete energy : We define the total energy as the sum of the potential and kinetic
energy : EK = PK +KK . Then we obtain a discrete counterpart of (5) :

d

dt

(∑
K∈T

∆x∆yEK

)

≤ −max{∆x,∆y}∆x∆y

(∑
e∈E

[
γ

Λ

g
‖ω fKe (u⊥K) +∇K

e φK‖2
]

+
∑
v∈V

[
νΛ fKv (hK)(divK

v uK)2
])

.
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Proof. Same as Proposition 4.3, using Lemma 3.2 property i) and Lemma 3.3 properties i), ii) and iii).

Linearized well-balanced property : The numerical diffusion term qe ∝ ω fKe (u⊥K) + ∇K
e φK (17) is defined

on the edges whereas the geostrophic term ωu⊥K + feK(∇K
e φK) that appears in the update of the momentum in

(15) is defined on the cells. It is thus obvious that the linearized version of the scheme can not exactly preserve
the geostrophic equilibrium. Indeed, if we define the discrete geostrophic equilibrium on the edges, the numer-
ical diffusion term will vanish but not the other one, and vice versa, due to the chosen operators which ensure
feK(fKe (u⊥K)) 6= u⊥K .

4.2.2 Solely well-balanced scheme

For exhaustiveness, we propose here a slightly modified scheme whose linearized version preserves the geostrophic
equilibrium but for which it is not possible to ensure that the semi-discrete energy is non-increasing. This semi-
discrete scheme reads :

d

dt
hK + dive

K Fe = 0,

d

dt
(hKuK) + dive,up

K (uK ⊗Fe) + hK feK(∇K
e φK)−∇v

K πv = −ωhK feK(fKe (u⊥K)) + ω(feK qe)
⊥,

(19)

with definitions (16), (17) and (18) for the mass flux, the numerical correction on the flow rate and the numerical
correction on the pressure term. We see that only the definition of the Coriolis term differs from the previous version.

Linearized well-balanced property : The linearized version of the scheme (19) reads
d

dt
hK + h0 dive

K(fKe (uK))− h0 dive
K q̃e = 0,

d

dt
uK + feK(∇K

e φK)− ∇v
K π̃v = −ω feK(fKe (u⊥K)) + ω(feK q̃e)

⊥ ,
(20)

with the numerical diffusion terms

q̃e = γ
Λ

gh0
max{∆x,∆y}

(
ω fKe (u⊥K) +∇K

e φK
)

and π̃v = νΛ max{∆x,∆y} divK
v uK .

Proposition 4.6. Without considering the term dive
K(fKe uK), the linearized scheme (20) preserves the discrete

geostrophic equilibrium q̃e = 0.

Proof. When the geostrophic balance expressed on the edges holds, i.e when
ω fKe (u⊥K) +∇K

e φK = 0, the geostrophic term that appears in the update of the momentum obviously vanishes

feK(∇K
e φK) + ω feK(fKe (u⊥K)) = feK

(
∇K

e φK + ω fKe (u⊥K)
)

= 0.

Moreover, thanks to Lemma 3.1, we have

divK
v uK = −dive

v((fKe (u⊥K))⊥) = dive
v

(
(∇K

e φK)⊥

ω

)
and obvious computations show that dive

v

(
(∇K

e φK)⊥
)

= 0.

Remark 4.7. The term dive
K(fKe uK) is not strictly equal to zero when the geostrophic equilibrium holds on the

edges of the considered cell. However, by enforcing the geostrophic equilibrium on enough edges of the domain it is
possible to write this term on the cell (i, j) using solely velocities on cells (i±2 and/or j±2). Due to the complexity
of the computations, we failed to prove by recurrence that this term on the cell (i, j) can be written using solely
velocities on cells (i± k and/or j ± k), with k arbitrarily large. Nevertheless, the test cases presented in Section 5
tend to show that this term is not major and that scheme (19) has similar results to other well-balanced scheme.
Hence, we assume in the following that scheme (19) can be considered as a well-balanced scheme and will be referred
to as such.
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Remark 4.8. As it contains a reconstruction operator on the velocity, the discrete geostrophic equilibrium q̃e = 0
also contains spurious solution

∀(i, j), φi,j = cst and ui,j =
(
(−1)i aj , (−1)j bi

)T
.

Due to the nonlinear term on the velocity, this spurious solution does not belong to the kernel of the nonlinear
scheme (19), except when aj = a and bi = b for all i and j. Numerically, these solutions do not appear in the
test cases presented in Section 5. One can note that in the solely entropic scheme (15), there is no reconstruction
operator on the velocity and it is difficult to formulate a spurious solution due to the fact that such solution has to
verify: {

ω fKe (u⊥K) +∇K
e φK = 0

ωu⊥K + feK(∇K
e φK) = 0.

Numerically, simulations in Section 5 do not show such solutions.

Semi-discrete energy : The computations are similar to the previous scheme but the Coriolis term is no longer
the same and some computations show that

〈feK
(
fKe (u⊥K)

)
,uK〉 =

1

2

∑
i,j

(
vi,j

ui,j+1 + ui,j−1
2

− ui,j
vi+1,j + vi−1,j

2

)
.

Hence, there remains a term with no a priori sign on the right hand side of the semi-discrete energy inequality. Note
that numerical simulations presented in Section 5 tend to show that this term is usually negligible with respect to
the non positive correction terms.

4.3 Time discretization

For the discretization in time, fluxes are taken explicit. Nevertheless it is well known - see [8] - that a fully
explicit discretization of the Coriolis term leads in that case to unstable schemes. We thus consider the following
discretization of the Coriolis term for all the presented schemes:

un+1
x − unx

∆t
= ω(θuu

n
y + (1− θu)un+1

y ),
un+1
y − uny

∆t
= −ω(θvu

n
x + (1− θv)un+1

x ),

with θu + θv ≤ 1. Here we choose θu = 1 and θv = 0 so that the system is solved explicitly. The time step is chosen
following [1] such that

∆tn ≤ min

{
2

ω
,

min(∆x,∆y)

max(‖un‖+
√
ghn)

}
.

5 Numerical results

In the following, we present different test cases to highlight the comportment of the solely entropic scheme (15), the
solely well-balanced scheme (19) and the entropic well-balanced scheme (6), compared to a Godunov-type scheme
HLLC. We study the water depth h and the velocity vector field u = (u, v), as well as the energy of the schemes.
The numerical experiments are performed with the gravitational constant g = 1 and the angular velocity ω = 1.
The mesh is defined by a [101× 101] Cartesian grid and the numerical diffusion coefficients γ = ν = 0.5.

5.1 River test case

This test case is the counterpart of the lake-at-rest for classical shallow water equations. It consist of the simulation
of a flow in a stationary state through a channel, with no-slip wall-type boundary condition for x = −0.5 and
x = 0.5, and periodic boundary condition for y = −0.5 and y = 0.5. The initial condition (see Figure 2) is as follow:

u =

 0

ε

ω

 and ∇h =

 ε

g
0

 ,

with ε = 0.01.
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Hence, this initial condition is both a stationary solution of the nonlinear Shallow Water equations with Coriolis
(1) and a geostrophic equilibrium g∇h + ωu⊥ = 0. We aim at numerical schemes being able to preserve this
solution.

In Figures 4a and 4b, the proposed scheme (6) exactly preserves the initial condition. Due to the wall-type
boundary condition the solely entropic scheme (15) presents some anomalies on the wall boundaries on both the
water depth and the velocities, as does the solely well-balanced scheme (19) but only on the water depth. Apart
from theses defaults, the schemes preserve the stationary solution. Finally, the HLLC scheme do not preserve the
initial condition and will tend to the lake-at-rest state.

In Figure 3 the energy fully discrete is preserved by our schemes, whereas it is decreasing for HLLC scheme.

Figure 2: Initial water depth. Figure 3: Energy of the system in function of time.

(a) Difference on Water depth (b) Difference on Velocity v

Figure 4: Cross section in y = 0 of solution at t = 20s difference to initial state.

5.2 Stationary vortex test case

We consider the test case introduced in [3] and defined by :

h(r) =


1 +

5ωε

2g
r2 if r 6 0.2

1 +
ωε

10g
− ωε

g
(0.3− 2r + 2.5r2) +

ε2

g
(3.5− 20r + 12.5r2 + 4 ln(5r)) if 0.2 < r 6 0.4

1 +
ωε

5g
+
ε2

g
(4 ln(2)− 2.5) if r > 0.4
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and u(r, θ) =

 −5ε r t(sin(θ), cos(θ)) if r 6 0.2
−(2− 5r)ε t(sin(θ), cos(θ)) if 0.2 < r 6 0.4
0 if r > 0.4

where r and θ are the polar coordinates of a point of the domain. The parameter ε influences the initial water
velocity of the vortex, which is linked to the gradient of the water depth through the geostrophic equilibrium. This
create a stationary vortex that is a stationary solution of the nonlinear Shallow Water equations with Coriolis (1).
Let us recall that this stationary solution is different from the geostrophic equilibrium (3) since the definition of the
water depth contains a second term that is related to the nonlinear advective term in the equations. Nevertheless,
when the coefficient ε introduced in the definition of the velocity field is small, the nonlinear term in the definition
of the water depth is much smaller than the linear term and the stationary solution is very close to a geostrophic
equilibrium. This initial condition can be seen on Figure 5. Finally, the domain has periodic boundary conditions.

We take ε = 0.01 and a final simulation time of 200s. For this test case, the solely entropic, solely well-balanced
and entropic well-balanced schemes all give similar results except the solely entropic one which slightly stand out.
We thus choose to showcase only one scheme on the 2D graphs, the entropic well-balanced one.

After 200s, on Figures 6, 7 and 8 we can notice that our three schemes indeed mainly preserves the vortex. In
that amount of time, the velocities and the depth of the vortex slightly reduced, but the overall shape of the vertex
is preserved. Meanwhile, we can see that the HLLC scheme failed to preserve the said shape : the velocities and the
depth reduced greatly, qualitatively, stratified velocity can be seen on Figure 7 whereas a distorted vortex appears
on Figure 6 hence the scheme seems to try to reach a lake at rest state.

In order to quantity the preservation of the stationary vortex, we introduce the following relative error:

|min(hfinal)−min(hinit)|
max(hinit)−min(hinit)

,

which track the bottom of the vortex. On Figure 9, we remark that the HLLC scheme quickly move away from the
vortex, we can also note that the final water depth relative error made by our schemes decreases with ε, while this
parameter has no influence on the error for the HLLC scheme. Indeed, for any value of ε, the HLLC scheme has the
same behaviour : the stationary vortex is not seen as an equilibrium and the difference of initial state thus has no
effect while the scheme tries to reach the closest equilibrium in its kernel, the lake at rest. Meanwhile, the schemes
developed previously do consider the stationary vortex as a geostrophic equilibrium even if it is not a stationary
solution for the scheme. Thus, when ε decrease the non-linear term in the schemes become negligible and the vortex
appears as a quasi-equilibrium for the scheme.

(a) Water depth (b) Velocity v

Figure 5: Initial state of the stationary vortex.
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(a) HLLC scheme (b) Entropic well-balanced scheme

Figure 6: Water depth at t = 200s.

(a) HLLC scheme (b) Entropic well-balanced scheme

Figure 7: Velocity v at t = 200s.

(a) Water depth (b) Velocity v

Figure 8: Cross sections y = 0 of solution at t = 200s.
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(a) For the different scheme in function of time (b) For the different ε at t = 200s

Figure 9: Water depth relative error to initial state.

Figure 10: Energy of the system in function of time for ε = 0.01.

5.3 Translated vortex test case

This test case is the sum of two other ones : the river and the linear stationary vortex. Both are stationary
solutions of the linear Shallow Water equations with Coriolis source term, and we are interested in the behaviour of
the presented schemes when given that initial state (see Figure 11). As for the river test case, we enforce wall-type
boundary condition for x = −0.5 and x = 0.5, and periodic boundary condition for y = −0.5 and y = 0.5. The
slope of the river is ε = 0.01, same as the vortex depth parameter.

After 20 seconds, we find in Figures 12 , 13 and 14 that the HLLC-scheme fails to preserve the initial state : the
vortex is flattening out and the slope is decreasing. After 500s, it is brought back to the lake-at-rest equilibrium.
The other schemes also have a behaviour on par with the one they had on the two previous test cases and their
graphs are overlapped. The vortex is preserved, except for a small depth reduction, and the slope of the river is
constant. In addition, the river induces a translation of the vortex along the y axis.

On Figure 16, we can note that the energy is also what one could expect from this superposition of solution : it
is almost constant for the presented schemes, while it drops abruptly for the HLLC one.
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(a) Water depth (b) Velocity v

Figure 11: Initial state of the translated vortex.

(a) HLLC scheme (b) Entropic Well-balanced scheme

Figure 12: Water depth at t = 20s.

(a) HLLC scheme (b) Entropic Well-balanced scheme

Figure 13: Velocity v at t = 20s.
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(a) x = 0 cross section (b) y = 0 cross section

Figure 14: Cross section of water depth at t = 20s in x = 0 (a) and y = 0 (b).

(a) x = 0 cross section (b) y = 0 cross section

Figure 15: Cross section of velocity v at t = 20s in x = 0 (a) and y = 0 (b).

Figure 16: Energy of the system in function of time for the different schemes.
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5.4 Water-column test case

We consider a circular dam break with a radius of 1 and the domain has periodic boundary conditions. At t = 0,
the velocity is zero throughout the domain and and the water height is 1 except for a water column in the center
of height 2.

This initial condition is very far from a geostrophic equilibrium, thus on Figure 20 we can see that the energy
drop is sharper than previously. The schemes have similar energy, except that the solely entropic scheme drops a
little lower, while the graphs of the entropic well-balanced and solely well-balanced are overlapped.

On Figure 19, we notice that all schemes have the same overall behaviour at the beginning. However, at time
goes by, a change is noticeable as the HLLC-scheme gets to a lake at rest equilibrium, while the presented schemes
stabilize around another geostrophic equilibrium. Except at t = 1s, the graphs of the entropic well-balanced and
solely well balanced schemes are overlapped.

(a) HLLC scheme (b) Entropic Well-balanced scheme

Figure 17: Water depth at t = 100s.

(a) HLLC scheme (b) Entropic Well-balanced scheme

Figure 18: Velocity v at t = 100s.
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(a) t = 1s (b) t = 4s

(c) t = 6s (d) t = 10s

(e) t = 40s (f) t = 100s

Figure 19: Cross section in y = 0 of simulation results for the different schemes at different times.
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Figure 20: Energy of the system in function of time for the different schemes.

5.5 Instabilities of the solely well-balanced scheme

We want to showcase here the instabilities that can appear with the solely well-balanced scheme. It is a variation on
the water column test case, where the height of the column is ε = 0.01 and the simulation is left running for 200s.
We can notice on Figure 21 that the entropic well-balanced and solely entropic scheme show no sign of instability,
while bother the water depth and the velocities of solely well-balanced scheme became erratic. As for the energy
on Figure 22, the solely entropic and entropic well-balanced have the expected behavior, while the energy of the
solely well-balanced spikes after 150s.

(a) Water depth (b) Velocity v

Figure 21: Cross sections y = 0 of solution at t = 200s.
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(a) Edge-based entropic et Edge-Vertex (b) Edge-based WB

Figure 22: Energy of the system in function of time for the different schemes.

6 Conclusion

In this work we have derived three semi-discrete schemes, namely solely entropic, solely well-balanced and entropic
well-balanced for the shallow water equations with Coriolis force.

For the solely entropic scheme, the geostrophic equilibrium in the momentum balance equation is discretized on
the cells of the mesh and discretized on the edges in one of the perturbation. This choice ensure a non-increasing
energy for the semi-discrete scheme while the linearly well-balanced property cannot be achieved. However, these
two discretizations of geostrophic equilibrium are close enough to allow the scheme to be more accurate than the
HLLC one around the geostrophic equilibrium.

For the solely well-balanced scheme, the geostrophic equilibrium is only discretized on the edges of the mesh
and thus the linearly semi-discrete scheme is well-balanced. Although we failed to ensure the non-increasing energy,
the numerical tests show a good short-term behaviour.

For the entropic well-balanced scheme, the geostrophic equilibrium in the momentum balance equation is dis-
cretized on the vertices of the mesh, except in one of the perturbation where it is discretized on the edges. The
linearly semi-discrete scheme is well-balanced and we have semi-discrete energy estimate. Furthermore, the stencil
is kept compact and spurious solutions do not appear in the presented test case.

Future works will be dedicated to the study of the fully discrete energy of the schemes and to the extension of
the strategy to triangular meshes through more realistic test cases.

References

[1] E. Audusse, M. Do, P. Omnes, and Y. Penel. Analysis of modified godunov type schemes for the two-dimensional
linear wave equation with coriolis source term on cartesian meshes. Journal of Computational Physics, 373:91–
129, 2018.

[2] E. Audusse, V. Dubos, A. Duran, N. Gaveau, Y. Nasseri, and Y. Penel. Numerical approximation of the
shallow water equations with Coriolis source term. ESAIM: Proceedings, 70:31–44, June 2021.

[3] E. Audusse, R. Klein, and A. Owinoh. Conservative discretization of coriolis force in a finite volume framework.
Journal of Computational Physics, 228(8):2934–2950, 2009.

[4] A. Bermudez and M. Vazquez-Cendon. Upwind Methods for Hyperbolic Conservation Laws with Source Terms.
Computers and Fluids, 23(8):1049–1071, 1994.

[5] C. Berthon, M. M’Baye, M. H. Le, and D. Seck. A well-defined moving steady states capturing Godunov-type
scheme for Shallow-water model. International Journal on Finite Volumes, 15, 2020.

20



[6] F. Bouchut. Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced
schemes for sources, volume 2/2004. Birkhäuser Basel, 2004.
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