Polynomial-reproducing spline spaces from fine zonotopal tilings - Archive ouverte HAL
Article Dans Une Revue Journal of Computational and Applied Mathematics Année : 2022

Polynomial-reproducing spline spaces from fine zonotopal tilings

Résumé

Given a point configuration A, we uncover a connection between polynomialreproducing spline spaces over subsets of conv(A) and fine zonotopal tilings of the zonotope Z(V) associated to the corresponding vector configuration. This link directly generalizes a known result on Delaunay configurations and naturally encompasses, due to its combinatorial character, the case of repeated and affinely dependent points in A. We prove the existence of a general iterative construction process for such spaces. Finally, we turn our attention to regular fine zonotopal tilings, specializing our previous results and exploiting the dual graph of the tiling to propose a set of practical algorithms for the construction and evaluation of the associated spline functions.
Fichier principal
Vignette du fichier
Spline_Spaces___JCAM.pdf (578.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03505795 , version 1 (03-01-2022)

Identifiants

Citer

Hélène Barucq, Henri Calandra, Julien Diaz, Stefano Frambati. Polynomial-reproducing spline spaces from fine zonotopal tilings. Journal of Computational and Applied Mathematics, 2022, 402, pp.113812. ⟨10.1016/j.cam.2021.113812⟩. ⟨hal-03505795⟩
84 Consultations
92 Téléchargements

Altmetric

Partager

More