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Abstract

Given a point configuration A, we uncover a connection between polynomial-
reproducing spline spaces over subsets of conv(A) and fine zonotopal tilings
of the zonotope Z(V ) associated to the corresponding vector configuration.
This link directly generalizes a known result on Delaunay configurations and
naturally encompasses, due to its combinatorial character, the case of re-
peated and affinely dependent points in A. We prove the existence of a
general iterative construction process for such spaces. Finally, we turn our
attention to regular fine zonotopal tilings, specializing our previous results
and exploiting the dual graph of the tiling to propose a set of practical algo-
rithms for the construction and evaluation of the associated spline functions.

Keywords: simplex splines, multivariate splines, zonotopal tilings

1. Introduction

Curves and surfaces based on piecewise-polynomial Bézier and B-spline
functions [1, 2] have long been invaluable tools in computer-aided design,
computer graphics, machining and fabrication and, more recently, numerical
analysis of partial differential equations [3]. The feature of reproducing all
the polynomials over an interval up to a given degree underpins their use as
approximation and interpolation tools. In one dimension, many robust and
efficient evaluation schemes have become available to efficiently construct and
evaluate these families of functions. In two or more dimensions, spline func-
tions can be constructed via tensor products of one-dimensional B-splines,
but this structure can be too rigid in some applications. For this reason,
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much work has gone into the direct generalization of B-spline functions to
a multivariate setting. While natural generalizations of single B-spline func-
tions have been found [4], current state-of-the-art approaches for unstruc-
tured splines are still somewhat lacking: the main construction algorithm
[5, 6] is only proven to work in two dimensions, and has only recently [7]
been shown to converge for all degrees. Moreover, the current formulations
fall short of treating the case of repeated and affinely dependent knots, which
is needed in many practical applications. No simple and general evaluation
scheme is known for multivariate spline spaces.

In this work, we set out to improve on some of these shortcomings by
showing how these bases can be recast in a more general combinatorial form,
paving the way for their use in efficient numerical schemes. We base our for-
mulation on a connection between simplex spline spaces and fine zonotopal
tilings, whose combinatorial nature allows a unified treatment free of the
degenerate configurations that are typical of a purely geometrical approach.
Furthermore, these structures come equipped with a natural dual graph,
which can be used to navigate between splines in a basis and extend some
aspects of the classical one-dimensional evaluation scheme to higher dimen-
sions. This removes, in our view, one important computational shortcoming
that prevented a more widespread use of these functions.

Finally, note that some (unrelated) connections between zonotopal tilings
and box splines have been drawn in the past, see e.g. [8, 9, 10, 11].

1.1. Notation

We adopt some standard notation from combinatorial geometry. Specifi-
cally, given n ∈ Z+, we define the range [n] := {1, . . . , n}. The union between
two disjoint sets R and S is denoted by RtS, and its complement [n]\(RtS)
is denoted by R t S. Note that |R t S| = |R| + |S|, where | · | denotes the
cardinality of a set. We also borrow some convenient notation from [12]. In
particular, given a configuration of n ≥ d + 1 points A := (a1, . . . , an) in Rd

and a set of indices I ⊆ [n] such that the points (ai)i∈I are affinely indepen-
dent, we denote by det(I) the (d + 1) × (d + 1) determinant det((ai, 1)i∈I),
with the rows ordered so that det(I) > 0. Similarly, we denote by det( Ikj )
the result of replacing the row corresponding to (aj, 1) in det(I) with (ak, 1)
in the same position. Notice that det( Ikj ) is not necessarily positive. Simi-
larly, for x ∈ Rd, det( Ixj ) is obtained by replacing the row (aj, 1) in det(I)
with (x, 1).
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Let now R(A) ⊂ Rd be any compact polytopal region with vertices in A.
A subdivision T of R(A) is a collection of d-dimensional polytopes ∆ with
vertices in A such that

⋃
∆∈T ∆ = R(A) and any two distinct polytopes in

T have disjoint interiors and share a common face, possibly empty. If all
the polytopes are simplices, then T is a triangulation of R(A). Notice that
only points in A are allowed to be vertices of a subdivision. Consequently,
for d ≥ 3, there exist polytopal regions that cannot be triangulated in our
sense, such as for example Schönhardt’s polyhedron [13].

1.2. Simplex splines

Simplex spline functions were first introduced by Curry and Schoenberg
[14], and they derive their name from their beautiful and remarkably simple
geometric definition. Given a configuration A = (a1, . . . , an) of points in Rd

and a subset X ⊆ [n] of size |X| = k + d + 1, let ∆ ⊂ Rk+d be a (k + d)-
dimensional simplex and let π : Rk+d 7→ Rd be a linear projection mapping
each vertex of ∆ to a point ai ∈ A indexed by a distinct i ∈ X. Then the
normalized multivariate spline function M(x | (ai)i∈X) of degree k can be
defined for all x ∈ Rd simply as the normalized volume of the slice of ∆ cut
out by the fiber of π at x, i.e., M(x | (ai)i∈X) := volk(π−1(x)∩∆)/ volk+d(∆).
Notice that the normalization makes the definition independent of the choice
of simplex ∆. The following recurrence formula, first derived by Micchelli
[15], can be used to explicitly compute the value of M :

M(x | (ai)i∈X) :=


d!

det(X)
1X(x) if k = 0,

k + d

k

∑
b∈B

det( Bxb )

det(B)
M(x | (ai)i∈B\{b}) otherwise,

(1.1a)

(1.1b)

where 1X(x) := 1conv({ai}i∈X)(x) is the indicator function of the convex hull
of the points indexed by X, the determinants det(·) are defined in Section
1.1 above, and B is any subset B ⊆ X with |B| = d + 1 such that the
points (ab)b∈B are affinely independent. If no such B exists, then the affine
rank of the points indexed by X is less than d+ 1 and the spline, supported
on a zero-measure set, is set to zero everywhere by continuity. Remarkably,
the result of computing M via (1.1) is independent of the choice of B at
each step [15]. Also notice that, in accordance with the geometric definition
given above, simplex splines integrate to one, i.e.,

∫
Rd M(x | (ai)i∈X)dx = 1.

The functions M(x | · ) are multivariate piecewise-polynomial functions of
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x ∈ Rd of maximum degree k, with regularity Ck−1 if all the points are
affinely independent, and with reduced regularity otherwise. Another useful
expression, also derived in [15], is the knot insertion formula. If |X| ≥ d+ 2
(i.e., if k ≥ 1), we can select another index c ∈ X \B. We then have

det(B)M(x | (ai)i∈X\{c}) =
∑
b∈B

det( Bcb )M(x | (ai)i∈X\{b}). (1.2)

Just like (1.1b) relates splines of order k and k − 1, allowing for a recurrent
evaluation scheme, (1.2) relates splines with the same order k − 1.

1.3. Vector configurations and zonotopal tilings

We refer the reader to [16] or [17, Chapter 6] for a thorough introduction
to these combinatorial objects.

Let A = (a1, . . . , an) be a configuration of points ai ∈ Rd, not nec-
essarily affinely independent or even distinct, but which affinely span Rd.
For each point ai, define its projective lift as vi := (ai, 1) ∈ Rd+1, and let
V := (v1, . . . , vn) be the associated vector configuration.

Given two subsets P , Q ⊂ Rd, their Minkowski sum is defined as the
set P + Q := {x + y ∈ Rd : x ∈ P, y ∈ Q}. The Minkowski sum of a
set of segments is a special convex polytope known as a zonotope. There
is a natural zonotope Z(V ) ⊂ Rd+1 associated to each point configuration
V , defined as follows. For every index i ∈ [n], define the segment [0, vi] :=
{αivi ∈ Rd+1 : 0 ≤ αi ≤ 1}. Then Z(V ) is given by the Minkowski sum

Z(V ) :=
n∑

i=1

[0, vi] (1.3)

Given two subsets of indices I, B ⊆ [n] with I ∩ B = ∅, |B| = d + 1 and
det(B) > 0, the parallelepiped ΠI,B ⊂ Rd+1 is defined as

ΠI,B :=
∑
i∈I

vi +
∑
b∈B

[0, vb] (1.4)

A collection P of parallelepipeds ΠI,B forming a polyhedral subdivision of
Z(V ) is known as a fine zonotopal tiling of Z(V ) (see [18] or [17, Chapter 7]).
Notice that the (d + 1)-dimensional volume of the tile vold+1(ΠI,B) is equal
to det(B), and that only B determines the shape of ΠI,B, while I simply
shifts its position. An example is shown in Figure 1. Notice that the set I of
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each tile ΠI,B of P can be read off as the set of vectors in any shortest path
connecting the origin to the base of the tile. In the present work, we call |I|
the order of the tile ΠI,B, and we denote by P(k) for any integer k ≥ 0 the
subset {ΠI,B ∈ P : |I| = k}.

The faces of a tile ΠI,B are themselves parallelepipeds that are obtained
by setting αi equal to 0 or 1 in some of the segments [0, vb] of (1.4). Clearly,
if ΠJ,C is a face of ΠI,B then C ⊆ B and I ⊆ J ⊆ I tB. If |C| = d then ΠJ,C

is called a facet of ΠI,B. Since P is a subdivision, a facet is either shared
between exactly two tiles of P , or is an external facet of Z(V ). It is easily
checked that two tiles ΠI,B and ΠI′,B′ share a facet if and only if there are
two indices b ∈ B, b′ ∈ B′ such that B \ {b} = B′ \ {b′} = B ∩B′ and either
I = I ′, I = I ′ t {b′}, I ′ = I t {b} or I t {b} = I ′ t {b′}. The shared facet
ΠJ,C then satisfies C = B ∩B′ and J = I ∪ I ′.

Fine zonotopal tilings possess a number of remarkable properties. First,
all such tilings of Z(V ) are simply different arrangements of the same set of
tile shapes.

Theorem 1.1 (Shephard [19, Theorem 56]). Every zonotope Z(V ) admits
a fine zonotopal tiling, and all fine zonotopal tilings of Z(V ) have the same
number of tiles, namely one full-dimensional tile for each maximal linearly
independent subset of V .

Moreover, one can remove a point ai corresponding to an index i ∈ [n]
from A and consider the corresponding zonotope Z(V \ {vi}). Then, any
tiling P of Z(V ) induces a tiling P[n]\{i} of Z(V \ {vi}), or indeed of any
zonotope built on a subset of V , as follows.

Lemma 1.2. Let P be a fine zonotopal tiling of Z(V ). Then:

P[n]\{i} := {ΠI,B ∈ P : i 6∈ I tB} t
{

ΠI\{i},B : ΠI,B ∈ P , i ∈ I
}

(1.5)

is a fine zonotopal tiling of Z(V \ {vi}). Similarly, for any Q ⊆ [n],

P[n]\Q :=
{

ΠI\Q,B : ΠI,B ∈ P , B ∩Q = ∅
}
, (1.6)

is a fine zonotopal tiling of Z(V \ {vq}q∈Q).

Proof. The induced tiling (1.5), also found in [20, Proposition 4.3], can be
recovered from the first half of [16, Lemma 4.2] after noticing that Z(V ) and
the centrally-symmetric zonotope Z of [16] are related by the linear equation
2 · Z(V ) = Z +

∑n
i=1 vi. Applying (1.5) repeatedly then yields (1.6).

5



Since the tiles in P form a polyhedral subdivision of Z(V ), we can form its
dual graph G by associating to each tile ΠI,B a vertex in G and by connecting
two tiles ΠI,B and ΠI′,B′ with an edge if and only if the tiles share a facet.

ZpV q

0

a1 a2, a3 a4 a5 a6

v1

v2 v3
v4

v5
v6

v2

v3

v4

v5

v6

R

∅, t1, 2u

∅, t2, 6u

t2u, t1, 4u t2u, t4, 6u t6u, t2, 5u
t1, 2u, t3, 4u

t2, 4u, t1, 3u

t2, 4u, t3, 6u

t2, 6u, t4, 5u

t5, 6u, t2, 4u

t2, 3, 4u, t1, 6u t2, 4, 6u, t3, 5u

t1, 2, 3, 4u, t5, 6u
t2, 3, 4, 6u, t1, 5u

Figure 1: Left: a point configuration a1, . . . , a6 in R, with a2 = a3, their projective lifts
v1, . . . , v6 and the zonotope Z(V ). Right: a fine zonotopal tiling of Z(V ), the subsets I,B
associated to each tile ΠI,B , and the dual graph G.

2. Polynomial-reproducing spline spaces

Spline spaces containing all the polynomials up to a given degree k in their
linear span are called polynomial-reproducing. The degree of approximation
of such spaces is closely related to the maximal degree of polynomials they
reproduce [21]. Determining which spline spaces are polynomial-reproducing
proved more challenging in d > 1 than in the one-dimensional case. Many
interesting spline spaces have been found on suitable triangulations and sub-
divisions (see e.g. [22, 23]). We focus here on a recent approach by Neamtu
[12] that is not based on a pre-existing subdivision. In his work, Neamtu
showed that Delaunay configurations of order k can be used to construct a
space of simplex splines which is indeed polynomial-reproducing up to degree
k. We introduce here briefly his results, before proposing a generalization.

First, let us recall the definition of the polar form of a polynomial (see
e.g. [24]):

Definition 2.1. Let k ≥ 0 and let q(x), x ∈ Rd, be a d-variate polynomial
of degree at most k. Then there exists a unique function Q(x1, . . . , xk) of the
d-dimensional variables (x1, . . . , xk) that is symmetric under permutation of
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its arguments, affine in each of them, and that agrees with q on the diagonal,
i.e., Q(x, . . . , x) = q(x). Q is called the polar form of q.

Let A = {ai}i∈N be a countably infinite set of points in Rd in general
position, i.e., where no subset of d + 1 points is affinely dependent and no
subset of d + 2 points is co-spherical, and with no accumulation point. A
Delaunay configuration XI,B of order k ≥ 0 is any disjoint couple of sets
B, I ⊂ N with |B| = d + 1, |I| = k such that the sphere circumscribed to
the simplex ∆B := conv({ab}b∈B) contains in its interior the points {ai}i∈I
and no other point of A. Notice that this definition depends crucially on the
points being in general position. To each such configuration, we can associate
through (1.1) the d-variate spline function of order k

M(x | XI,B) := M(x | {ai}i∈ItB).

Neamtu’s result can be stated as follows:

Theorem 2.2 (Neamtu [12]). Let q(x) be a polynomial of degree at most k.
Then, for all x ∈ Rd,

q(x) =

(
k + d

d

)−1 ∑
XI,B∈Dk

Q((ai)i∈I) vold(∆B)M(x | XI,B),

where Q is the polar form associated to q and the sum is extended to the set
Dk of Delaunay configurations of A of order k.

Neamtu’s result is based upon some strong assumptions on A, notably
the infiniteness and the general position of points in A, which we are able to
relax by using the combinatorial nature of zonotopal tilings to our advantage.

Let now A = (a1, . . . , an) be any finite point configuration in Rd. Assume
that the affine span of the points in A is the whole Rd. Let V be the associated
vector configuration and Z(V ) its associated zonotope, as in Section 1.3.
Then the following, more general statement holds:

Theorem 2.3. Let P be a fine zonotopal tiling of Z(V ), let 0 ≤ k ≤ n−d−1
and let P(k) := {ΠI,B ∈ P : |I| = k}. Each tile ΠI,B ∈ P(k) can be associated
via (1.1) to the d-variate spline of degree k = |I|

M( · | ΠI,B) := M( · | (ai)i∈ItB). (2.1)
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Then, for any polynomial q(x) of degree at most k,

q(x) =
k!

(k + d)!

∑
ΠI,B∈P(k)

Q((ai)i∈I) vold+1(ΠI,B)M(x | ΠI,B) for x ∈ convk(A),

where Q is the polar form of q(x) and

convk(A) =
⋂

S⊆[n]
|S|=n−k

conv({ai}i∈S)

is the intersection of the convex hulls of all subconfigurations of A of size
n− k.

The generalization with respect to Neamtu’s result is twofold. First, for a
given point configuration A, many different fine zonotopal tilings of Z(V ) can
be constructed. Each tiling then yields a family of polynomial-reproducing
spline spaces for all degrees up to n−d− 1. In fact, Delaunay configurations
can be seen as a special case of this construction, as discussed in the next
section.

A second generalization is that the point configuration A is allowed to
contain affinely dependent subsets and repeated points. In this case, some of
the spline functions have reduced regularity [15], and thus the spline spaces
that can be constructed in this way are more generic. Observe that, if all the
vertices of conv(A) are repeated at least k + 1 times in A, then convk(A) =
conv(A). We obtain therefore a multivariate generalization of the behavior
of clamped (also called open) knot vectors in one dimension:

Corollary 2.4. Assume that each vertex of conv(A) is repeated at least k+1
times in A. Then, in the same conditions as Theorem 2.3, the splines M( · |
ΠI,B) for ΠI,B ∈ P(k) reproduce polynomials up to order k on the whole
conv(A).

The resulting spline space contains functions that are non-vanishing on the
boundary of conv(A). This is a highly desirable property in view of practical
applications, especially in numerical analysis, where it can be used to impose
non-homogeneous Dirichlet boundary conditions (see e.g. [3, Section 3.4]).

2.1. Proof of Theorem 2.3

Neamtu’s original proof of the fact that splines associated to Delaunay
configurations are polynomial-reproducing (Theorem 4.1 of [12]) rests on a
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crucial structural property regarding neighbouring pairs of configurations,
namely the edge matching property proved in Proposition 2.1 of [12]. This
property underpins also other formulations such as the algorithmic general-
ization proposed by Liu and and Snoeyink [6] and the geometric description
of Schmitt in terms of families of convex Jordan curves [7]. We prove here-
after that a similar property also holds for zonotopal tilings.

Proposition 2.5. Let ΠJ,C be a facet of a tile ΠI,B ∈ P, with |J | = k. Then
|I| = k or |I| = k − 1, and exactly one of the following is true:

(i) ΠJ,C is shared between ΠI,B and exactly one other tile ΠI′,B′ ∈ P,
with either |I ′| = k or |I ′| = k − 1. Moreover, if {b} = B \ B′ and
{b′} = B′ \B, the two points ab and ab′ are separated by the hyperplane
H := aff({ac}c∈C) if and only if |I| = |I ′|;

(ii) there exists an index b ∈ B such that, for a suitable orientation of
the hyperplane H := aff({ac}c∈C), the points {ai}i∈I are in the positive
closed halfspace of H, the points {ai}i∈ItB are in the negative closed
halfspace of H, and ab is in the positive open halfspace of H if b ∈ J
and in the negative open halfspace of H if b 6∈ J .

Proof. A facet ΠJ,C of a tile ΠI,B is obtained by choosing an index b ∈ B and
setting the corresponding coefficient αb of segment [0, vb] in (1.4) to either 0,
in which case J = I, or 1, in which case J = I t {b}. Thus, k := |J | = |I| or
k := |J | = |I| + 1. Since the tiles in P form a subdivision of Z(V ), ΠJ,C is
either a shared facet between ΠI,B and exactly one other tile ΠI′,B′ , or it is
a boundary facet of Z(V ).

In the first case, C = B ∩ B′, and the previous argument also implies
that either J = I ′ or J = I ′ t {b′}, with {b′} = B′ \ B and {b} = B \ B′,
and thus |I ′| = k or |I ′| = k − 1. Since both parallelepipeds are convex
polytopes, their interiors are separated by the hyperplane spanned by their
common facet, and we can choose a nonzero vector N ∈ Rd+1, normal to the
facet, satisfying 〈vc, N〉 = 0 for all c ∈ C = B ∩B′, and

〈z − z′, N〉 ≥ 0 (2.2)

for all z ∈ ΠI,B and z′ ∈ ΠI′,B′ . Notice that necessarily 〈vb, N〉 6= 0 and
〈vb′ , N〉 6= 0, since the vectors in B and B′ must be linearly independent.
The case |I| = |I ′| corresponds to either I = I ′ or I t {b} = I ′ t {b′}. If
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I = I ′, then setting (z, z′) = (vb+
∑

i∈I vi,
∑

i∈I′ vi) in (2.2) yields 〈vb, N〉 > 0,
while choosing (z, z′) = (

∑
i∈I vi, vb′ +

∑
i∈I′ vi) yields 〈vb′ , N〉 < 0. Thus,

sign(〈vb, N〉) = − sign(〈vb′ , N〉).

If I t {b} = I ′ t {b′}, the same choices of (z, z′) lead to the same conclusion.
The case |I| 6= |I ′| is very similar, since it implies either I = I ′ t {b′} or
I t {b} = I ′. In both cases, plugging the couples (z, z′) = (

∑
i∈I vi,

∑
i∈I′ vi)

and (z, z′) = (vb +
∑

i∈I vi, vb′ +
∑

i∈I′ vi) in (2.2) leads to

sign(〈vb, N〉) = sign(〈vb′ , N〉).

Thus, the hyperplane H = {x ∈ Rd : 〈N, (x, 1)〉 = 0} satisfies the first part
of the proposition.

Suppose now that ΠJ,C is a boundary facet of Z(V ), with {b} = B \ C.
Since Z(V ) is a convex polytope, all points z ∈ Z(V ) lie in the same closed
halfspace of ΠJ,C , and we can choose a nonzero vector N ∈ Rd+1, normal to
ΠJ,C , so that 〈vc, N〉 = 0 for all c ∈ C and

〈z −
∑
j∈J

vj, N〉 ≤ 0 (2.3)

for all z ∈ Z(V ). Plugging into (2.3), respectively, z = ve +
∑

j∈J vj with
e 6∈ J and z =

∑
j∈J,j 6=f vj with f ∈ J shows that

〈vc, N〉 = 0, 〈ve, N〉 ≤ 0, 〈vf , N〉 ≥ 0

for all c ∈ C, e 6∈ J and f ∈ J . Moreover, as before, 〈vb, N〉 6= 0 otherwise the
vectors indexed by B would be linearly dependent. Therefore, 〈vb, N〉 > 0 if
b ∈ J , and 〈vb, N〉 < 0 if b 6∈ J . Since I ⊆ J ⊆ I t B, the hyperplane H =
{x ∈ Rd : 〈N, (x, 1)〉 = 0} satisfies the second part of the proposition.

Alternative (i) of Proposition 2.5 corresponds exactly to (a generalization
of) essential and non-essential faces between Delaunay configurations that are
described in Proposition 2.1 of [12]. However, in Proposition 2.5 above, the
underlying point set A is finite, leading to the additional case (ii). Notice
that the points are not required to be in general position, and can even be
repeated multiple times in A.

Armed with this result, we are ready to establish the polynomial repro-
duction property for spline functions associated to P . The proof is similar to
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that of Theorem 4.1 of [12]; nonetheless, we give here the full derivation in
order to point out the contribution of boundary facets. We start by proving
the case k = 0.

Proposition 2.6. Let P(0) := {Π∅,B ∈ P}. Then the set of simplices T (0) =
{∆B := conv({ab}b∈B) : Π∅,B ∈ P(0)} triangulates conv(A).

Proof. Define the hyperplane H1 := {x ∈ Rd+1 : xd+1 = 1} and let π be its
canonical identification with Rd using the first d coordinates. It follows from
(1.3) that π(Z(V ) ∩ H1) = conv(A), since this set corresponds exactly to
all the convex combinations of points in A. Similarly, for any tile ΠI,B ∈ P ,
(1.4) implies that π(ΠI,B∩H1) is empty if |I| > 1, equal to the single point ai
if I = {i}, or equal to the simplex conv({ab}b∈B) if I = ∅. The proposition
then follows from the fact that the tiles ΠI,B of P form a subdivision of
Z(V ).

The indicator functions of simplices in T (0) correspond exactly to degree-
zero splines via (1.1a). Proposition 2.6 then provides the root of the recur-
rence in the following proof.

Proof of Theorem 2.3. Similarly to the proof of Theorem 4.1 in [12], we sim-
ply have to prove that, for x ∈ convk(A), the expression∑

ΠI,B∈P(k)

Q((ai)i∈I) vold+1(ΠI,B)M(x | ΠI,B) (2.4)

can be rewritten in terms of the tiles in P(k−1) as

k + d

k

∑
ΠI′,B′∈P(k−1)

Q((ai)i∈I′ , x) vold+1(ΠI′,B′)M(x | ΠI′,B′). (2.5)

In fact, iterating until k = 0 directly leads to the expression(
k + d

k

) ∑
Π∅,B∈P(0)

Q(x, . . . , x) vold+1(Π∅,B′)M(x | Π∅,B′),

which is simply equal to (k + d)!/k! q(x) thanks to (1.1a), the definition of
polar form (Definition 2.1), and the fact that the simplices defined by splines
in P(0) triangulate conv(A) (Proposition 2.6).
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In order to prove that (2.4) is equal to (2.5), similarly to [12], we first
apply the spline recurrence formula (1.1b) to (2.4), obtaining

k + d

k

∑
ΠI,B∈P(k)

Q((ai)i∈I)
∑
b∈B

det( Bxb )M(x | ΠI,B\{b}), (2.6)

since vold+1(ΠI,B) = det(B). We can associate every term in (2.6) with a
facet ΠI,B\{b} of P . Following Proposition 2.5, there are three possibilities:

(i) The facet is shared with exactly one other tile ΠI′,B′ ∈ P(k), with
I ′ = I, B′ \ {b′} = B \ {b} = B ∩ B′ for some b′ ∈ B′, and with
ab and ab′ lying on opposite sides of H := aff({vi}i∈B∩B′). Therefore
det( Bxb ) = − det( B′x

b′ ), and the two corresponding terms in the sum
cancel each other;

(ii) The facet is shared with exactly one other tile ΠI′,B′ ∈ P(k−1), with
I ′ t {b′} = I, B′ \ {b′} = B \ {b} = B ∩ B′ for some b′ ∈ B′, and
with ab and ab′ lying on the same side of H := aff({ai}i∈B∩B′). After
noticing that I tB \ {b} = I ′tB′, the corresponding term in (2.6) can
be rewritten as

k + d

k
Q((ai)i∈I′t{b′}) det( B′

x
b′ )M(x | (ai)i∈I′tB′). (2.7)

(iii) The facet lies on the boundary of Z(V ). In this case the hyperplane
H := aff({ai}i∈B\{b}) contains all the points {ai}i∈ItB\{b} in its positive
closed halfspace, out of which at most |I| = k are in its positive open
halfspace. All other points of A lie in its negative closed halfspace.
Consequently, if x is in the interior of convk(A), then necessarily x 6∈
conv({ai}i∈ItB\{b}) and therefore

M(x | ΠI,B\{b}) = M(x | (ai)i∈ItB\{b}) = 0.

Focusing now on (2.5), and again similarly to [12], we rewrite x in barycen-
tric coordinates with respect to the simplex conv({ab′}b′∈B′) as

x =
∑
b′∈B′

det( B′x
b′ )

det(B′)
ab′ , (2.8)
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and since Q is multiaffine and vold+1(ΠI′,B′) = det(B′), using (2.8), we can
rewrite (2.5) as

k + d

k

∑
ΠI′,B′∈P(k−1)

M(x | ΠI′,B′)
∑
b′∈B′

Q((ai)i∈I′t{b′}) det( B′
x
b′ ). (2.9)

Similarly as before, by Proposition 2.5, we can associate each term in (2.9)
with a facet ΠI′t{b′},B′\{b′} of P . If such a facet is shared with exactly one
other tile ΠI,B ∈ P(k−1), then it appears twice in the sum, and the two
contributions cancel each other since I ′ t {b′} = I t {b}, I t B = I ′ t B′
and ab, ab′ are separated by H := aff({ai}i∈B∩B′). Terms corresponding to
facets on the boundary of Z(V ) again do not contribute to the sum, since
the corresponding hyperplane H := aff({ai}i∈B′\{b′}) separates at most the
k points in I ′ t {b′} from the other n − k points of A, and since b′ 6∈ I ′,
the points {ai}i∈I′tB′ either lie on H or on the positive side of H. Thus, if
x ∈ convk(A), we have once more

M(x | ΠI′,B′) = M(x | (ai)i∈I′tB′) = 0.

The remaining terms correspond to facets shared with exactly one other tile
ΠI,B ∈ P(k), and they are equal to the terms (2.7), completing the proof.

Two examples of families of spline spaces associated to fine zonotopal
tilings are shown in Figure 2.

2.2. Spline space construction

Algorithms for the construction of Delaunay configurations (or, rather,
their dual higher-order Voronoi diagrams) have been known for some time
[25]. In the two-dimensional case, Liu and Snoeyink [5, 6] have leveraged
these results to propose an algorithm capable of iteratively constructing a
large family of generalized Delaunay configurations of A with any order k ≥ 0,
each yielding a set of polynomial-reproducing spline spaces. Their algorithm
is based on the concept of the order-k centroid triangulation [26, 27, 6, 28],
which is a triangulation of the point set A(k) whose elements are the averages
of k-element subsets of A. The order-1 centroid triangulation is simply an
(arbitrary) triangulation of A, and an order-k centroid triangulation is ob-
tained from an order-(k − 1) centroid triangulation by a subdivision of the
polygonal neighborhood of every vertex (its link region), with complete free-
dom in the choice of triangulation for each polygon. Every triangle obtained
in this way is then assocated to a spline function of degree k.
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Figure 2: Two possible fine zonotopal tilings of Z(V ) for the point configuration of Figure 1
and their associated spline spaces of degrees k = 0, . . . , 4 for the standard one-dimensional
B-spline basis (top) and an alternative tiling (bottom).
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In the two-dimensional case, this algorithm has been proven to converge
for degrees k ≤ 3 [6] and later for all degrees k ≥ 0 by Schmitt [7]. However,
one major hurdle for the extension to dimensions d > 2 lies in the existence of
non-convex regions that do not admit any triangulation without introducing
new vertices. If such a region is encountered, the algorithm cannot continue,
and there is no known condition under which the link regions are all guar-
anteed to be triangulable. Moreover, the case of affinely dependent and/or
repeated points is excluded from the proofs and treated with symbolic per-
turbation, which creates ambiguous cases and does not allow to extend the
proofs of convergence easily. This problem becomes even harder to address
as the number of space dimensions grows.

Given a fine zonotopal tiling P of Z(V ), we prove in this section that
there exists a construction algorithm similar to Liu and Snoeyink’s, with
a suitable choice of triangulations, that is able to iteratively construct P .
This result rests on a natural definition of the link region R(I) associated
to each subset I ⊂ [n] (Definition 2.7), which generalizes naturally Liu and
Snoeyink’s notion of vertex link.

2.3. Relationship with centroid triangulations

Letting r be a natural number and denoting by Hr the hyperplane Hr :=
{x ∈ Rd+1 : xd+1 = r}, the intersection

Q(r) := Z(V ) ∩Hr

corresponds to the set Q(r) := {
∑n

i=1 αivi : 0 ≤ αi ≤ 1,
∑n

i=1 αi = r}, which
is just the convex hull of the points V (r) := {

∑
b∈B(ab, 1), B ⊆ [n], |B| = r}.

The regionQ(r) is also known as (a multiple of) the r-set polytope of A [29, 30].
Just as vectors in V are in bijection with points of A, the set of vectors V (r)

can be recast as the set A(r) of all possible averages of r points in A. The
intersection P ∩ Hr of a zonotopal tiling of Z(V ) with Hr then produces
a subdivision of V (r) [31, 20] and therefore of A(r), which corresponds to a
centroid subdivision in the sense of [26, 27, 6, 28].

Recall that the standard hypersimplex ∆m,n is defined as the convex hull
of the points (x1, . . . , xm) ∈ Rm such that 0 ≤ xi ≤ 1 and x1 + . . . + xm =
n. Then, according to (1.4), the intersection of a tile ΠI,B, |I| = k with
the hyperplane Hr is an affine transformation of the hypersimplex ∆d+1,r−k,
which has a positive dimension if and only if k < r < k+d+1. Translated in
the language of spline spaces, this means that the cells in the r-th centroid
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subdivision induced by P are slices of tiles associated via (2.1) to the basis
splines

SP(r) := {M( · | ΠI,B), r − d− 1 < k := |I| < r}.
For d = 2, only two types of cells appear in each r-th centroid triangulation
for r > 1, corresponding to splines of degree k = r − 1 and k = r − 2. The
corresponding hypersimplices ∆3,1 and ∆3,2 are just triangles, and therefore
the subdivision is a so-called bicolored triangulation. This fact is widely
known in the context of centroid triangulations [25, 26, 27, 6, 28], where the
corresponding triangles are called type-I and type-II triangles, respectively.
In dimension d > 2, the induced subdivision is no longer a triangulation, and
the splines of all orders r − d + 1 ≤ k ≤ r − 2 appear in the r-th centroid
subdivision as hypersimplices, e.g., octahedra for d = 3, k = r − 2.

2.4. Link regions

We define the link region of a subset Q ⊆ [n] as follows:

Definition 2.7. Given a fine zonotopal tiling P of Z(V ) and a subset Q ⊆
[n], |Q| = k, the regions E(r)(Q), r ≥ 0, are defined as the union of simplices

E(r)(Q) :=
⋃

ΠI,B∈E(r)(Q)

conv({ab}b∈B), (2.10)

with
E (r)(Q) :=

{
ΠI,B ∈ P(r) : B ∩Q = ∅, I ⊆ Q

}
. (2.11)

The link region R(Q) of Q is defined as R(Q) := E(k)(Q).

An example of link region, and its relation to the regions (2.10), is shown
in Figure 3. Notice that E (k)(Q) = {ΠI,B ∈ P : I = Q} and that E (r)(Q) = ∅
for r > k. It can be easily checked, though we will not do it explicitly
here, that in two dimensions the above defined link region coincides with the
interior of a vertex link as used in [5, 6, 7]. However, Definition 2.7 is more
straightforward, more general, and can be applied to all point configurations
in any dimension, allowing to easily prove some important properties, as we
do presently.

Proposition 2.8. For any subset Q ⊆ [n], |Q| = k, define

convQ(A) := conv({ai}i 6∈Q)

and let r ≥ 0. Then, the following holds:
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(i) The set of simplices T (r)(Q) := {conv({ab}b∈B) : ΠI,B ∈ E (r)(Q)} forms
a triangulation of E(r)(Q);

(ii) The regions E(r)(Q) form a subdivision of convQ(A);

(iii) The union of all simplices
⋃

r≥0 T (r)(Q) triangulates convQ(A);

(iv) The simplices T (k)(Q) triangulate the link region R(Q).

Proof. Obviously, (i) implies (iv) via Definition 2.7. Notice also that (iii)
implies both (ii) and (i), since it is clear from (2.11) that E (r)(Q)∩E (s)(Q) = ∅
if r 6= s. Therefore, the triangulation of convQ(A) decomposes into disjoint
triangulations of the subregions E(r)(Q), r = 1, . . . , k.

Let now P(Q) be the induced tiling of Z(V \ {vq}q∈Q) via (1.6). Com-
paring (2.11) with (1.6) shows that the tiles {ΠI,B ∈

⊔
r≥0 E (r)(Q)} are in

bijection with the tiles {Π∅,B ∈ P(Q)} =: P(0)(Q). Therefore, by Proposi-
tion 2.6, the simplices {conv({ab}b∈B) : Π∅,B ∈ P(0)(Q)} form a triangulation
of convQ(A), proving (iii).

Based on these facts, we can replace Definition 2.7 of the link region of
Q, |Q| = k, with

R(Q) := convQ(A) \

(
k−1⋃
r=0

E(r)(Q)

)
, (2.12)

which is preferred from an algorithmic standpoint because it expresses R(Q)
only in terms of the tiles ΠI,B ∈ Pr with r < k. Given that the simplex
conv({ab}b∈B) is non-degenerate for any tile ΠI,B, Proposition 2.8 implies
that the region R(Q) := E(k)(Q) is empty if and only if its triangulation
contains no simplices, i.e., if and only if E (k)(Q) is empty. We have therefore
the following corollary:

Corollary 2.9. R(Q) is nonempty if and only if there is a tile ΠI,B ∈ P
with I = Q.

Proposition 2.8 and Corollary 2.9 together imply that any fine zonotopal
tiling P of Z(V ), and therefore the associated family of spline spaces, can be
obtained iteratively by triangulating the link region associated to each set I
for every tile ΠI,B through some choice of triangulation, similarly to Liu and
Snoeyink’s algorithm in two dimensions. This statement is made precise in

17



the following theorem. In its proof, we make use of Stiemke’s Theorem [32],
a variation of Farkas’ Lemma stating that, given any set {x1, . . . , xm} of m
vectors in Rn, exactly one of the following alternatives is true: either there
exist α1, . . . , αm > 0 such that

∑m
i=1 αixi = 0, or there exists y ∈ Rn such

that 〈y, xi〉 ≤ 0, for i = 1, . . . ,m, and 〈y, xi〉 6= 0 for at least one index.

Theorem 2.10. There exists a choice of triangulations TI such that any
zonotopal tiling P of Z(V ) (and its associated spline spaces at all orders
0 ≤ k ≤ n−d−1) can be iteratively constructed using the following procedure:

(i) Let I(0) = {∅};

(ii) For every 0 ≤ k ≤ n−d−1 and for every I ∈ I(k), let R(I) be the link
region computed via (2.12), and let TI be its triangulation. Denoting
the simplex ∆B := conv({ab}b∈B), the subset of tiles P(k) := {ΠI,B ∈
P : |I| = k} is given by

P(k) = {ΠI,B : I ∈ I(k), ∆B ∈ TI};

(iii) Let

I(k+1) = {I t {b} : ΠI,B ∈ P(k), b ∈ B, R(I t {b}) 6= ∅}; (2.13)

(iv) Repeat (ii) and (iii) until k = n − d − 1, I(k+1) = ∅. Then P =⊔n−d−1
k=0 P(k).

Proof. Let P be a fine zonotopal tiling of Z(V ). Item (iv) of Proposition
2.8 directly states that the tiles ΠI,B ∈ P(k) (i.e., splines of degree k) are
in bijection with the simplices conv({ab}b∈B) of a triangulation of the link
region R(I). Furthermore, due to Corollary 2.9, all the tiles ΠI,B ∈ P(k)

are associated with a nonempty link region, which is always triangulable
since Proposition 2.8 exhibits one such triangulation. The only thing left to
determine is the set {I : ΠI,B ∈ P}.

Notice that I ∈ I(0) implies I = ∅, and by (2.12), R(∅) = conv(A).
Therefore, the tiles Π∅,B (i.e., splines of degree 0) are in bijection with the
simplices of a triangulation of conv(A), in accordance with Proposition 2.6.
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Assume now that we have obtained all the tiles ΠI,B ∈ P(r) for r =
0, . . . , k, and we want to determine the set I(k+1) := {I : ΠI,B ∈ P(k+1)}.

Let Q ⊂ [n], |Q| = k + 1 be a set of indices such that R(Q) 6= ∅,
let {∆f , f = 1, . . . , F} be the F boundary facets of R(Q), and for every
f = 1, . . . , F , let ΠQ,Bf

and bf ∈ Bf be a tile in P(k+1) such that ∆f =
conv({ai}i∈Bf\{bf}). By Proposition 2.6, this tile is unique. Suppose that all
the facets {ΠQ,Bf\{bf}, f = 1, . . . , F} lie on the boundary of Z(V ), let |∆f | be
the volume of ∆f and let Nf ∈ Rd be its normalized normal vector. Without
loss of generality, we can choose either all inward or all outward normal
vectors so that

∑F
f=1 |∆f |

〈
Nf , abf

〉
≤ 0. SinceR(Q) is a nonempty, bounded

polytopal region, we know that
∑F

f=1 |∆f |Nf = 0, and we can therefore write
the following linear dependency with positive coefficients |∆f |f=1,...,F , and 1:

F∑
f=1

|∆f |
(
Nf ,−

〈
Nf , abf

〉)
+ (0,

F∑
f=1

|∆f |
〈
Nf , abf

〉
) = 0. (2.14)

Fix a point aq with q ∈ Q. If, for all f = 1, . . . , F , aq were separated from
abf by the hyperplane conv({ai}i∈Bf\{bf}), then we would have

(aq, 1) ·
(
Nf ,−

〈
Nf , abf

〉)
=
〈
Nf , aq − abf

〉
< 0,

(aq, 1) · (0,
F∑

f=1

|∆f |
〈
Nf , abf

〉
) =

F∑
f=1

|∆f |
〈
Nf , abf

〉
≤ 0.

(2.15)

By Stiemke’s Lemma, (2.14) and (2.15) cannot both be true. Therefore,
there must be an index f such that the facet ΠQ,Bf\{bf} does not lie on
the boundary of Z(V ). Observe also that ΠQ,Bf\{bf} cannot be shared with

another tile ΠI′,B′ ∈ P(k+1), since otherwise I ′ = Q and ∆f would not be a
boundary facet of R(Q). Therefore, by Proposition 2.5, there must be a tile
ΠI,B ∈ P(k) with Bf \ {bf} = B \ {b} = Bf ∩ B and Q = I t {b} for some
b ∈ B. We conclude that

I(k+1) ⊆ {I t {b} : ΠI,B ∈ P(k), b ∈ B}.

After filtering out the sets {I t {b} : R(I t {b}) = ∅}, we are left exactly
with (2.13).

Finally, when |Q| = n− d, the set convQ(A) only contains d points, and
therefore the link region R(Q) has an empty interior. Therefore, I(n−d) = ∅,
and the process stops.
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This theorem states essentially that any fine zonotopal tiling of Z(V )
can be built using a version of Liu and Snoeyink’s algorithm, provided that
we know in advance which triangulation needs to be applied to each subset
{I : ΠI,B ∈ P}. In other words, it proves that their algorithm is a universal
way of constructing fine zonotopal tiling over Z(V ) and their associated
spline spaces. However, this result stops short of providing a fully-formed
construction algorithm, as it does not guarantee that any given choice of
triangulations leads to a valid construction, only that such a choice exists. In
the next section, we show that regular fine zonotopal tilings can be obtained
by choosing a weighted Delaunay triangulation at each step, providing a
sufficient condition on the triangulations that guarantees the convergence of
the construction process.

Finally, we give a couple of interesting results regarding the combinatorial
structure of spline spaces built by Theorem 2.10. First, as a direct conse-
quence of Theorem 1.1, we obtain the following simple characterization of
the total number of spline functions:

Corollary 2.11. The total number of spline functions built by the process
described in Theorem 2.10 on a point set A with |A| = n, summed over
all orders k = 0, . . . , n − d − 1, is always equal to the number of affinely
independent subsets of A.

Next, we provide a characterization of the set of simplices

T (k) := {conv({ab}b∈B) : ΠI,B ∈ P(k)}
The intersection of these simplices defines the zones where all the spline
functions are pure polynomials, and their boundaries define the zones of
reduced regularity of spline functions, i.e., knots in d = 1, knot lines in d = 2
and more generally knot hypersurfaces in d > 2.

Proposition 2.12. For all 0 ≤ k ≤ n − d − 1, the simplices in T (k) cover(
k+d
d

)
times the set convk(A).

Proof. By induction over k. The simplices in T (0) form a triangulation of
conv(A) by Proposition 2.6, and therefore cover it exactly once. Assume now
that the proposition is true for every r < k. By Property (iii) of Proposition
2.8, for any subset Q ⊂ [n] with |Q| = k, the simplices {conv({ab}b∈B) :
ΠI,B ∈ E (r)(Q), r ≤ k} triangulate convQ(A), i.e.,

k∑
r=0

∑
ΠI,B∈E(r)(Q)

1B = 1convQ(A),
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where 1convQ(A) : Rd 7→ R is the indicator function of the set convQ(A) ⊂ Rd

and 1B is the indicator function of conv({ab}b∈B). We sum this expression
over all subsets Q ⊂ [n], |Q| = k. Each tile ΠI,B ∈ P(r) appears in the sum
whenever I t J = Q for some subset J ⊂ [n], |J | = k − r with J ∩ B = ∅.
Therefore, the occurrences of a tile of P(r) in the sum correspond to the
possible choices of |Q \ I| = k− r indices among the

∣∣I tB∣∣ = n− r− d− 1
which are available. We obtain

∑
ΠI,B∈P(k)

1B +
k−1∑
r=0

(
n− r − d− 1

k − r

) ∑
ΠI,B∈P(r)

1B =
∑

Q⊂[n],|Q|=k

1convQ(A). (2.16)

By induction, the simplices derived from the tiles in P(r) cover the region
convr(A) ⊇ convk(A) exactly

(
r+d
d

)
times, and the sum on the right covers

convk(A) exactly
(
n
k

)
times. Using multiset notation and the Vandermonde

identity, we can derive

k∑
r=0

(
n− r − d− 1

k − r

)(
r + d

r

)
=

k∑
r=0

((
n− k − d
k − r

)) ((
d+ 1

r

))
(2.17)

=

((
n− k + 1

k

))
=

(
n

k

)
.

Separating the term with r = k in the first sum in (2.17), we conclude that
the first term in (2.16), i.e. the set of all simplices in T (k), must cover the
region convk(A) exactly

(
k+d
d

)
times.

Notice that in general it is not possible to extract from the set T (k) a
collection of

(
k+d
d

)
independent triangulations, as these simplices form in

general a branched cover of conv(A). In practice, T (k) forms a complex web
of overlapping simplices that contains many complex intersections, see e.g.
Figure 3.

3. Spline spaces from regular fine zonotopal tilings

We specialize the results of the previous section to spline spaces derived
from regular fine zonotopal tilings. Given a polytope P ⊂ Rd+2, we define its
upper convex hull as the set of faces of P whose outward normal vector has
a positive (d+ 1)-th component.
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Figure 3: For a point configuration A ⊂ R2 with collinear points, the sets T (k) for
k = 0 and k = 2, with the shading indicating the number of simplices covering each
point, and the regions E(r)(Q) of (2.10) for two possible choices of Q := (a1, a2, a3).

Definition 3.1. A zonotopal tiling P of Z(V ) ⊂ Rd+1 is regular if its tiles
are precisely the projections along the (d + 1)-th coordinate of the faces in
the upper convex hull of another zonotope Z̃ ⊂ Rd+2.

We show that this special case corresponds exactly to simplex splines
associated to weighted Delaunay configurations. The special properties of
these tilings then allow us to derive a set of practical algorithms for the
construction of the spline spaces and the determination and evaluation of all
spline functions that are supported on a given point x ∈ Rd.

3.1. Delaunay triangulations and regular zonotopal tilings

Let h : A 7→ R be a height function over A. Let T be a set of simplices that
triangulate conv(A) with vertices in A. For every subset B ⊆ [n], |B| = d+1
such that there is a simplex ∆ := conv({ab}b∈B) ∈ T , let us order B such
that det((ab, 1)b∈B) > 0. If, for every i ∈ A \B,

det((ab, h(ab), 1)b∈B, (ai, h(ai), 1)) < 0, (3.1)

then the triangulation T is called a weighted Delaunay triangulation with
height function h. If the points of A are in general position, plugging h(a) =
‖a‖2 in (3.1) yields the usual Delaunay triangulation, see e.g. [33].

In order for the Delaunay triangulation to exist and be unique, a bit of
care is needed when choosing the height function h.

Definition 3.2. A height function h is generic if, given the lifted point cloud

Ã := {(a, h(a)), a ∈ A} ⊂ Rd+1,
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the only affinely dependent subsets of d+2 points in Ã lie on a vertical plane,
i.e., a plane whose normal N ∈ Rd+1 satisfies Nd+1 = 0.

Notice that affinely dependent subsets are indeed allowed on vertical
planes, and thus the points in A can be repeated or affinely dependent.
If h is generic, then the determinant in (3.1) is always nonzero, and the
weighted Delaunay triangulation is unique. Hereafter, we will only consider
generic height functions. We can now use (3.1) to specialize Theorem 2.10
to weighted Delaunay triangulations.

Theorem 3.3. Let h be a generic height function on A, and for every set
Q ⊆ [n] let TQ(h) be the weighted Delaunay triangulation of convQ(A) with
height function h. Then the procedure outlined in Theorem 2.10 with the
choice TI = TI(h) always produces a regular fine zonotopal tiling P(h).

Proof. It is easy to prove using the lifting property (3.1). See also [34, 35]
and especially [36] for similar constructions and an interesting generalization.

Let Ã = {ãi := (ai, h(ai)), i = 1, . . . , n} ⊂ Rd+1 be the point cloud
lifted by h, Ṽ := {(ai, h(ai), 1) : i = 1, . . . , n} be the associated vector
configuration and Z(Ṽ ) be the zonotope built on Ṽ . Denoting by π : Rd+2 7→
Rd+1 the projection that removes the (d+1)-th coordinate, it is easy to check
that π(Z(Ṽ )) = Z(V ). We define P(h) as the regular zonotopal tiling

P(h) := {π(Π̃I,B) : Π̃I,B is in the upper convex hull of Z(Ṽ )}. (3.2)

The fact that (3.2) is indeed a regular zonotopal tiling of Z(V ) was proven
e.g. in [37, Lemma 2.2]. Since Π̃I,B is a boundary facet of Z(Ṽ ), we can
follow the same reasoning as in the proof of item (ii) of Proposition 2.5.
After selecting the face normal NB of Π̃I,B with (NB)d+1 > 0, given that h
is generic and the face is not vertical, we conclude that the determinant

det((ab, h(ab), 1)b∈B, (ai, h(ai), 1)) (3.3)

is positive for all i ∈ I and negative for all i ∈ I tB, while the condition
(NB)d+1 > 0 translates to det((ab, 1)b∈B) > 0. Since only the points {ai}i∈ItB
appear in the link region R(I), the weighted Delaunay condition (3.1) is
satisfied for all the points in R(I).

Theorems 2.10 and 3.3 together give a practical construction algorithm
for all regular fine zonotopal tilings of Z(V ), and therefore for their associated
spline spaces. Restricting the construction to the the special case d = 2 and
to points in generic position, this process reduces to a version of Liu and
Snoeyink’s construction algorithm [5, 6, 7].
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3.2. Splines supported on a point

In this subsection we show that, in the case of spline spaces associated to
regular fine zonotopal tilings, there exists an efficient process to determine
all the spline functions up to a given degree k ≥ 0 that are supported on
a given point x ∈ Rd. This is equivalent, by (2.1), to finding all the tiles
ΠI,B ∈ P(h) such that x ∈ conv({ai}i∈ItB). In this case, by extension, we
say that the tile ΠI,B is supported on x.

For spline functions of degree 0, the task is particularly simple. In fact,
since the simplices T (0) triangulate conv(A) (Proposition 2.6), whenever
x ∈ conv(A) there is one and only one tile Π∅,Z supported on x. Com-
putationally, Π∅,Z can be found efficiently via a point location query on a
triangulation, for which many efficient algorithms exist, see e.g. [38, 39].
We prove in the remainder of this section that all the other tiles ΠI,B (and
hence spline functions) supported on x can be found from Π∅,Z using a suit-
able orientation, induced by x, of the dual graph G of P(h), i.e., the simple,
connected graph having the tiles of P(h) as vertices and their connecting
internal facets as edges.

We assume hereafter that the test point x ∈ Rd is generic, i.e., it satisfies
the following condition:

x 6∈ aff({ac}c∈C) for all internal facets ΠJ,C of P .

This excludes from the possible values of x a zero-measure subset of Rd, and
as a consequence, all the following results must be understood to hold al-
most everywhere. This restriction can be easily lifted using some well-known
techniques such as symbolic perturbation. We can define an orientation ox,
depending on x, on the dual graph G of P as follows. Let ΠJ,C be a facet
shared by two tiles ΠI,B and ΠI′,B′ , with normal vector NC ∈ Rd+1. Then
we define the orientation of the corresponding edge in G as ΠI,B → ΠI′,B′ if
and only if

sign (〈NC , (x, 1)〉) = sign (〈NC , z
′ − z〉) (3.4)

for any z′ ∈ ΠI′,B′ , z ∈ ΠI,B. In other words, we pick the direction of NC

that leads to a positive scalar product with (x, 1), and we use it to orient the
corresponding edge.

The orientation ox defined by (3.4) yields a directed graph (G, ox). In the
case of regular tilings, this graph is acyclic.
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Lemma 3.4. Let P(h) be a regular fine zonotopal tiling of Z(V ) with generic
height function h. Then the directed graph (G, ox) is acyclic for every generic
x ∈ Rd. The same is true for any fine zonotopal tiling P of Z(V ), regular or
not, when d = 1.

Proof. Let Πi := ΠIi,Bi
, i = 1, . . . , r be a family of r tiles of P(h) and let

Fi := ΠJi,Ci
, i = 1, . . . , r be a family of facets such that Fi is shared between

the tiles Πi and Πi+1. Let us assume that the tiles form a cycle in G, i.e.,
Πr+1 = Π1. For each 1 ≤ i ≤ r, let Ni := NCi

be a vector normal to the i-th
facet and pointing from the tile Πi to the tile Πi+1.

Since P(h) is regular, by Theorem 3.3, for each tile Πi there is a vector
yi ∈ Rd+2 with (yi)d+1 > 0 such that 〈yi, (as, h(as), 1)〉 is positive if s ∈ Ii,
zero if s ∈ Bi and negative if s ∈ Ii tBi . Define the point gi ∈ Rd+1

component-wise as

(gi)j :=
(yi)j

(yi)d+1

, j = 1, . . . , d, (gi)d+1 :=
(yi)d+2

(yi)d+1

, (3.5)

which is possible since (yi)d+1 > 0. For all b ∈ Bi, 〈yi, (ab, h(ab), 1)〉 = 0
implies

〈gi, vb〉 = −h(ab), (3.6)

and as a consequence, for all c ∈ Bi ∩Bi+1 = Ci,

〈gi+1 − gi, vc〉 = 0, (3.7)

i.e., the vector (gi+1 − gi) is parallel to Ni. Let now zi ∈ Πi be the point

zi :=
∑
j∈Ii

vj +
1

2

∑
b∈Bi

vb, (3.8)

and let b ∈ Bi, b
′ ∈ Bi+1 be the two indices such that Bi \ {b} = Bi+1 \ {b′}.

Let σ1 = +1 or −1 if b ∈ I ′ or b 6∈ I ′, respectively, and similarly σ2 = +1
or −1 if b′ ∈ I or b′ 6∈ I respectively. Using (3.3), (3.5) and (3.8), it is easy
to check that sign(〈gi, vb′〉 + h(ab′)) = σ2, sign(〈gi+1, vb〉 + h(ab)) = σ1 and
zi+1 − zi = σ1vb − σ2vb′ . Therefore, according to (3.6) and (3.7),

sign(〈gi+1−gi, zi+1−zi〉)= sign(〈gi+1−gi, σ1vb−σ2vb′〉)
= sign(σ1 〈gi+1, vb〉+σ2h(ab′)+σ1h(ab)+σ2 〈gi, vb′〉)

= σ2
1 + σ2

2 > 0.
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In other words, (gi+1 − gi) always points in the same direction as Ni, and
thus gi+1 − gi = µiNi for some µi > 0. We can therefore write:

0 =
r∑

i=1

(gi+1 − gi) =
r∑

i=1

µiNi with µ1, . . . , µr > 0. (3.9)

Taking the scalar product of (3.9) with (x, 1), x ∈ Rd shows that, for at least
one facet Fi, we must have 〈Ni, (x, 1)〉 < 0 and therefore

sign (〈Ni, (x, 1)〉) 6= sign (〈Ni, zi+1 − zi〉) ,

i.e., (3.4) fails. In other words, this orientation cannot be induced by any
generic point x ∈ Rd. All orientations (G, ox) are therefore acyclic.

In the one-dimensional case, we can obtain the positive linear combination
of normals (3.9) without assuming the existence of the vectors yi. We only
give a sketch of the proof. First, there is at least one tile Πi such that
Fi 6= Fi+1, else the tiles cannot form a loop. Furthermore, since each tile is
convex, each angle Ni∠Ni+1 can only be strictly less than π, but the total
angle along the cycle must be equal to 2kπ, k ∈ Z \ {0}. These conditions
imply that there is a closed path in R2 whose j-th displacement vector is
directed along Nj. Defining gi as the i-th vertex of the path then yields
(3.9).

Remark 3.5. The construction used in the proof of Lemma 3.4 is similar to
the affinization of central hyperplane arrangements, see e.g. [40, Chapter 7].

As a directed acyclic graph, (G, ox) can be topologically sorted, and the
(only) tile Π∅,Z supported on x can be used as the root of an oriented path
that follows the topological sorting. We prove now that the other tiles ΠI′,B′

supported on x are all reachable from Π∅,Z using such a path. First, we need
a small lemma in convex theory, very similar (although not equivalent) to
Carathéodory’s theorem.

Lemma 3.6. Let A = (a1, . . . , an) be a configuration of n > d + 1 points in
Rd, and let B ⊂ [n] be a set of |B| = d+1 indices such that the points (ai)i∈B
are affinely independent. Then, for every x ∈ conv(A) there exists an index
b ∈ B such that ab and x are on the same closed halfspace of aff({ai}i∈B\{b})
and x ∈ conv({ai}i∈[n]\{b}).
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Proof. First, assume that x ∈ conv({ai}i∈B). In this case, for all b ∈ B, x is
on the same closed halfspace of aff({ai}i∈B\{b}) as ab. We can then pick any
index c ∈ [n]\B, and the (possibly degenerate) simplices conv({ai}i∈B\{b}t{c})
for all b ∈ B cover conv({ai}i∈B). Thus, for at least one index b ∈ B,
x ∈ conv({ai}i∈B\{b}t{c}), satisfying the lemma.

Assume now that x 6∈ conv({ai}i∈B). Then x ∈ conv(A) if and only if

x =
n∑

i=1

µiai

for some real numbers µi satisfying µi ≥ 0 and
∑n

i=1 µi = 1. Since the points
indexed by B are affinely independent, we can also express x =

∑
b∈B λbab,

with
∑

b∈B λb = 1. We extend this to a linear combination x =
∑n

i=1 λiai by
defining λi := 0 for i 6∈ B. We have

n∑
i=1

µi = 1 =
n∑

i=1

λi,

and therefore
∑n

i=1(µi − λi) = 0. The expression µi − λi cannot be identi-
cally zero for all i ∈ [n], since otherwise x ∈ conv({aj}j∈B), which we have
excluded. Thus, there must be at least one b ∈ B with λb > µb ≥ 0. If we
pick an index c ∈ B such that

c ∈ arg min
b∈B

{
αb :=

µb

λb − µb

: λb > µb

}
,

we can write the nonnegative linear combination

n∑
i=1

[µi − (λi − µi)αc] ai = x, (3.10)

where clearly µi− (λi− µi)αc ≥ 0 and µc− (λc− µc)αc = 0. Thus, the point
ac satisfies the lemma, since λc > µc ≥ 0 implies that ac and x are on the
same open halfspace of aff({ai}i∈B\{c}), and x can be expressed as the convex
combination (3.10) with the point ac having a zero coefficient.

We can now prove that there is always a directed path in (G, ox) from
Π∅,Z to any tile ΠI′,B′ supported on x.
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Proposition 3.7. Let P(h) be a regular fine zonotopal tiling of Z(V ) with
generic height function h, let x ∈ conv(A) be a generic point, and let Π∅,Z

be the only tile in P(0)(h) supported on x. Then for every tile ΠI′,B′ ∈ P(h)
supported on x, there is a directed path in (G, ox) from Π∅,Z to ΠI′,B′ with
every tile ΠI,B in the path satisfying |I| ≤ |I ′|.

Proof. If I ′ = ∅, then necessarily ΠI′,B′ = Π∅,Z , and we are done. Else,
we complete the proof by finding another tile ΠI,B and an oriented edge
ΠI,B → ΠI′,B′ in (G, ox) such that ΠI,B is supported on x and I ⊆ I ′. The
same reasoning can then be applied to ΠI,B and again repeatedly, yielding
an oriented path of tiles supported on x and with non-increasing |I|. Since
the graph is acyclic (Lemma 3.4) and the number of tiles is finite, the process
must eventually end with ΠI,B = Π∅,Z as the root of the path.

According to Lemma 3.6, and since x is generic, there exists an index
b′ ∈ B′ such that

x ∈ conv({ai}i∈I′tB′\{b′}) and ab′ , x are on the same side of Hb′ , (3.11)

where Hb′ := aff({ai}i∈B′\{b′}). Necessarily, this means that there is an index
j ∈ I ′ such that aj is on the same side of Hb′ as ab′ , otherwise Hb′ would
separate x from the convex hull conv({ai}i∈I′tB′\{b′}) and (3.11) would be
false. Proposition 2.5 then guarantees that there is a tile ΠI,B, connected to
ΠI′,B′ with an edge in G, such that B \ {b} = B′ \ {b′} for some b ∈ B and
either I ′ = I or I ′ = I t {b}. The point ab is on the opposite side of Hb′

as ab′ and x in the first case, and on the same side in the second case. It
is easy to check, using (3.4) and taking the representative points z ∈ ΠI,B

and z′ ∈ ΠI′,B′ defined as in (3.8), that in both cases the edge associated
to the tile ΠJ,C with J = I ′, C = B ∩ B′ is oriented from ΠI,B to ΠI′,B′ .
Furthermore, in both cases, B t I ⊇ I ′ t B′ \ {b′}, implying that ΠI,B is
supported on x, and I ⊆ I ′. This completes the proof.

Proposition 3.7 is important because it shows that every tile ΠI,B of order
k can be connected to Π∅,Z in (G, ox) using only tiles of order k or less (see
e.g. Figure 4). In practical applications, this implies that all the spline
functions of degree k supported on any given point can be found efficiently
using only the knowledge of spline functions of degree r ≤ k. Therefore, when
constructing a spline space using the process delineated in Theorems 2.10 and
3.3, the iterations can be safely stopped at the desired degree, without any
need to access higher-degree functions.
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Furthermore, Theorem 3.7 suggests a simple and efficient algorithm to
find all the spline functions supported on a point x. The first step, which
requires finding the spline of degree k = 0 having x in its support, can be
efficiently implemented via any search tree constructed on the simplices in
T (0) [38, 39]. Such trees typically have a O (n log(n)) construction complexity
and a O (log(n)) query complexity, n being the number of degree-zero splines.
After this first step, the complexity is simply linear in the number of spline
functions (of all degrees r ≤ k) which are nonzero on x, and does not depend
on the total number of functions in the spline space.

Notice however that there is still a need to check explicitly if every visited
spline function is actually supported on x, albeit only for a limited number
of functions.

We show an example of the directed graph (G, ox) in Figure 4.

3.3. Spline evaluation

Once all the spline functions supported on a given point x have been
determined, one might be tempted to use the oriented graph (G, ox) and its
topological sorting to compute the value of all the spline functions on x.

Imagine that we want to compute, for some tile ΠI,B supported on x,
the value of M b := M(x | (ai)i∈ItB\{b}) for all b ∈ B, which can in turn
be used to compute the value of the spline itself M := M(x | ΠI,B) using
(1.1b). For every b ∈ B and every point x ∈ Rd, if M b(x) 6= 0, then there is
exactly one edge ΠI′,B′ → ΠI,B with B \ {b} = B′ \ {b′} and either I = I ′,
I = I ′ t {b′}, I ′ = I t {b} or I t {b} = I ′ t {b′}. Suppose that the values of
M(x | (ai)i∈I′tB′) and M(x | (ai)i∈I′tB′\{b′}) for all b′ ∈ B′ are known. Are
we able to compute the value of M b? The answer depends on which case is
realized. In particular:

(i) If I = I ′, then M b = M(x | (ai)i∈I′tB′\{b′}), which is known;

(ii) if I = I ′ t {b′}, then M b = M(x | ΠI′,B′), which is also known;

(iii) if I t {b} = I ′ t {b′}, then M b can be computed from the set of known
values M(x | (ai)i∈I′tB′\{b′}), b′ ∈ B′ via a single application of (1.2).

However, in the case I ′ = It{b}, there seems to be no obvious way to directly
obtain M b. If this happens only for a single b ∈ B, then it is still possible
to obtain M b via (1.1b), after noticing that M = M(x | (ai)i∈I′tB′\{b′}). In
general, however, this case can happen more than once for a given point x
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Figure 4: Left: oriented dual graph (G, ox) for the tilings of Figure 2, with the orientation
induced by a point x ∈ (a4, a5). The subgraph determined by the tiles supported on
x is drawn with solid lines, and the tiles are numbered according to their position in a
topological sorting of (G, ox), starting with 0 for the tile Π∅,Z . Right: corresponding spline
functions supported on x.
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and a given spline M(x | ΠI,B) if d ≥ 3, making it essentially impossible
to build an efficient recurrent evaluation scheme without the use of some
auxiliary functions.

We propose here a slightly different construction, based on the following
observation. First, notice that the problematic case I ′ = I t{b} cannot arise
if M(x | ΠI,B) is a spline of maximal degree for P (see Figure 2). However,
if we consider a zonotopal tiling PI,B of the zonotope Z(VI,B) built on the
reduced point configuration AI,B := (ai)i∈ItB, then M(x | ΠI,B) can indeed
be obtained from any maximal-degree tile of PI,B. Thus, if in the evaluation
of each spline M(x | ΠI,B) we use the reduced tiling PI,B, the problematic
case I ′ = I t {b} cannot occur, and neither can the case I ′ = I. Notice that
an induced tiling PI,B of Z(VI,B) can simply be obtained from P via Lemma
1.2.

The reasoning of the previous paragraph suggests a simple procedure to
build a set of auxiliary spline functions that are sufficient to compute, via
recurrence, the value of any function M(x | ΠI,B):

(i) Build the tiling PI,B induced by P on the reduced point configuration
AI,B := (ai)i∈ItB via Lemma 1.2;

(ii) For each b ∈ B, find the unique tile ΠI′,B′ ∈ PI,B, if any, such that
B ∩ B′ = B \ {b}. If the tile exists, the value of M(x | (ai)i∈ItB\{b})
can then be computed from the values of M(x | ΠI′,B′) and M(x |
(ai)i∈I′tB′\{b′}), b

′ ∈ B′, either directly or through (1.2), otherwise the
value is zero;

(iii) Store the subsets (I ′, B′) found in step (ii), and repeat the same process
from step (i) starting from each corresponding tile ΠI′,B′ .

The set of stored subsets (I ′, B′) obtained during this process corresponds
to a set of auxiliary spline functions that are sufficient to compute the value of
the spline M(x | ΠI,B) for all x. Applying this process to all tiles ΠI,B ∈ P(k)

then yields a complete set of auxiliary functions sufficient for the evaluation
of all the basis functions of order k via (1.1b) and (1.2). Notice that the
same couple (I ′, B′) can be obtained starting from multiple basis functions,
in which case, it should obviously be stored only once.

So far, we have not detailed how the subsets corresponding to the tiles
connected to ΠI,B in the induced tiling PI,B can be found efficiently in step
(ii). Naively, one can start from the knowledge of the whole tiling P and
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apply Lemma 1.2, but this is obviously computationally infeasible in most
applications. Thankfully, in the case of regular tilings, there is a more efficient
way to compute them.

Lemma 3.8. Let P(h) be a regular fine zonotopal tiling of Z(V ) with height
function h, and let ΠI,B and ΠI′,B′ be two of its tiles, sharing a facet ΠJ,C

with normal vector NC. Define for convenience:

σij := sign (det((ac, h(ac), 1)c∈C , (ai, h(ai), 1), (aj, h(aj), 1))) ,

σi := sign (det((ac, 1)c∈C , (ai, 1))) .

Then b′ ∈ I if and only if σbb′ · σb > 0, b ∈ I ′ if and only if σbb′ · σb′ < 0, and,
choosing the orientation of NC such that 〈NC , (x, 1)〉 = det((ac, 1)c∈C , (x, 1)),
sign(〈NC , z − z′〉) = σbb′ · σb · σb′ for all z ∈ ΠI,B, z′ ∈ ΠI′,B′.

Proof. The first two facts follow immediately from the Delaunay property
(3.1), since, if σb > 0, then b′ ∈ I if and only if σbb′ > 0, and the same is
true if both signs are reversed. The same reasoning applies to the condition
b ∈ I ′ using σb′b = −σbb′ and σb′ . If we now consider the representative points
z ∈ ΠI,B and z′ ∈ ΠI′,B′ defined as in (3.8), we can express their difference
as

z − z′ = 1

2
(σbb′σb′vb + σbb′σbvb′) ,

and therefore

sign(〈NC , z − z′〉) =
1

2
sign (σbb′σb′ 〈NC , (ab, 1)〉+ σbb′σb 〈NC , (ab′ , 1)〉)

(3.12)
but since b and b′ are on the same side of aff({ac}c∈C) if and only if 0 <
σb · σb′ = (σbb′σb) · (σbb′σb′), the two terms in the sum on the right hand side
of (3.12) always have the same sign, and we can thus rewrite (3.12) as

1

2
(σbb′σb′ sign(〈NC , (ab, 1)〉) + σbb′σb sign(〈NC , (ab′ , 1)〉)) = σbb′ · σb · σb′ ,

since sign(〈NC , (ab, 1)〉) = σb, and similarly for b′. This completes the proof.

In the case of regular tilings, Lemma 3.8 can be used to build any induced
tiling PI,B, its dual graph and the induced orientations simply by taking the
collection B := {B′ ⊆ I t B : |B′| = d + 1, det(B′) 6= 0} of all affinely
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independent subsets of size d + 1 of (ai)i∈ItB, and using for each subset B′

the signs σbb′ , σb and σb′ , b
′ ∈ B′ to construct the associated subset I ′ and

form the tile ΠI′,B′ ∈ PI,B. The evaluation graph for ΠI,B will then contain
all the tiles directly adjacent to ΠI,B in PI,B. Notice that, when all auxiliary
functions are taken into account, the splines of degree zero do not consti-
tute in general a triangulation of conv(A). However, it is still possible to
build search trees capable of efficiently finding all the (possibly overlapping)
simplices that contain a given point x, for example using structures such
as bounding volumes hierarchies (BVH), of which the R-tree and R?-tree
[38, 39] are prominent examples. We illustrate the construction of auxiliary
functions and the corresponding evaluation obtained via the process outlined
above in Figs 5 and 6 respectively.

We end this section with a couple of final considerations. First, notice
that it is not necessary to explicitly prove that the evaluation graph is acyclic,
as this is evident from its construction. In particular, the evaluation graph
for splines of order k clearly generates a k-partite oriented graph, to which
some connections between splines of the same order are added (Figure 6).
Since the connections among this subset of tiles are the same as those in the
full dual graph G of P , no cycle can be created by the orientation ox induced
by any point x.

Second, notice that in the special case where every point in A is repeated
at least k+1 times, the construction process of Theorems 2.10 and 3.3 yields
the usual Bernstein-Bézier functions [41] over a triangulation of conv(A), and
the evaluation graph reduces to the usual de Casteljau algorithm [42] over
each simplex.

Finally, notice that, as can be gleaned from Figure 5, the procedure out-
lined here does not lead in general to a minimal amount of auxiliary spline
functions. In particular, each tile ΠI,B for which there is an index i ∈ I such
that ai 6∈ conv({ab}b∈B) can lead to an increased number of auxiliary func-
tions. How often this happens is determined by the chosen height function
h, either globally or locally in each induced tiling PI,B, and is related to the
presence of slivers, i.e., simplices with skewed aspect ratios, in the associated
weighted Delaunay triangulations. Some techniques exist to optimize the
Delaunay height function in order to reduce the number of these elements,
see e.g. [43, 44]. We defer to a future work the investigation of how these
techniques can help optimize the number of auxiliary functions required in
the evaluation of simplex splines.
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Figure 5: Top left: A regular fine zonotopal tiling and the associated spline space over the
point configuration of Figure 2, with the tiles corresponding to the splines of degree k = 2
(i.e., P(2)) highlighted and numbered from 1 to 4. Top right: corresponding spline func-
tions and auxiliary functions, numbered 5 through 17, computed by the process of Section
3.3. Bottom: the induced zonotopal tilings PI,B encountered during the construction of
auxiliary spline functions. Highlighted tiles correspond to stored functions.
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Figure 6: Top: the complete graph containing all the auxiliary functions obtained via the
construction presented in Section 3.3 in the case of the example of Figure 5. Bottom:
The actual evaluation graph obtained when computing the value of the spline functions
at different locations x.
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4. Conclusions

We have uncovered an interesting combinatorial structure capable of pro-
ducing spaces of polynomial-reproducing multivariate (simplex) splines built
atop any point configuration A, which ties them to the well studied fine zono-
topal tilings of the associated zonotope Z(V ). This correspondence allows to
generalize the set of known multivariate spline spaces and to adapt a known
construction algorithm to a more general setting. When the tiling is regular,
its dual graph provides a way to efficiently determine all the spline functions
supported on any given point x, and to devise a recurrence evaluation scheme
that reuses some intermediate results, thus providing a useful first step in the
practical application of simplex spline bases in approximation and analysis.

Only fine zonotopal tilings have been explored in the present work. Pos-
sible connections between more general zonotopal tilings and other kinds of
multivariate splines, such as box splines or more general polyhedral splines
[45, 46] might be possible by generalizing this restriction.

From a computational standpoint, it is possible that the correspondence
uncovered in the present work can be used to obtain further optimized algo-
rithms for multivariate splines. Two aspects in particular deserve a particular
attention in our opinion.

First, the evaluation scheme proposed in this work does not guarantee
a minimal number of auxiliary functions. On the other hand, optimized
weighted Delaunay triangulations coming from computer graphics applica-
tions (see e.g. [43, 44]) could provide more suitable height functions, signifi-
cantly improving the efficiency of the evaluation algorithm.

Second, the freedom given by the possibility of constructing spline bases
over point sets with repeated knots can be exploited to build bases of splines
with variable regularity and localized or arbitrarily-shaped discontinuities,
with interesting applications in function approximation and numerical anal-
ysis.
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mathématique 17 (1) (1966) 71–107.

[15] C. A. Micchelli, A constructive approach to Kergin interpolation in Rk:
multivariate B-splines and Lagrange interpolation, The Rocky Mountain
Journal of Mathematics (1980) 485–497.

[16] J. Richter-Gebert, G. M. Ziegler, Zonotopal tilings and the Bohne-Dress
theorem, Contemporary Mathematics 178 (1994) 211–211.

[17] G. M. Ziegler, Lectures on polytopes, Vol. 152, Springer Science & Busi-
ness Media, 2012.

[18] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G. M. Ziegler,
Oriented matroids, no. 46, Cambridge University Press, 1999.

[19] G. C. Shephard, Combinatorial properties of associated zonotopes,
Canadian Journal of Mathematics 26 (2) (1974) 302–321.

[20] P. Galashin, A. Postnikov, L. Williams, Higher secondary polytopes and
regular plabic graphs, arXiv preprint 1909.05435 (2019).

[21] C. De Boor, Quasiinterpolants and approximation power of multivariate
splines, in: Computation of curves and surfaces, Springer, 1990, pp. 313–
345.

[22] T. Lyche, G. Muntingh, Stable simplex spline bases for c3 quintics on the
Powell–Sabin 12-split, Constructive approximation 45 (1) (2017) 1–32.

[23] C. Bracco, T. Lyche, C. Manni, F. Roman, H. Speleers, Generalized
spline spaces over t-meshes: Dimension formula and locally refined gen-
eralized b-splines, Applied Mathematics and Computation 272 (2016)
187–198.

38



[24] L. Ramshaw, Blossoms are polar forms, Computer Aided Geometric
Design 6 (4) (1989) 323–358.

[25] D.-T. Lee, On k-nearest neighbor Voronoi diagrams in the plane, IEEE
transactions on computers 100 (6) (1982) 478–487.

[26] D. Schmitt, J.-C. Spehner, On Delaunay and Voronoi diagrams of order
k in the plane, in: Proc. 3rd Canad. Conf. Comput. Geom, 1991, pp.
29–32.

[27] D. Schmitt, J.-C. Spehner, Order-k Voronoi diagrams, k-sections, and k-
sets, in: Japanese Conference on Discrete and Computational Geometry,
Springer, 1998, pp. 290–304.

[28] W. El Oraiby, D. Schmitt, J.-C. Spehner, Centroid triangulations from
k-sets, International Journal of Computational Geometry & Applica-
tions 21 (06) (2011) 635–659.

[29] H. Edelsbrunner, P. Valtr, E. Welzl, Cutting dense point sets in half,
Discrete & Computational Geometry 17 (3) (1997) 243–255.

[30] D. Schmitt, J.-C. Spehner, k-set polytopes and order-k Delaunay dia-
grams, in: 2006 3rd International Symposium on Voronoi Diagrams in
Science and Engineering, IEEE, 2006, pp. 173–185.

[31] J. A. Olarte, F. Santos, Hypersimplicial subdivisions, arXiv preprint
1906.05764 (2019).
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